Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Ann Bot ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982647

RESUMO

BACKGROUND AND AIMS: The complexity of fossil forest ecosystems is difficult to reconstruct due to the fragmentary nature of the fossil record. However, detailed morpho-anatomical studies of well-preserved individual fossils can provide key information on tree growth and ecology, including in biomes with no modern analog such as the lush forests that developed in the polar regions during past greenhouse climatic episodes. METHODS: We describe an unusual-looking stem from Middle Triassic (ca 240 Ma) deposits of Antarctica with over 100 very narrow growth-rings and conspicuous persistent vascular traces through the wood. Sections of the specimen were prepared using the cellulose acetate peel technique to determine its systematic affinities and analyse its growth. KEY RESULTS: The new fossil shows similarities with the form genus Woodworthia and with conifer stems from the Triassic of Antarctica, and is assigned to the conifers. Vascular traces are interpreted as those of small branches retained on the trunk. Growth-ring analyses reveal one of the slowest growth rates reported in the fossil record, with an average of 0.2 mm/season. While the tree was growing within the Triassic polar circle, sedimentological data and growth-ring information from other fossil trees, including from the same locality, support the presence of favorable conditions in the region. CONCLUSIONS: The specimen is interpreted as a dwarf conifer tree that grew under a generally favorable regional climate but whose growth was suppressed due to stressful local site conditions. This is the first time that a tree with suppressed growth is identified as such in the fossil record, providing new insights on the structure of polar forests under greenhouse climates and, more generally, on the complexity of tree communities in deep time.

2.
Ecol Evol ; 14(6): e11593, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903146

RESUMO

The genus Abies is widely distributed across the world and is of high importance for forestry. Since chloroplasts are usually uniparentally inherited, they are an important tool for specific scientific issues like gene flow, parentage, migration and, in general, evolutionary analysis. Established genetic markers for organelles in conifers are rather limited to RFLP markers, which are more labour and time intensive, compared with SSR markers. Using QUIAGEN CLC Workbench 23.03, we aligned two chloroplast genomes from different Abies species (NCBI accessions: NC_039581, NC_042778, NC_039582, NC_042410, NC_035067, NC_062889, NC_042775, NC_057314, NC_041464, MH706706, MH047653 and MH510244) to identify potential SSR candidates. Further selection and development of forward and reverse primers was performed using the NCBI Primer Blast Server application. In this article, we introduce a remarkably polymorphic SSR marker set for various Abies species, which can be useful for other conifer genera, such as Cedrus, Pinus, Pseudotsuga or Picea. In total, 17 cpSSRs showed reliable amplification and polymorphisms in A. grandis with a total of 68 haplotypes detected. All 17 cpSSRs amplified in the tested Abies spp. In the other tested species, except for Taxus baccata, at least one primer was polymorphic.

3.
Plant Sci ; : 112173, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944158

RESUMO

During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.

4.
Mycologia ; : 1-14, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905517

RESUMO

Ophiostoma haidanensis is described as a new species of the Ophiostoma piceae complex isolated from yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little) sapwood in the Haida Gwaii island archipelago and the North Coast of British Columbia, Canada. The fungus is characterized by the production of a typical sporothrix-like asexual morph but is distinguished morphologically from other members of the O. piceae species complex by its large, multiseptate primary conidia. Phylogenetic analysis of DNA sequences from the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and the ß-tubulin (BTUB) and translation elongation factor 1-α (TEF1) genes supports the inclusion of O. haidensis as a distinct member within the O. piceae complex. To our knowledge, this is the first report of a blue stain fungus infecting yellow-cedar, an ecologically, culturally, and economically important conifer naturally distributed along the coastal forests of the Pacific Northwest in North America.

5.
ISME Commun ; 4(1): ycae062, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38800125

RESUMO

Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.

6.
Ann Bot ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808688

RESUMO

BACKGROUND AND AIMS: Pollen germination and tube growth are essential processes for successful fertilization. They are among the most temperature-vulnerable stages and subsequently affect seed production and determine population persistence and species distribution under climate change. Our study aims to investigate intra- and inter-specific variations in the temperature dependence of pollen germination and tube length growth and to explore how these variations differ for pollen from elevational gradients. METHODS: We focused on three conifer species, Pinus contorta, Picea engelmannii, and Pinus ponderosa, with pollen collected from 350 to 2200m elevation in Washington State, USA. We conducted pollen viability tests at temperatures from 5 to 40°C in 5°C intervals. After testing for four days, we took images of these samples under a microscope to monitor pollen germination percentage (GP) and tube length (TL). We applied the Gamma function to describe the temperature dependence of GP and TL and estimated key parameters, including the optimal temperature for GP (Topt_GP) and TL (Topt_TL). KEY RESULTS: Results showed that pollen from three species and different elevations within a species have different GP, TL, Topt_GP, and Topt_TL. The population with a higher Topt_GP would also have a higher Topt_TL, while Topt_TL was generally higher than Topt_GP, i.e., a positive but not one-to-one relationship. However, only Pinus contorta showed that populations from higher elevations have lower Topt_GP and Topt_TL and vice versa. The variability in GP increased at extreme temperatures, whereas the variability in TL was greatest near Topt_TL. CONCLUSIONS: Our study demonstrates the temperature dependences of three conifers across a wide range of temperatures. Pollen germination and tube growth are highly sensitive to temperature conditions and vary among species and elevations, affecting their reproduction success during warming. Our findings can provide valuable insights to advance our understanding of how conifer pollen responds to rising temperatures.

7.
J Environ Manage ; 360: 121141, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781874

RESUMO

Harvesting of plantation conifers on peatlands is carried out as part of restoration and forestry operations. In particular, in the UK and Ireland, conifer plantations on drained ombrotrophic blanket and raised bogs are increasingly being removed (by harvesting), along with blocking of drainage ditches to help raise water tables to reinitiate and restore bog vegetation and function. However, both tree harvesting and peatland restoration operations can have significant impacts on water quality at local and catchment scales. Previous research has suggested that leaching from leftover decomposing brash (tree tops and branches, including wood and needles) is the primary cause, while other work has suggested that release from rewetted peat also contributes to water quality changes. This research investigates the relative importance of peat rewetting, needles and branches on water quality using mesocosm experiments, to help elucidate the mechanisms behind water quality changes following restoration and harvesting operations. Peat and brash were collected from a drained afforested blanket bog in the Flow Country, Scotland. Short-term mesocosm experiments were conducted by incubating peat, peat + needles and peat + needles + branches with rainwater in quadruplicate. Brash from Sitka spruce (Picea sitchensis) and lodgepole pine (Pinus contorta) was investigated separately, while we also conducted experiments with fresh and aged (∼18 months) brash. Peat, needles and branches all significantly impacted water quality in the order of branches > needles > peat, while concentrations of DOC, PO43-, NH4+, K and Mn were most impacted. Water quality impacts of spruce brash appeared generally greater than pine, while fresh brash had larger effects than aged brash. In our mesocosms, relative contributions to water quality changes were estimated by elemental yields. On average, peat contributed 25.4% (range 0.6-72.3%), while needles and brash contributed 19.7% (range 3.0-37.0%) and 54.9% (range 22.1-70.2%) to yields, respectively. We further estimate that 267 kg C ha-1 (255.8 kg as DOC, 10.7 kg as DIC), 27.4 kg K ha-1, 5.8 kg P ha-1 (as PO43-) and 0.5 kg N ha-1 (as NH4+) could be released from brash, over nine days.


Assuntos
Solo , Traqueófitas , Árvores , Qualidade da Água , Áreas Alagadas , Agricultura Florestal , Pinus
8.
Saudi J Biol Sci ; 31(5): 103983, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590389

RESUMO

Himalayan 'Ecotone' temperate conifer forest is the cradle of life for human survival and wildlife existence. In spite of the importance of these areas, they have not been studied in depth. This study aimed to quantify the floristic structure, important value index (IVI), topographic and edaphic variables between 2019 and 2020 utilizing circular quadrant method (10 m x 10 m). The upper-storey layer consisted of 17 tree species belongs to 12 families and 9 orders. Middle-storey shrubs comprised of 23 species representing 14 families and 12 orders. A total of 43 species of herbs, grasses, and ferns were identified from the ground-storey layer, representing 25 families and 21 orders. Upper-storey vegetation structure was dominated by Pinus roxburghii (22.45 %) and middle-storey by Dodonaea viscosa (7.69 %). However, the ground layer vegetation was diverse in species composition (43 species) and distribution. The floral vegetation structure was encompassing of three floral communities which were diverse in IVI, such as, in Piro-Aial (Group 2), Pinus roxburghii (54.46 x 15.94) had the highest IVI value, followed by Pinus wallichiana (45.21 x 14.85) in Piwa-Quin (Group 3) and Ailanthus altissima (22.84 x 19.25) in Aial-Qugal (Group 1). However, the IVI values for Aesculus indica, Celtis australis, and Quercus incana in Aial-Qugal (Group 1) were not determined due to low detection rate. Nevertheless, eleven of these species showed 0 IVI values in Piro-Aial (Group 2) and Piwa-Quin (Group 3). CCA ordination biplot illustrated the significant differences among floral communities and its distribution, which impacted by temperature, rainfall, soil pH, altitude, and topographic features. Ward's agglomerative clustering finding reflected 'Ecotone' temperate conifer forest is rich and diverse floristic structure.

9.
New Phytol ; 242(6): 2775-2786, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567688

RESUMO

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.


Assuntos
Ecossistema , Traqueófitas , Traqueófitas/microbiologia , Fungos/fisiologia , Madeira/microbiologia , Especificidade da Espécie , Lignina/metabolismo , Geografia , Árvores/microbiologia
10.
Plant Cell Environ ; 47(6): 2206-2227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481105

RESUMO

Terpenoids are defense metabolites that are induced upon infection or wounding. However, their role in systemic-induced resistance (SIR) is not known. Here, we explored the role of terpenoids in this phenomenon at a very early stage in the interaction between Austrian pine and the tip blight and canker pathogen Diplodia pinea. We induced Austrian pine saplings by either wounding or inoculating the lower stems with D. pinea. The seedlings were then challenged after 12 h, 72 h, or 10 days with D. pinea on the stem 15 cm above the induction. Lesion lengths and terpenoids were quantified at both induction and challenge locations. Key terpenoids were assayed for antifungal activity in in vitro bioassays. SIR increased with time and was correlated with the inducibility of several compounds. α-Pinene and a cluster of ß-pinene, limonene, benzaldehyde, dodecanol, and n-dodecyl acrylate were positively correlated with SIR and were fungistatic in vitro, while other compounds were negatively correlated with SIR and appeared to serve as a carbon source for D. pinea. This study shows that, overall, terpenoids are involved in SIR in this system, but their role is nuanced, depending on the type of induction and time of incubation. We hypothesize that some, such as α-pinene, could serve in SIR signaling.


Assuntos
Ascomicetos , Pinus , Doenças das Plantas , Terpenos , Terpenos/metabolismo , Terpenos/farmacologia , Pinus/metabolismo , Pinus/microbiologia , Pinus/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia , Resistência à Doença , Plântula/metabolismo , Plântula/efeitos dos fármacos
11.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38526344

RESUMO

Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Pinus , Pinus/genética , Pinus/parasitologia , Genômica/métodos , Espécies em Perigo de Extinção , Sequenciamento de Nucleotídeos em Larga Escala
12.
New Phytol ; 243(3): 1231-1246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38308133

RESUMO

Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.


Assuntos
Adaptação Fisiológica , Variação Genética , Pinus sylvestris , Pinus sylvestris/genética , Pinus sylvestris/fisiologia , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único/genética , Fluxo Gênico , Genética Populacional , Geografia
13.
New Phytol ; 242(1): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375897

RESUMO

Serotiny is an adaptive trait that allows certain woody plants to persist in stand-replacing fire regimes. However, the mechanisms by which serotinous cones avoid seed necrosis and nonserotinous species persist in landscapes with short fire cycles and serotinous competitors remain poorly understood. To investigate whether ovulate cone traits that enhance seed survival differ between serotinous and nonserotinous species, we examined cone traits in 24 species within Pinaceae and Cupressaceae based on physical measurements and cone heating simulations using a computational fluid dynamics model. Fire-relevant cone traits were largely similar between cone types; those that differed (e.g. density and moisture) conferred little seed survival advantage under simulated fire. The most important traits influencing seed survival were cone size and seed depth within the cone, which was found to be an allometric function of cone mass for both cone types. Thus, nonserotinous cones should not suffer significantly greater seed necrosis than serotinous cones of equal size. Closed nonserotinous cones containing mature seeds may achieve substantial regeneration after fire if they are sufficiently large relative to fire duration and temperature. To our knowledge, this is the most comprehensive study of the effects of fire-relevant cone traits on conifer regeneration supported by physics-based fire simulation.


Assuntos
Incêndios , Traqueófitas , Sementes , Fenótipo , Necrose
14.
Tree Physiol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307514

RESUMO

In temperate evergreen conifers, growth occurs mostly in summer but photosynthesis precedes year-round; thus, nonstructural carbohydrates (NSC) increase in winter but decrease in summer. Given that mild drought reduces growth but not photosynthesis, a drought in summer should increase NSCs more than one in winter. However, the active regulation hypothesis suggests that to increase future drought resilience, plants might downregulate growth to increase NSCs after a winter drought even if NSCs do not increase during the drought. To test if so, potted Pinus taeda saplings (age $< 1$ yr) were subjected to six-month droughts in a greenhouse with one treatment receiving drought during winter (Sep-Mar), and another during summer (Mar-Sep). Both treatments were compared to a control. To measure dry biomass and NSCs, we harvested plants monthly following each drought, while to assess changes in growth rates, we measured height and diameter monthly. While we observed seasonal variation and an overall increase during the study, we found no drought-related changes in NSC dynamics; however, drought did reduce growth. Furthermore, drought in winter did reduce growth during the following summer, but the reduction was less than for a drought in summer. We conclude that the effect of drought on NSCs was too small to detect in our plants. While better control of soil water would have reduced a major source of uncertainty, plants with larger NSC reserves or more intense stress would also yield easier-to-detect effects. Although not definitive, our results suggest that water stress does not lead to dramatic changes in seasonal NSC dynamics in its aftermath, despite what one might expect under the active regulation hypothesis.

15.
Plant Cell Environ ; 47(5): 1439-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38234202

RESUMO

The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.


Assuntos
Cupressaceae , Embolia , Casca de Planta , Água/fisiologia , Xilema/fisiologia , Árvores/fisiologia , Secas
16.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281030

RESUMO

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Assuntos
Picea , Humanos , Picea/genética , Picea/metabolismo , Variações do Número de Cópias de DNA , beta-Glucosidase/genética , Genômica , Transcriptoma
17.
Phytochemistry ; 219: 113963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171409

RESUMO

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Assuntos
Neurospora , Pseudotsuga , Traqueófitas , Xantonas , Staphylococcus aureus , Fungos , Xantonas/química , Estrutura Molecular , Testes de Sensibilidade Microbiana
18.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37861656

RESUMO

Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea  glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A) + zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A + Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.


Assuntos
Picea , Pinus , Picea/fisiologia , Fotossíntese , Pinus/fisiologia , Fosforilação , Temperatura , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo
19.
Ecol Appl ; 34(2): e2932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948058

RESUMO

Fire suppression and past selective logging of large trees have fundamentally changed frequent-fire-adapted forests in California. The culmination of these changes produced forests that are vulnerable to catastrophic change by wildfire, drought, and bark beetles, with climate change exacerbating this vulnerability. Management options available to address this problem include mechanical treatments (Mech), prescribed fire (Fire), or combinations of these treatments (Mech + Fire). We quantify changes in forest structure and composition, fuel accumulation, modeled fire behavior, intertree competition, and economics from a 20-year forest restoration study in the northern Sierra Nevada. All three active treatments (Fire, Mech, Mech + Fire) produced forest conditions that were much more resistant to wildfire than the untreated control. The treatments that included prescribed fire (Fire, Mech + Fire) produced the lowest surface and duff fuel loads and the lowest modeled wildfire hazards. Mech produced low fire hazards beginning 7 years after the initial treatment and Mech + Fire had lower tree growth than controls. The only treatment that produced intertree competition somewhat similar to historical California mixed-conifer forests was Mech + Fire, indicating that stands under this treatment would likely be more resilient to enhanced forest stressors. While Fire reduced modeled wildfire hazard and reintroduced a fundamental ecosystem process, it was done at a net cost to the landowner. Using Mech that included mastication and restoration thinning resulted in positive revenues and was also relatively strong as an investment in reducing modeled wildfire hazard. The Mech + Fire treatment represents a compromise between the desire to sustain financial feasibility and the desire to reintroduce fire. One key component to long-term forest conservation will be continued treatments to maintain or improve the conditions from forest restoration. Many Indigenous people speak of "active stewardship" as one of the key principles in land management and this aligns well with the need for increased restoration in western US forests. If we do not use the knowledge from 20+ years of forest research and the much longer tradition of Indigenous cultural practices and knowledge, frequent-fire forests will continue to be degraded and lost.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Ecossistema , Florestas , Árvores
20.
Front Plant Sci ; 14: 1157455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078109

RESUMO

The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...