Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.227
Filtrar
1.
Ecol Evol ; 14(7): e11417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962023

RESUMO

The lack of recovery of Chinook salmon (Oncorhynchus tshawytscha) in the Pacific Northwest has been blamed in part on predation by pinnipeds, particularly the harbor seal (Phoca vitulina). Previous work at a limited number of locations has shown that male seal diet contains more salmon than that of female seals and that sex ratios at haul-out sites differ spatiotemporally. This intrapopulation variation in predation may result in greater effects on salmon than suggested by models assuming equal spatial distribution and diet proportion. To address the generality of these patterns, we examined the sex ratios and diet of male and female harbor seals from 13 haul-out sites in the inland waters of Washington State and the province of British Columbia during 2012-2018. DNA metabarcoding was conducted to determine prey species proportions of individual scat samples. The sex of harbor seals was then determined from each scat matrix sample with the use of quantitative polymerase chain reaction (qPCR). We analyzed 2405 harbor seal scat samples using generalized linear mixed models (GLMMs) to examine the factors influencing harbor seal sex ratio at haul-out sites and permutational multivariate analysis of variance (PERMANOVA) to examine the influence of sex and haul-out site on harbor seal diet composition. We found that the overall sex ratio was 1:1.02 (female:male) with notable spatiotemporal variation. Salmoniformes were about 2.6 times more abundant in the diet of males than in the diet of females, and Chinook salmon comprised ca. three times more of the average male harbor seal's diet than the average female's diet. Based on site-specific sex ratios and diet data, we identified three haul-out sites where Chinook salmon appear to be under high predation pressure by male harbor seals: Cowichan Bay, Cutts Area, and Fraser River. Our study indicates that combining sex-specific pinniped diet data with the sex ratio of haul-out sites can help identify priority sites of conservation concern.

2.
Conserv Physiol ; 12(1): coae044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962510

RESUMO

Concerted conservation efforts have brought the giant panda (Ailuropoda melanoleuca) back from the brink of extinction, but pandas continue to face anthropogenic threats in the wild and breeding success in captivity remains low. Because stress can have detrimental impacts on reproduction, monitoring stress- and sex-steroid levels would help assess the effectiveness of conservation mitigation measures in panda populations as well as monitor the welfare and reproductive health of captive animals. In this proof-of-concept study, we used faecal sex steroid and cortisol concentrations (n = 867 samples collected from five males and five females at Beijing Zoo every 4 days over the course of 12 months) as a reference to investigate if testosterone, estradiol, progesterone and cortisol can be meaningfully measured in panda hair (n = 10) using radio-immuno-assays. Additionally, we calculated the ratio of testosterone to cortisol (T:C ratio) for each male, which can provide a biomarker of stress and physical performance. Our findings revealed distinct monthly variations in faecal sex-steroid and cortisol concentrations, reflecting reproductive seasonality and visitor-related stress among individual pandas. Notably, the oldest male had a significantly lower T:C ratio than other males. Our results confirm that the level of sex steroids and cortisol can be assayed by panda hair, and the hair cortisol concentrations correlate significantly with that in faeces with one month lag behind (r = 0.68, P = 0.03). However, the concentrations of hormones detected in saliva are lower than those in faeces by two orders of magnitude, making it difficult to ensure accuracy. By assessing the applicability of hair, faecal and salivary sampling, we can infer their utility in monitoring the reproductive status and acute and chronic stress levels of giant pandas, thereby providing a means to gauge the success of ongoing habitat restoration efforts and to discuss the feasibility of sample collection from wild populations.

3.
Nat Prod Res ; : 1-2, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967105

RESUMO

Climate change significantly impacts the yield and quality of medicinal plants due to alterations in temperature, precipitation patterns, and increased frequency of extreme weather events. These changes affect the growth, secondary metabolite production, and geographical distribution of medicinal plants, leading to reduced yields and compromised medicinal properties. Adaptive strategies such as developing climate-resilient plant varieties, sustainable agricultural practices, and enhanced conservation efforts are essential to mitigate these effects. Increased research and collaborative efforts are necessary to safeguard these vital resources for future generations.

4.
Front Plant Sci ; 15: 1336911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966141

RESUMO

One of the most crucial steps in the practical conservation of endangered endemic mountain plants is to address their population size status and habitat requirements concurrently with understanding their response to future global warming. Three endangered Silene species-Silene leucophylla Boiss., S. schimperiana Boiss., and S. oreosinaica Chowdhuri-in Egypt were the focus of the current study. These species were examined for population status change, habitat quality variables (topography, soil features, and threats), and predictive current and future distributions. To find population size changes, recent field surveys and historical records were compared. Using Random Forest (RF) and Canonical Correspondence Analysis (CCA), habitat preferences were assessed. To forecast present-day distribution and climate change response, an ensemble model was used. The results reported a continuous decline in the population size of the three species. Both RF and CCA addressed that elevation, soil texture (silt, sand, and clay fractions), soil moisture, habitat-type, chlorides, electric conductivity, and slope were among the important variables associated with habitat quality. The central northern sector of the Saint Catherine area is the hotspot location for the predictive current distribution of three species with suitable areas of 291.40, 293.10, and 58.29 km2 for S. leucophylla, S. schimperiana, and S. oreosinaica, respectively. Precipitation-related variables and elevation were the key predictors for the current distribution of three Silene species. In response to climate change scenarios, the three Silene species exhibited a gradual contraction in the predictive suitable areas with upward shifts by 2050 and 2070. The protection of these species and reintroduction to the predicted current and future climatically suitable areas are urgent priorities. Ex-situ conservation and raised surveillance, as well as fenced enclosures may catapult as promising and effective approaches to conserving such threatened species.

5.
Int J Parasitol Parasites Wildl ; 24: 100948, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966858

RESUMO

Platypuses are the world's most evolutionarily distinct mammal and have several host-specific ecto- and endoparasites. With platypus populations declining, consideration should also be given to preserving these high conservation priority parasites alongside their charismatic host. A disease risk analysis (DRA) was performed for a platypus conservation translocation, using a modified streamlined methodology that incorporated a parasite conservation framework. DRA frameworks rarely consider parasite conservation. Rather, parasites are typically considered myopically in terms of the potential harm they may cause their host. To address this, a previously proposed parasite conservation framework was incorporated into an existing streamlined DRA methodology. Incorporation of the two frameworks was achieved readily, although there is opportunity for further refinement of this process. This DRA is significant as it is the first performed for any monotreme species, and implements the emerging approach of balancing the health and disease risk of the host with parasite conservation.

6.
PeerJ ; 12: e17510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952973

RESUMO

The volcano rabbit (Romerolagus diazi) is a lagomorph endemic to the central mountains of the Trans-Mexican Volcanic Belt and is classified as threatened at extinction risk. It is a habitat specialist in bunchgrass communities. The annual wildfires that occur throughout its distribution range are a vulnerability factor for the species. However, the effects of wildfires on volcano rabbit populations are not fully understood. We evaluated the occupancy and change in the volcano rabbit relative abundance index in the burned bunchgrass communities of the Ajusco-Chichinautzin Mountain Range during an annual cycle of wildfire events. Additionally, we assessed the factors that favor and limit occupation and reoccupation by the volcano rabbit using the relative abundance index in burned plots as an indicator of these processes. The explanatory factors for the response of the volcano rabbit were its presence in the nearby unburned bunchgrasses, the height of three species of bunchgrass communities, the proportion of different types of vegetation cover within a 500 m radius around the burned plots, heterogeneity of the vegetation cover, and the extent of the wildfire. Statistical analyses indicated possible reoccupation in less than a year in burned bunchgrass communities adjacent to unburned bunchgrass communities with volcano rabbits. The relative abundance index of volcano rabbits was not favored when the maximum height of the Muhlenbergia macroura bunchgrass community was less than 0.77 m. When the vegetation around the burned plots was dominated by forest (cover >30% of the buffer) and the fire was extensive, the number of latrines decreased per month but increased when the bunchgrass and shrub cover was greater around the burned plots. While the statistical results are not conclusive, our findings indicate a direction for future projects, considering extensive monitoring to obtain a greater number of samples that contribute to consolidating the models presented.


Assuntos
Ecossistema , Incêndios Florestais , Animais , México , Lagomorpha , Coelhos , Poaceae
7.
J R Soc Interface ; 21(216): 20240278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955228

RESUMO

The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Animais , Tailândia/epidemiologia , Bovinos , Animais Selvagens , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/veterinária , Doenças Transmissíveis/transmissão , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Ruminantes/microbiologia
8.
Evol Appl ; 17(7): e13741, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957311

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) display remarkable life history diversity, underpinning their ability to adapt to environmental change. Maintaining life history diversity is vital to the resilience and stability of Chinook salmon metapopulations, particularly under changing climates. However, the conditions that promote life history diversity are rapidly disappearing, as anthropogenic forces promote homogenization of habitats and genetic lineages. In this study, we use the highly modified Yuba River in California to understand if distinct genetic lineages and life histories still exist, despite reductions in spawning habitat and hatchery practices that have promoted introgression. There is currently a concerted effort to protect federally listed Central Valley spring-run Chinook salmon populations, given that few wild populations still exist. Despite this, we lack a comprehensive understanding of the genetic and life history diversity of Chinook salmon present in the Yuba River. To understand this diversity, we collected migration timing data and GREB1L genotypes from hook-and-line, acoustic tagging, and carcass surveys of Chinook salmon in the Yuba River between 2009 and 2011. Variation in the GREB1L region of the genome is tightly linked with run timing in Chinook salmon throughout their range, but the relationship between this variation and entry on spawning grounds is little explored in California's Central Valley. We found that the date Chinook salmon crossed the lowest barrier to Yuba River spawning habitat (Daguerre Point Dam) was tightly correlated with their GREB1L genotype. Importantly, our study confirms that ESA-listed spring-run Chinook salmon are spawning in the Yuba River, promoting a portfolio of life history and genetic diversity, despite the highly compressed habitat. This work highlights the need to identify and protect this life history diversity, especially in heavily impacted systems, to maintain healthy Chinook salmon metapopulations. Without protection, we run the risk of losing the last vestiges of important genetic variation.

9.
Biodivers Data J ; 12: e124196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957702

RESUMO

The Bornean banded langur (Presbytischrysomelaschrysomelas) is critically endangered species primarily found in Sarawak, Malaysia. Albeit this species is in peril, the ecology knowledge of this endemic species of Borneo is still scarce. Thus, a rapid survey employing total count and scan sampling method was conducted between July to August 2023 at Tanjung Datu National Park (TDNP), Sarawak to observe the social interaction of species with the environment. The behaviour of langur was recorded by employing scanning sampling method at 10 minutes intervals. This study sought to provide preliminary data on behavioural ecology of the Bornean banded langur within the national park. During the survey, three groups (consisting two to seven individuals) and a solitary male Bornean banded langur were recorded. The langurs were observed in both dipterocarp forests and coastal forests within the park. The daily activities of the Bornean banded langurs in TDNP were predominantly resting (31%), moving (29%), feeding (26%), vocalizing (14%), but not engaging in other social activities such as grooming, playing and mating. Knowing the behavioural ecological status as well as understanding ecology by identifying the activity pattern of langur is essential to government authorities and pertinent stakeholders to implement conservation strategies for the Bornean banded langur and their habitats.

10.
Conserv Physiol ; 12(1): coae042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957844

RESUMO

Forest fragmentation and edge effects are two major threats to primate populations. Primates inhabiting fragmented landscapes must survive in a more degraded environment, often with lower food availability compared to continuous forests. Such conditions can have deleterious effects on animal physiological health, yet some primates thrive in these habitats. Here, we assessed how forest fragmentation and associated edge effects impact three different components of physiological health in a nocturnal primate community in the Sahamalaza-Iles Radama National Park, northwest Madagascar. Over two periods, 6 March 2019-30 October 2019 and 10 January 2022-17 May 2022, we collected data on body condition, fur condition scores and ectoparasite prevalence for 125 Mirza zaza, 51 Lepilemur sahamalaza, 27 Cheirogaleus medius and 22 Microcebus sambiranensis individuals, and we compared these metrics between core and edge areas of continuous forest and fragmented forest. Body condition scores for all species varied between areas, with a positive response to fragmentation and edge effects observed for M. zaza and L. sahamalaza and a negative response for C. medius and M. sambiranensis. Fur condition scores and ectoparasite prevalence were less variable, although M. zaza and L. sahamalaza had a significantly negative response to fragmentation and edge effects for these two variables. Interestingly, the impacts of fragmentation and edge effects on physiological health were variable-specific. Our results suggest that lemur physiological responses to fragmentation and edge effects are species-specific, and body condition, fur condition and ectoparasite prevalence are impacted in different ways between species. As other ecological factors, including food availability and inter/intraspecific competition, likely also influence physiological health, additional work is required to determine why certain aspects of lemur physiology are affected by environmental stressors while others remain unaffected. Although many nocturnal lemurs demonstrate resilience to fragmented and degraded habitats, urgent conservation action is needed to safeguard the survival of their forest habitats.

11.
Sci Total Environ ; : 174282, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960164

RESUMO

Poisoning caused by coumarin-type anticoagulant rodenticides (ARs) stands as the predominant method for controlling rodents globally. ARs, through secondary poisoning, pose a significant threat to predators due to their lethal and sublethal effects. We examined the concentration of accumulated ARs in liver samples of mostly road-killed steppe polecats (Mustela eversmanii) and European polecats (M. putorius) collected throughout Hungary between 2005 and 2021. The steppe polecat samples were found mainly from Eastern Hungary, while European polecats from Western Hungary. We measured the concentration of six residues by HPLC-FLD. Our analysis revealed the presence of one first-generation and four second-generation ARs in 53 % of the steppe polecat (36) and 39 % of the European polecat (26) samples. In 17 samples we detected the presence of at least two AR compounds. Although we did not find significant variance in AR accumulation between the two species, steppe polecats displayed greater prevalence and maximum concentration of ARs, whereas European polecat samples exhibited a more diverse accumulation of these compounds. Brodifacoum and bromadiolone were the most prevalent ARs; the highest concentrations were 0.57 mg/kg and 0.33 mg/kg, respectively. The accumulation of ARs was positively correlated with human population density and negatively correlated with the extent of the more natural habitats in both species. To the best of our knowledge, this is the first study to demonstrate anticoagulant rodenticide exposure in steppe polecats globally, and for European polecats in Central European region. Although the extent of AR accumulation in European polecat in Hungary appears comparatively lower than in many other European countries, the issue of secondary poisoning remains a serious problem as these ARs intrude into food webs. Reduced and more prudent usage of pesticides would provide several benefits for wildlife, included humans. However, we advocate a prioritization of ecosystem services through the complete prohibition of the toxicants.

12.
Environ Manage ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960921

RESUMO

Parks Canada, in response to commitments undertaken towards reconciliation, has signaled its readiness to reassess the participation of Indigenous peoples in the co-management of national parks, national park reserves, and national marine conservation areas (NMCAs). However, the effectiveness of co-management, as the established framework underpinning these and other longstanding partnerships between the state and Indigenous groups, has been disputed, based on an uneven track record in meeting the needs, interests, and aspirations of Indigenous communities. This paper explores the potential of co-management to facilitate reconciliation within national parks, reserves and NMCAs by developing a typology of various types of co-management agreements. Addressing a critical knowledge gap in co-management governance, we provide a comprehensive review of 23 negotiated co-management agreements involving the state and Indigenous groups in a national park context. The resulting typology categorizes these agreements according to contextual factors and governance arrangements, offering insights into the feasibility of shared governance approaches with Parks Canada. Moreover, it identifies the strengths and weaknesses of co-management agreements in fulfilling reconciliation commitments. Our findings indicate that, although Parks Canada has implemented innovative approaches to co-management and shown a willingness to support Indigenous-led conservation efforts, true shared governance with Indigenous groups, as defined by international standards, is limited by the Canadian government's evident reluctance to amend the foundational legislation to effectively share authority in national parks.

14.
Sci Total Environ ; 946: 174358, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960177

RESUMO

Magnetic and chemical biomonitoring methodologies were applied to the southern slopes of the Palatine Hill archaeological area in Rome, Italy. Plant leaves and lichen transplants were respectively sampled and exposed between July 2022 and June 2023 to assess the impact of vehicular particulate matter from Via dei Cerchi, a trafficked road coasting Circus Maximus, towards the archaeological area upon the Palatine Hill. The magnetic properties of leaves and lichens, inferred from magnetic susceptibility, hysteresis loops and first order reversal curves, were combined with the concentration of trace elements. It was demonstrated that the bioaccumulation of magnetite-like particles, associated with tracers of vehicular emissions, such as Ba and Sb, decreased with longitudinal distance from the road, without any important influence of elevation from the ground. Lichens demonstrated to be more efficient biomonitors of airborne PM than leaves, irrespective of the plant species. Conversely, leaves intercepted and accumulated all PM fractions, including road dusts and resuspended soil particles. Thus, plant leaves are suitable for providing preventive conservation services that limit the impact of particulate pollution on cultural heritage sites within busy metropolitan contexts.

15.
Microb Ecol ; 87(1): 90, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958675

RESUMO

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.


Assuntos
Abies , Bactérias , Endófitos , Raízes de Plantas , RNA Ribossômico 16S , Plântula , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/fisiologia , Endófitos/genética , RNA Ribossômico 16S/genética , Abies/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Microbiota , DNA Bacteriano/genética
16.
BMC Public Health ; 24(1): 1752, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956503

RESUMO

BACKGROUND: Snakebite envenomation (SBE) and scorpion sting envenomation (SSE) are significant neglected tropical diseases that primarily affect impoverished communities in rural areas of developing nations. A lack of understanding about snake and scorpion species and their distribution exacerbates the disabilities and fatalities caused by SBE and SSE. In Sudan, particularly in regions affected by ongoing conflicts where healthcare resources are scarce, social media platforms offer a cost-effective approach to addressing public health challenges. Our aim in this study is to highlight the benefits of using social media for data collection and health promotion in such environments. METHODS: We present a cost-effective communication and data collection strategy implemented at the Toxic Organisms Research Centre (TORC) of the University of Khartoum, focusing on a Facebook group, "Scorpions and Snakes of Sudan", as our primary social media platform. Additionally, we discuss the lessons learned and the initial impact of this strategy on enhancing population health literacy. RESULTS: The group community is composed of ~ 5000 members from 14 countries. During the period from January 2023 to January 2024, we received 417 enquiries about snakes and scorpions belonging to 11 families and composed of 55 species. In addition, 53 other enquiries covered a range of organisms and their tracks (e.g., spiders, skinks, chameleons, foxes, sun spiders, centipedes, lizards, moth larvae, and insect tracks). The first photographic evidence of Malpolon monspessulanus in Sudan was via the group activities. The rare species Telescopus gezirae, the Blue Nile cat snake, is also documented via the group member's queries. Recognizing the evolving nature of social media use in public health, we also address the current limitations and evidence gaps that need to be addressed to effectively translate best practices into policy. CONCLUSION: In conclusion, utilizing Facebook as an institutional platform to share scientific information in simple Arabic language underscores the proactive roles that citizens, scientists, and public health stakeholders can play in leveraging social media for eHealth, eAwareness, and public health initiatives. This approach highlights the potential for collaborative efforts, particularly during crises, to maximize the benefits of social media in advancing public health.


Assuntos
Picadas de Escorpião , Mordeduras de Serpentes , Mídias Sociais , Humanos , Mídias Sociais/estatística & dados numéricos , Sudão , Picadas de Escorpião/terapia , Mordeduras de Serpentes/terapia , Conflitos Armados , Animais , Saúde Pública , Conhecimentos, Atitudes e Prática em Saúde
18.
Proc Natl Acad Sci U S A ; 121(29): e2400592121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980905

RESUMO

The expansion of marine protected areas (MPAs) is a core focus of global conservation efforts, with the "30x30" initiative to protect 30% of the ocean by 2030 serving as a prominent example of this trend. We consider a series of proposed MPA network expansions of various sizes, and we forecast the impact this increase in protection would have on global patterns of fishing effort. We do so by building a predictive machine learning model trained on a global dataset of satellite-based fishing vessel monitoring data, current MPA locations, and spatiotemporal environmental, geographic, political, and economic features. We then use this model to predict future fishing effort under various MPA expansion scenarios compared to a business-as-usual counterfactual scenario that includes no new MPAs. The difference between these scenarios represents the predicted change in fishing effort associated with MPA expansion. We find that regardless of the MPA network objectives or size, fishing effort would decrease inside the MPAs, though by much less than 100%. Moreover, we find that the reduction in fishing effort inside MPAs does not simply redistribute outside-rather, fishing effort outside MPAs would also decline. The overall magnitude of the predicted decrease in global fishing effort principally depends on where networks are placed in relation to existing fishing effort. MPA expansion will lead to a global redistribution of fishing effort that should be accounted for in network design, implementation, and impact evaluation.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Oceanos e Mares , Ecossistema , Aprendizado de Máquina , Peixes
19.
J Environ Manage ; 366: 121760, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981264

RESUMO

Industrial wastewater discharged into sewer systems is often characterized by high nitrate contents and low C/N ratios, resulting in high treatment costs when using conventional activated sludge methods. This study introduces a partial denitrification-anammox (PD/A) granular process to address this challenge. The PD/A granular process achieved an effluent TN level of 3.7 mg/L at a low C/N ratio of 2.3. Analysis of a typical cycle showed that the partial denitrification peaked within 15 min and achieved a nitrate-to-nitrite transformation ratio of 86.9%. Anammox, which was activated from 15 to 120 min, contributed 86.2% of the TN removal. The system exhibited rapid recovery from post-organic shock, which was attributed to significant increases in protein content within TB-EPS. Microbial dispersion and reassembly were observed after coexistence of the granules, with Thauera (39.12%) and Candidatus Brocadia (1.25%) identified as key functional microorganisms. This study underscores the efficacy of PD/A granular sludge technology for treating low-C/N nitrate wastewater.

20.
J Environ Manage ; 366: 121655, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981271

RESUMO

Climate change is threatening fragile alpine ecosystems and their resident ungulates, particularly the wild yak (Bos mutus) that inhabits alpine areas between the tree line and glaciers on the Tibetan Plateau. Although wild yaks tend to shift habitats in response to changes in climatic factors, the precise impacts of climate change on their habitat distribution and climate refugia remain unclear. Based on over 1000 occurrence records, the maximum entropy (MaxEnt) algorithm was applied to simulate habitat ranges in the last glacial maximum (LGM), Mid-Holocene, current stage, and three greenhouse gas emission scenarios in 2070. Three habitat patches were identified as climate refugia for wild yaks that have persisted from the LGM to the present and are projected to persist until 2070. These stable areas account for approximately 64% of the current wild yak habitat extent and are sufficiently large to support viable populations. The long-term persistence of these climate refugia areas is primarily attributed to the unique alpine environmental features of the Tibetan Plateau, where relatively stable arid or semi-arid climates are maintained, and a wide range of forage resource supplies are available. However, habitat loss by 2070 caused by insufficient protection is predicted to lead to severe fragmentation in the southeastern and northwestern Kunlun, Hengduan, central-western Qilian, and southern Tanggula-northern Himalaya Mountains. Habitat disturbance has also been caused by increasing anthropogenic effects in the southern Tanggula and northern Himalaya Mountains. We suggest that sufficient protection, transboundary cooperation, and community involvement are required to improve wild yak conservation efforts. Our combined modeling method (MaxEnt-Zonation-Linkage Mapper-FRAGSTAT) can be utilized to identify priority areas and linkages between habitat patches while assessing the conservation efficiency of protected areas and analyzing the coupled relationship between climate change and anthropogenic impacts on the habitat distribution of endangered species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...