Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemphyschem ; : e202400626, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024523

RESUMO

Self-assembled monolayers (SAMs) are emerging as platform technology for a myriad of applications, yet they still possess varied spatial stability and predictability issues as their properties are heavily dependent on subtle structural features. Reducing entropy within such a system serves as one of many potential solutions to increase order and therefore coherence/precision in measured properties. Here we explore controlled thermal annealing to improve edge disorders in SAMs and significantly reduce data variance. Using both odd- and even-numbered n-alkanethiol SAMs on Au, we observe statistically significant difference in the contact angles between edge and center. Thermal annealing at 40°C significantly narrows differences between edges and centre of the SAM, albeit with significant reduction in the parity dependent odd-even effect. This study provides a pathway to improve SAMs consistency through minimal external perturbation as reflected by the minimization of odd-even effect as SAMs become increasingly ordered.

2.
Materials (Basel) ; 17(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673132

RESUMO

Antibacterial coatings are becoming increasingly attractive for application in the field of biomaterials. In this framework, we developed polymer coating zirconia with antibacterial activity using the "grafting from" methodology. First, 1-(4-vinylbenzyl)-3-butylimidazolium chloride monomer was synthesized. Then, the surface modification of zirconia substrates was performed with this monomer via surface-initiated photo atom transfer radical polymerization for antibacterial activity. X-ray photoelectron spectroscopy, ellipsometry, static contact angle measurements, and an atomic force microscope were used to characterize the films for each step of the surface modification. The results revealed that cationic polymers could be successfully deposited on the zirconia surfaces, and the thickness of the grafted layer steadily increased with polymerization time. Finally, the antibacterial adhesion test was used to evaluate the antibacterial activity of the modified zirconia substrates, and we successfully showed the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa strains.

3.
Heliyon ; 10(1): e23844, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192869

RESUMO

The paper was devoted to the results of the study of methods to obtain superhydrophobic film based on the plasma polymerisation of hexamethyldisiloxane (HMDSO) inside the plasma jet at atmospheric pressure. The 3D printing technology was intended for film deposition, which has the advantage of producing superhydrophobic surfaces over a wide range of scales. The effect of synthesis parameters on the hydrophobic properties of the film has been studied. The obtained superhydrophobic films demonstrated stability and resistance in chemical solutions, at high temperatures, under the influence of UV-irradiation and in various weather conditions. The results can be used in various fields, including automotive, construction, electronics, medicine and others, where surface protection against moisture, contamination and corrosion is required.

4.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893274

RESUMO

Microfluidics evolved with the appearance of polydimethylsiloxane (PDMS), an elastomer with a short processing time and the possibility for replication on a micrometric scale. Despite the many advantages of PDMS, there are well-known drawbacks, such as the hydrophobic surface, the absorption of small molecules, the low stiffness, relatively high cost, and the difficulty of scaling up the fabrication process for industrial production, creating a need for alternative materials. One option is the use of stiffer thermoplastics, such as the cyclic olefin copolymer (COC), which can be mass produced, have lower cost and possess excellent properties. In this work, a method to fabricate COC microfluidic structures was developed. The work was divided into process optimization and evaluation of material properties for application in microfluidics. In the processing step, moulding, sealing, and liquid handling aspects were developed and optimized. The resulting COC devices were evaluated from the point of view of molecular diffusion, burst pressure, temperature resistance, and susceptibility to surface treatments and these results were compared to PDMS devices. Lastly, a target DNA hybridization assay was performed showing the potential of the COC-based microfluidic device to be used in biosensing and Lab-on-a-Chip applications.

5.
Small Methods ; : e2201602, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919581

RESUMO

Static repellency and pressure resistance to liquids are essential for high-performance super-omniphobic surfaces. However, these two merits appear mutually exclusive in conventional designs because of their conflicting structural demands: Static liquid repellency necessitates minimal solid-liquid contact, which in turn inevitably undercuts the surface's ability to resist liquid invasion exerted by the elevated pressure. Here, inspired by the Springtail, these two merits can be simultaneously realized by structuring surfaces at two size scales, with a micrometric reentrant structure providing static liquid repellency and a nanometric reentrant structure providing pressure resistance, which dexterously avoids the dilemma of their structural conflicts. The nanometric reentrants are densely packed on the micrometric ones, serving as "armor" that prevents liquids invasion by generating multilevel energy barriers, thus naming the surface as the armored reentrants (AR) surface. The AR surface could repel liquids with very low surface tensions, such as silicone oil (21 mN m-1 ), and simultaneously resist great pressure from the liquids, exemplified by enduring the impact of low-surface-tension liquids under a high weber number (>400), the highest-pressure resistance ever reported. With its scalable fabrication and enhanced performance, our design could extend the application scope of liquid-repellent surfaces toward ultimate industrial settings.

6.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771832

RESUMO

The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.

7.
Materials (Basel) ; 15(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363325

RESUMO

The article presents the effect of anodizing parameters of the EN AW-5251 aluminum alloy on the thickness and roughness of Al2O3 layers as well as their wettability and tribological properties in a sliding combination with the T7W material. The input variables were the current density of 1, 2, 3 A/dm2 and the electrolyte temperature of 283, 293, 303 K. The tribological tests were performed on the T-17 tester in reciprocating motion, in conditions of technically dry friction. The tests were carried out on a 15 km road with a constant average slip speed of 0.2 m/s and a constant unit pressure of 1 MPa. The measurement of the wettability of the layers was performed using the sitting drop method, determining the contact angles on the basis of which the surface free energy was calculated. The profilographometric measurements were made. The analysis of the test results showed that the anodizing parameters significantly affect the thickness of the Al2O3 layers. The performed correlation analysis also showed a significant relationship between the roughness parameters and the wettability of the surface of the layers, which affects the ability to create and maintain a sliding film, which in turn translates into sliding resistance and wear of the T7W material. The analysis of friction and wear tests showed that the layer with hydrophobic properties produced at a current density of 1 A/dm2 in an electrolyte at a temperature of 283 K is the most favorable for sliding associations with T7W material.

8.
Materials (Basel) ; 15(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36013717

RESUMO

In the last years, additive manufacturing technologies have been developed, especially direct metal laser sintering, and used in the dental and medical implant domains. Cardiovascular stents have evolved from bioinert, bare metal cages to biomimetic devices that promote tissue regeneration or healing. In this paper, comparisons concerning mechanical properties between Co-Cr alloy and cast 304L stainless steel were realized using FEM analysis, necessary for manufacturing cardiovascular stents by DMLS technology using Co-Cr alloy. The purpose of this paper consists of the evaluation of the contact angle at the interface of the Co-Cr alloy manufactured by DMLS, respectively, cast stainless steel 304L, and thin film deposition realized by the e-gun method (Ta2O5 and ZnO). Scanning electronic microscopy SEM and EDX techniques were employed for morphological investigation of the sintered samples manufactured by the DMLS process. They were also used for semi-quantitative and qualitative chemical and metallographic analyses. The e-gun coating was used to obtain thin films with the nanometer order of Ta2O5 and ZnO with a protective role to improve the corrosion resistance, roughness, and antiseptic role.

9.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632354

RESUMO

Graphene, an atomically thin material, has unique electrical, mechanical, and optical properties that can enhance the performance of thin film-based flexible and transparent devices, including gas sensors. Graphene synthesized on a metallic catalyst must first be transferred onto a target substrate using wet or dry transfer processes; however, the graphene surface is susceptible to chemical modification and mechanical damage during the transfer. Defects on the graphene surface deteriorate its excellent intrinsic properties, thus reducing device performance. In this study, the surface properties of transferred graphene were investigated according to the transfer method (wet vs. dry) and characterized using atomic force microscopy, Raman spectroscopy, and contact angle measurements. After the wet transfer process, the surface properties of graphene exhibited tendencies similar to the poly(methyl methacrylate) residue remaining after solvent etching. The dry-transferred graphene revealed a surface closer to that of pristine graphene, regardless of substrates. These results provide insight into the utilization of wet and dry transfer processes for various graphene applications.

10.
Macromol Rapid Commun ; 43(12): e2100733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338785

RESUMO

Drops sliding down an adaptive surface lead to changes of the dynamic contact angles. Two adaptation processes play a role: 1) the adaptation of the surface upon bringing it into contact to the drop (wetting) and 2) the adaptation of the surface after the drop passed (dewetting). In order to study both processes, the authors investigate samples made from random styrene (PS)/acrylic acid (PAA) copolymers, which are exposed to water. Sum-frequency generation spectroscopy and tilted-plate measurements indicate that during wetting, the PS segments displace from the interface, while PAA segments are enriched. This structural adaptation of the PS/PAA random copolymer to water remains after dewetting. Annealing the adapted polymer induces reorientation of the PS segments to the surface.


Assuntos
Acrilatos , Água , Acrilatos/química , Polímeros/química , Molhabilidade
11.
Materials (Basel) ; 15(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35160654

RESUMO

Gallium-based liquid metal (GaLM) alloys have been extensively used in applications ranging from electronics to drug delivery systems. To broaden the understanding and applications of GaLMs, this paper discusses the interfacial behavior of eutectic gallium-indium liquid metal (EGaIn) droplets in various solvents. No significant difference in contact angles of EGaIn is observed regardless of the solvent types. However, the presence or absence of a conical tip on EGaIn droplets after dispensing could indirectly support that the interfacial energy of EGaIn is relatively low in non-polar solvents. Furthermore, in the impact experiments, the EGaIn droplet bounces off in the polar solvents of water and dimethyl sulfoxide (DMSO), whereas it spreads and adheres to the substrate in the non-polar solvents of hexane and benzene. Based on the dimensionless We number, it can be stated that the different impact behavior depending on the solvent types is closely related to the interfacial energy of EGaIn in each solvent. Finally, the contact angles and shapes of EGaIn droplets in aqueous buffer solutions with different pH values (4, 7, and 10) are compared. In the pH 10 buffer solution, the EGaIn droplet forms a spherical shape without the conical tip, representing the high surface energy. This is associated with the dissolution of the "interfacial energy-reducing" surface layer on EGaIn, which is supported by the enhanced concentration of gallium ion released from EGaIn in the buffer solution.

12.
J Colloid Interface Sci ; 614: 24-32, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078083

RESUMO

HYPOTHESIS: Although wetting agents have been developed to limit tear film dewetting over contact lenses, systematic analyses correlating wetting agent properties to mechanisms of the tear film destabilization are not readily available. Clarifying destabilization characteristics across key physio-chemical variables will provide a rational basis for identifying optimal wetting agents. EXPERIMENTS: We employ an in-house, in vitro platform to comprehensively evaluate drainage and dewetting dynamics of five wetting agents across seventeen different formulations and two model tear film solutions. We consider the film thickness evolution, film thickness at breakup, dewetted front propagation, and develop correlations to contact angle to compare the samples. FINDINGS: Zwitterionic wetting agents effectively stabilize the tear film by reducing the film thickness at the onset of dewetting, and delaying the propagation of dewetted regions across the lens. Furthermore, tuning wetting agent surface concentrations and utilizing binary mixtures of wetting agents can enhance wetting characteristics. Finally, despite disparities in wetting agent molecular properties, the time to dewet 50% of the lens scales linearly with the product of the receding contact angle and contact angle hysteresis. Hence, we fundamentally establish the importance of minimizing the absolute contact angle and contact angle hysteresis for effective wetting performance.


Assuntos
Lentes de Contato Hidrofílicas , Agentes Molhantes , Lágrimas/química , Molhabilidade , Agentes Molhantes/análise
13.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616442

RESUMO

Hydrogels provide a promising method for the targeted delivery of protein drugs. Loading the protein drug into the hydrogel free volume can be challenging due to limited quantities of the drug (e.g., growth factor) and complex physicochemical properties of the hydrogel. Here, we investigated both passive and active loading of the heteropolysaccharide hydrogel pectin. Passive loading of glass phase pectin films was evaluated by contact angles and fractional thickness of the pectin films. Four pectin sources demonstrated mean contact angles of 88° with water and 122° with pleural fluid (p < 0.05). Slow kinetics and evaporative losses precluded passive loading. In contrast, active loading of the translucent pectin films was evaluated with the colorimetric tracer methylene blue. Active loading parameters were systematically varied and recorded at 500 points/s. The distribution of the tracer was evaluated by image morphometry. Active loading of the tracer into the pectin films required the optimization of probe velocity, compression force, and contact time. We conclude that active loading using pectin-specific conditions is required for the efficient embedding of low viscosity liquids into pectin hydrogels.

14.
Proc Natl Acad Sci U S A ; 118(50)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876519

RESUMO

We investigate the effect of the metallic character of solid substrates on solid-liquid interfacial thermodynamics using molecular simulations. Building on the recent development of a semiclassical Thomas-Fermi model to tune the metallicity in classical molecular dynamics simulations, we introduce a thermodynamic integration framework to compute the evolution of the interfacial free energy as a function of the Thomas-Fermi screening length. We validate this approach against analytical results for empty capacitors and by comparing the predictions in the presence of an electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived in this work highlights the role of the charge distribution within the metal. We further propose a simple model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi length, which allows us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free energy with the metallic character of the substrate. This methodology opens the door to the molecular-scale study of the effect of the metallic character of the substrate on confinement-induced transitions in ionic systems, as reported in recent atomic force microscopy and surface force apparatus experiments.

15.
Materials (Basel) ; 14(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947314

RESUMO

Glass fibre reinforced polyamide 6 (GFPA6) thermoplastic composites (TPCs) are promising materials with excellent properties, but due to their low surface free energy they are usually difficult to wet, and therefore, possesses poor adhesion properties. µPlasma modification offers potential solutions to this problem through functionalisation of the GFPA6 surface. In this study, the effect of µPlasma on the wetting behaviour of GFPA6 surfaces was investigated. Following single µPlasma treatment scans of GFPA6 samples, a substantial enhancement in wettability was observed. However, the effect of the µPlasma modification was subject to an ageing (hydrophobic recovery) phenomenon, although the enhancement was still partially maintained after 4 weeks. The ageing process was slower when the GFPA6 material was pre-dried and stored in low humidity conditions, thereby demonstrating the importance of the storage environment to the rate of ageing. Orientation of the fibres to the observed contact angle was found to be crucial for obtaining reproducible measurements with lower deviation. The influence of testing liquid, droplet volume and surface texture on the repeatability of the measured contact angle were also investigated.

16.
Polymers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066143

RESUMO

The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92° and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56° and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80°) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76°), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.

17.
Data Brief ; 35: 106943, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33816731

RESUMO

The data contained in this publication refers to a new approach to design composite pervaporation membranes that could be useful in water treatment. The work is based on the rational prediction of the membrane mass transfer coefficient using the resistance in series model and the corresponding experimental membranes were tested with several aqueous solutions comparatively to a commercially available porous distillation membrane (PVDF). All the related data, i.e. permeation water fluxes and conductivity of the permeate, were collected for hours, in the range 3 to 7 h. The strategy was to develop pervaporation membranes by coating a porous PVDF support (122µm) with various dense layers (hydrophobic polymers: Teflon™ AF2400, PMP, PTMSP). The objective was to avoid definitely the wetting problem observed in membrane distillation while keeping approximately the permeance than the porous support. The data reported here are related to the surface property of the membranes (contact angles), to the mechanical resistance of the membranes, to the wetting phenomena observed directly and recorded by observing the variation of water flux through the membranes and to the conductivity of the water condensed at the permeate side.

18.
J Colloid Interface Sci ; 587: 311-323, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33373793

RESUMO

HYPOTHESIS: Molecular dynamics (MD) may be used to investigate the velocity dependence of both the microscopic and apparent dynamic contact angles (θm and θapp). METHODS: We use large-scale MD to explore the steady displacement of a water-like liquid bridge between two molecularly-smooth solid plates under the influence of an external force F0. A coarse-grained model of water reduces the computational demand and the solid-liquid affinity is varied to adjust the equilibrium contact angle θ0. Protocols are devised to measure θm and θapp as a function of contact-line velocity Ucl. FINDINGS: For all θ0, θm is velocity-dependent and consistent with the molecular-kinetic theory of dynamic wetting (MKT). However, θapp diverges from θm as F0 is increased, especially at the receding meniscus. The behavior of θapp follows that predicted by Voinov: (θapp)3 = (θm)3 + 9Ca·ln(L/Lm), where Ca is the capillary number and L and Lm are suitably-chosen macroscopic and microscopic length scales. For each θ0, there is a critical velocity Ucrit and contact angle θcrit at which θapp→0 and the receding meniscus deposits a liquid film. Setting θapp=0, θm=θcrit and Ucl=Ucrit in the Voinov equation yields the value of L/Lm. The predicted values of θapp then agree well with those measured from the simulations. Since θm obeys the MKT, we have, therefore, demonstrated the utility of the combined model of dynamic wetting proposed by Petrov and Petrov.

19.
Macromol Rapid Commun ; 42(5): e2000360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32935908

RESUMO

Many of the applications of the most familiar silicone polymer, polydimethylsiloxane (PDMS), are a consequence of its hydrophobic nature. The key quantities underlying this behavior are the water contact angle with water droplets, the surface tension of the polymer, and its interfacial tension with water. These quantities are reviewed for PDMS and the fluorsilicone polymethyltrifluoropropylsiloxane (PMTFPS) as well as some other less common, more highly fluorinated, fluorosilicones. As aliphatic fluorocarbons are usually introduced into polymers to lower surface tension, it is unexpected that the surface tension of PMTFPS is higher than PDMS. However, this observation is consistent with Zisman's early extensive studies. It is also somewhat surprising that there are no definitive values accepted for the water contact angle with PDMS and the interfacial tension at the PDMS/water interface. Some reasons for this are explored and relevant limitations considered. The variety of ways in which a PDMS surface can be presented must have a major effect on the range of water contact angles reported.


Assuntos
Silicones , Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Tensão Superficial
20.
Sci Prog ; 103(2): 36850420927817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32539667

RESUMO

Based on Hertz contact theory, an elastic-plastic contact mechanics model of outer cylinder under different contact angles of axis is proposed. The relationship among contact angle, load and contact deformation, contact stiffness and contact area is established. The finite element method is used to simulate the elastic-plastic contact process of the cylinder. The influence of the load and radius of the cylinder model on the contact deformation and the contact stiffness is compared and analyzed under different contact angles. The error of the analysis results of the finite element and the mechanical model is within 9%. On this basis, the influence of contact deformation, contact area and contact angle on the contact stiffness of the outer cylinder in elastic and plastic stage is explored. The results show that in the stage of elastic and plastic deformation, the amount of contact deformation and contact area increase with the increase of load. The contact stiffness decreases with the increase of contact angle and increases with the increase of cylinder radius. The amount of contact deformation decreases with the increase of cylinder radius, and tends to constant gradually. In the elastic stage, the contact stiffness increases with the increase of load. The contact area decreases with the increase of contact angle and increases with the increase of cylinder radius. In the plastic stage, the contact stiffness is constant with the increase of load, and the contact area is independent of contact angle and cylinder radius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...