Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1367184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827150

RESUMO

Diversifying cultivation management, including different crop rotation patterns and soil amendment, are effective strategies for alleviating the obstacles of continuous cropping in peanut (Arachis hypogaea L.). However, the peanut yield enhancement effect and temporal changes in soil chemical properties and microbial activities in response to differential multi-year crop rotation patterns and soil amendment remain unclear. In the present study, a multi-year localization experiment with the consecutive application of five different cultivation managements (including rotation with different crops under the presence or absence of external quicklime as soil amendment) was conducted to investigate the dynamic changes in peanut nutrient uptake and yield status, soil chemical property, microbial community composition and function. Peanut continuous cropping led to a reduction in peanut yield, while green manure-peanut rotation and wheat-maize-peanut rotation increased peanut yield by 40.59 and 81.95%, respectively. A combination of quicklime application increased yield by a further 28.76 and 24.34%. Alterations in cultivation management also strongly affected the soil pH, nutrient content, and composition and function of the microbial community. The fungal community was more sensitive than the bacterial community to cultivation pattern shift. Variation in bacterial community was mainly attributed to soil organic carbon, pH and calcium content, while variation in fungal community was more closely related to soil phosphorus content. Wheat-maize-peanut rotation combined with quicklime application effectively modifies the soil acidification environment, improves the soil fertility, reshapes the composition of beneficial and harmful microbial communities, thereby improving soil health, promoting peanut development, and alleviating peanut continuous cropping obstacles. We concluded that wheat-maize-peanut rotation in combination with quicklime application was the effective practice to improve the soil fertility and change the composition of potentially beneficial and pathogenic microbial communities in the soil, which is strongly beneficial for building a healthy soil micro-ecology, promoting the growth and development of peanut, and reducing the harm caused by continuous cropping obstacles to peanut.

2.
Front Plant Sci ; 15: 1376362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708396

RESUMO

Introduction: Codonopsis pilosula is widely sought-after in China as a substitute for the more expensive ginseng. Continuous cropping of C. pilosula supports a vibrant health-supplement industry but requires significant inputs of fertilizers which increase production costs and degrade the environment. Methods: Here, three environmentally-friendly natural fertilizers, including biochar, bacterial fertilizer, and vermicompost, were used at different concentrations (undiluted, diluted 10 times, diluted 50 times) to determine their efficacy in seed germination and growth physiology of C. pilosula in continuous cropping. Results: The results showed that biochar, bacterial fertilizer, and vermicompost with different concentrations of leachate could all increase the germination rate, germination potential and germination index of C. pilosula seeds treated with inter-root soil leachate of continuous C. pilosula; increase the activity of antioxidant enzymes (superoxide dismutase and peroxidase) in C. pilosula seedlings under the stress of inter-root soil leachate of continuous C. pilosula, reduce the over-accumulation of malondialdehyde (MDA) content, and increase the resistance of C. pilosula seedlings. After transplanting, superoxide dismutase (SOD) activity increased by an average of 16.1%. Peroxidase (POD) levels showed an average increase of 16.4%. Additionally, there was a significant reduction in the MDA content, with an average decrease of 50%, and the content of osmotic-regulating substances (free proline content and soluble protein content) exhibited a significant increase. Discussion: In conclusion, biochar, bacterial manure, and vermicompost have the potential to overcome the challenges of extensive fertilizer use in continuous cropping of C. pilosula.

3.
Front Microbiol ; 15: 1366814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577678

RESUMO

Introduction: Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods: This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results: Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion: Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.

4.
Sci Total Environ ; 917: 170522, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38309356

RESUMO

Biochar application is a promising practice to enhance soil fertility. However, it is unclear how field-aged biochar affects the soil metabolites and microbial communities in soybean fields. Here, the rhizosphere soil performance after amending with biochar addition rates at 0 (CK), 20 (B20), 40 (B40), and 60 t ha-1 (B60) was examined via a five-year in-situ field experiment based on a soybean continuous cropping system. Untargeted metabolomics and metagenomics analysis techniques were applied to study the regulatory mechanism of biochar on soybean growth from metabolomics and N cycle microbiology perspectives. We found that the contents of soil total N (TN), available N (Ava N), NH4+-N, and NO3--N were significantly increased with biochar addition amounts by 20.0-65.7 %, 3.6-10.7 %, 29.5-57.1 %, and 24.4-46.7 %, respectively. The B20, B40, and B60 triggered 259 (236 were up-regulated and 23 were down-regulated), 236 (220 were up-regulated and 16 were down-regulated), and 299 (264 were up-regulated and 35 were down-regulated) differential metabolites, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and topology analysis demonstrated that differential metabolites were highly enriched in seven metabolic pathways such as Oxidative phosphorylation and Benzoxazinoid biosynthesis. Moreover, ten differential metabolites were up-regulated in all three treatments with biochar. Biochar treatments decreased the Nitrospira abundance in soybean rhizosphere soil while increasing Bradyrhizobium abundance significantly in B60. Mantel test revealed that as the biochar addition rate grows, the correlation between Nitrospira and soil properties other than NO3--N became stronger. In conclusion, the co-application of biochar with fertilizers is a feasible and effective way to improve soil N supply, even though biochar has undergone field aging. This work offers new insights into the variations in soil metabolites and microbial communities associated with N metabolism processes under biochar addition in soybean continuous cropping soils.


Assuntos
Glycine max , Solo , Microbiologia do Solo , Carvão Vegetal , Ciclo do Nitrogênio , Bactérias , Fertilizantes , Nitrogênio/análise
5.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068635

RESUMO

The rhizosphere harbors abundant plant growth-promoting rhizobacteria (PGPR) that are vital for plant health. In this study, we screened growth-promoting bacteria from tomato rhizosphere soil, verified their functions, and constructed the optimal combination of growth-promoting bacteria for promoting tomato growth. Furthermore, the effects of these bacteria on various physiological and biochemical parameters of tomato plants were evaluated. A total of 36 strains of rhizobacteria were isolated from tomato rhizosphere soil and their abilities to produce indole-3-acetic acid (IAA), solubilize phosphate and iron carriers were assessed. The bacterial strains with the highest capacities for IAA production (R62, R317), phosphate solubilization (R41, R219), and siderophore production (R25, R325) were selected to form three bacterial combinations: R62 + R219 + R317 + R325 (T1), R62 + R325 (T5), and R317 + R325 (T8). Fifteen days after inoculation, all three combinations showed a stimulatory effect on seedling growth compared to the un-inoculated control. Inoculation with T1, T5 and T8 increased the seedling vigor index by 173.7%, 204.1%, and 168.7%, respectively. Compared to the un-inoculated control, the T1 combination increased the activities of polyphenol oxidase, peroxidase, and the net photosynthetic rate by 132.7%, 18.7%, 58.5%, and upregulated the relative expression levels of the photosynthetic assimilation-related genes RbcL, RbcS, FBPase and FDA by 22.2-, 6.6-, 1.95-, and 2.0-fold, respectively. Our findings provide a potential for constructing rhizobacterial combinations of different functional groups for improving crop growth.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38038798

RESUMO

The synchronous research and analysis of total and active soil microbial communities can provide insight into how these communities are impacted by continuous cropping years and pathogen infection. The diversity of total and active bacteria in rhizospheric soil of 2-year-old and 3-year-old healthy and diseased Panax notoginseng can comprehensively reveal the bacterial response characteristics in continuous cropping practice. The results showed that 4916 operational taxonomic units (OTUs) were found in the rhizospheric soil bacterial community of P. notoginseng at the DNA level, but only 2773 OTUs were found at the RNA level. The rhizospheric environment had significant effects on the active and bacterial communities, as indicated by the number of OTUs, Shannon, Chao1, Faith's phylogenetic diversity (Faith's PD), and Simpson's diversity indexes. The DNA level can better show the difference in diversity level before and after infection with root rot. The bacterial Chao1 and Faith's PD diversity indexes of 2-year-old root rot-diseased P. notoginseng rhizospheric soil (D2) were higher than that of healthy plants, while the bacterial Shannon diversity index of 3-year-old root rot-diseased P. notoginseng rhizospheric soil (D3) was the lowest in the total bacteria. Principal coordinate analysis (PCoA) illustrated that the total bacterial species composition changed markedly after root rot disease. There were significant differences in the composition of active bacterial species between the 2-year and 3-year rhizospheres. In conclusion, the total and active edaphic rhizospheric bacterial communities could provide important opportunities to understand the responses of bacteria to continuous cropping of P. notoginseng. Differential responses of total and active edaphic rhizosphere bacterial communities to continuous cropping of Panax notoginseng.

7.
Front Microbiol ; 14: 1257164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928668

RESUMO

Coffee is an important cash crop worldwide, but it has been plagued by serious continuous planting obstacles. Intercropping with Areca catechu could alleviate the continuous planting obstacle of coffee due to the diverse root secretions of Areca catechu. However, the mechanism of Areca catechu root secretion in alleviating coffee continuous planting obstacle is still unclear. The changes of coffee rhizosphere soil microbial compositions and functions were explored by adding simulated root secretions of Areca catechu, the primary intercropping plant species (i.e., amino acids, plant hormone, organic acids, phenolic acids, flavonoids and sugars) in current study. The results showed that the addition of coffee root exudates altered soil physicochemical properties, with significantly increasing the availability of potassium and organic matter contents as well as promoting soil enzyme activity. However, the addition of plant hormone, organic acids, or phenolic acids led to a decrease in the Shannon index of bacterial communities in continuously planted coffee rhizosphere soil (RS-CP). The inclusion of phenolic acids specifically caused the decrease of fungal Shannon index. Plant hormone, flavonoids, phenolic acids, and sugars increased the relative abundance of beneficial bacteria with reduced bacterial pathogens. Flavonoids and organic acids increased the relative abundance of potential fungal pathogen Fusarium. The polyphenol oxidase, dehydrogenase, urease, catalase, and pH were highly linked with bacterial community structure. Moreover, catalase, pH, and soil-available potassium were the main determinants of fungal communities. In conclusion, this study highlight that the addition of plant hormone, phenolic acids, and sugars could enhance enzyme activity, and promote synergistic interactions among microorganisms by enhancing the physicochemical properties of RS-CP, maintaining the soil functions in coffee continuous planting soil, which contribute to alleviate the obstacles associated with continuous coffee cultivation.

8.
World J Microbiol Biotechnol ; 39(12): 354, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874395

RESUMO

The continuous cropping obstacle is the main factor in leading to difficulty in American ginseng replanting. The dormant microbiota in the soil may be the cause of American ginseng disease and eventually caused continuous cropping obstacles, but there are few studies on the dynamic changes of soil microenvironment after American ginseng planting. In this study, we tracked short-term variation in physicochemical properties, enzyme activities, and fungal communities over time-series in soils with continuous cropping obstacle under crop rotation and probiotic Bacillus treatments. Furthermore, we examined the relationships between the important fungal compositions and the soil properties. The results showed that sucrase, cellulase, urease and acid phosphatase activities were significantly increased, while catalase and dehydrogenase were decreased with treatments time. Rotation treatment significantly affected the diversity, dissimilarity degree and species distribution of soil fungal community with continuous cropping obstacle over a short-term. Moreover, beneficial fungal biomarkers such as Cladorrhinum, Oidiodendron, and Mariannaea were accumulated at 48 h under rotation treatments. Almost all fungal biomarkers were negatively correlated with hydrolases and positively correlated with oxidoreductases and acid phosphatase under crop rotation treatments. This study suggested that compared to probiotic Bacillus, crop rotation can significantly affect soil fungal community structure, especially the enrichment of specific potentially beneficial fungal species. Our findings provide a scientific basis for understanding the dynamic changes of fungal communities and soil properties with continuous cropping obstacle of American ginseng in initial stage of soil improvement.


Assuntos
Bacillus , Micobioma , Panax , Solo/química , Fosfatase Ácida , Biomarcadores , Microbiologia do Solo
9.
J Agric Food Chem ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905798

RESUMO

Phenolic acids are known to reduce root biomass and hinder plant development, but it is unclear how they affect potato root traits. Over a 10 year field experiment, we found a negative correlation between the potato yield and continuous cropping years. The substantial reduction in adventitious root (AR) numbers was found to be primarily inhibited by soil vanillin accumulation. The study also found that vanillin had a more pronounced inhibitory effect on the potato yield than commonly reported ferulic acid and p-hydroxybenzoic acid. The decrease in yield was attributed to the reduction of root indole-3-acetic acid (IAA) content, which impeded the formation of AR. Exogenous IAA was found to increase the root IAA content and stimulate AR formation under vanillin stress, ultimately leading to an increase in the potato yield. This study provides valuable insights into potential strategies for the degradation of autotoxic substances and breeding of potato cultivars with enhanced resistance to autotoxicity.

10.
Appl Microbiol Biotechnol ; 107(21): 6703-6716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676290

RESUMO

The continuous obstacles of cropping cause severe economic loss, which seriously threaten agricultural sustainable development. In addition, managing excess waste, such as potato peel and mineral waste residues, is a vital burden for industry and agriculture. Therefore, we explored the feasibility of reductive soil disinfestation (RSD) with potato peel and amendment with iron mineral waste residues for the production of Fritillaria thunbergii, which is vulnerable to continuous obstacles. In this study, the influences of iron mineral, RSD with different organic maters, as well as the combined effects of iron mineral and RSD on Fritillaria rhizosphere soil physicochemical properties, microbial communities, and Fritillaria production were investigated. The results revealed that the RSD treatments with potato peel significantly reduced the soil salinity and increased the soil pH, microbial activity, organic matter, and the contents of K and Ca. RSD with potato peel also significantly thrived of the beneficial microbes (Bacillus, Azotobacter, Microvirga, and Chaetomium), and down-regulated potential plant pathogens. RSD with potato peel significantly promoted F. thunbergii yield and quality. Moreover, the combined effects of RSD and iron mineral amendment further enhanced soil health, improved microbial community composition, and increased the yield and peimisine content of F. thunbergii by 24.2% and 49.3%, respectively. Overall, our results demonstrated that RSD with potato peel and amendment with iron mineral waste residues can efficiently improve soil fertility, modify the microbial community, and benefit for both the sustainable production of F. thunbergii and the management of waste. KEY POINTS: • RSD increases soil pH, organic matter, microbial activity, and mineral content • RSD with potato peel enriches beneficial microbes and decreases plant pathogens • PP + Fe treatment increases Fritillaria yield by 24.2% and peimisine content by 49.3.

11.
Front Microbiol ; 14: 1200226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614603

RESUMO

Morels (Morchella spp.) are highly prized and popular edible mushrooms. The outdoor cultivation of morels in China first developed at the beginning of the 21st century. Several species, such as Morchella sextelata, M. eximia, and M. importuna, have been commercially cultivated in greenhouses. However, the detriments and obstacles associated with continuous cropping have become increasingly serious, reducing yields and even leading to a complete lack of fructification. It has been reported that the obstacles encountered with continuous morel cropping may be related to changes in the soil microbial community. To study the effect of dazomet treatment on the cultivation of morel under continuous cropping, soil was fumigated with dazomet before morel sowing. Alpha diversity and beta diversity analysis results showed that dazomet treatment altered the microbial communities in continuous cropping soil, which decreased the relative abundance of soil-borne fungal pathogens, including Paecilomyces, Trichoderma, Fusarium, Penicillium, and Acremonium, increased the relative abundance of beneficial soil bacteria, including Bacillius and Pseudomonas. In addition, the dazomet treatment significantly increased the relative abundance of morel mycelia in the soil and significantly improved morel yield under continuous cropping. These results verified the relationship between the obstacles associated with continuous cropping in morels and the soil microbial community and elucidated the mechanism by which the obstacle is alleviated when using dazomet treatment.

12.
Microbiome ; 11(1): 109, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211607

RESUMO

BACKGROUND: Allelopathy is closely associated with rhizosphere biological processes, and rhizosphere microbial communities are essential for plant development. However, our understanding of rhizobacterial communities under influence of allelochemicals in licorice remains limited. In the present study, the responses and effects of rhizobacterial communities on licorice allelopathy were investigated using a combination of multi-omics sequencing and pot experiments, under allelochemical addition and rhizobacterial inoculation treatments. RESULTS: Here, we demonstrated that exogenous glycyrrhizin inhibits licorice development, and reshapes and enriches specific rhizobacteria and corresponding functions related to glycyrrhizin degradation. Moreover, the Novosphingobium genus accounted for a relatively high proportion of the enriched taxa and appeared in metagenomic assembly genomes. We further characterized the different capacities of single and synthetic inoculants to degrade glycyrrhizin and elucidated their distinct potency for alleviating licorice allelopathy. Notably, the single replenished N (Novosphingobium resinovorum) inoculant had the greatest allelopathy alleviation effects in licorice seedlings. CONCLUSIONS: Altogether, the findings highlight that exogenous glycyrrhizin simulates the allelopathic autotoxicity effects of licorice, and indigenous single rhizobacteria had greater effects than synthetic inoculants in protecting licorice growth from allelopathy. The results of the present study enhance our understanding of rhizobacterial community dynamics during licorice allelopathy, with potential implications for resolving continuous cropping obstacle in medicinal plant agriculture using rhizobacterial biofertilizers. Video Abstract.


Assuntos
Glycyrrhiza , Glycyrrhiza/química , Alelopatia , Ácido Glicirrízico , Metagenômica , Rizosfera
13.
Microbiol Spectr ; 11(3): e0315022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139552

RESUMO

Mulching is an important agricultural management tool for increasing watermelon productivity and land-use efficiency because it helps improve water use efficiency and reduce soil erosion. However, there is relatively little available information regarding the effects of long-term continuous monoculture farming on soil fungal communities and related fungal pathogens in arid and semiarid regions. In this study, we characterized the fungal communities of four treatment groups, including gravel-sand-mulched farmland, gravel-sand-mulched grassland, fallow gravel-sand-mulched grassland, and native grassland, using amplicon sequencing. Our results revealed that the soil fungal communities differed significantly between mulched farmland and mulched grassland as well as the fallow mulched grassland. Gravel-sand mulch significantly impaired the diversity and composition of soil fungal communities. Soil fungal communities were more sensitive to gravel-sand mulch in grassland than in other habitats. Long-term continuous monoculture (more than 10 years) led to decreased abundance of Fusarium species, which contains include agronomically important plant pathogens. In the gravel-mulched cropland, some Penicillium and Mortierella fungi were significantly enriched with increasing mulch duration, suggesting potential beneficial properties of those fungi that could be applied to disease control. We also found that long-term gravel mulching in continuous monoculture farming could potentially form disease-suppressive soils and alter soil microbial biodiversity and fertility. Our study provides insights into the exploration of novel agricultural management strategies along with continuous monoculture practice to control watermelon wilt disease by maintaining a more sustainable and healthier soil environment. IMPORTANCE Gravel-sand mulching is a traditional agricultural practice in arid and semiarid regions, providing a surface barrier for soil and water conservation. However, application of such practice in monocropping systems may lead to outbreaks of several devastating plant diseases, such as watermelon Fusarium wilt. Our results with amplicon sequencing suggest that soil fungal communities differ significantly between mulched farmland and mulched grassland and are more sensitive to gravel-sand mulch in grassland. Under continuous monoculture regimens, long-term gravel mulch is not necessarily detrimental and may result in decreased Fusarium abundance. However, some known beneficial soil fungi may be enriched in the gravel-mulch cropland as mulch duration increases. A possible explanation for the reduction in Fusarium abundance may be the formation of disease-suppressive soils. This study provides insight into the need to explore alternative strategies using beneficial microbes for sustainable watermelon wilt control in continuous monocropping system.


Assuntos
Citrullus , Fusarium , Solo , Areia , Agricultura/métodos , Biodiversidade , Fusarium/genética , China , Microbiologia do Solo
14.
J Plant Physiol ; 285: 153996, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141674

RESUMO

Continuous cropping of ginseng leads to serious declines in yield and quality because of self-toxicity of allelochemicals and other factors in soil. However, because of the long growth cycle and low survival rate of ginseng, rapid screening of autotoxic activity is difficult. Therefore, it is important to analyze the allelochemicals and identify a model plant with autotoxic responses similar to those of ginseng. In this study, UPLC-Orbitrap-HRMS targeted metabolomics and verification of autotoxic activity were used to analyze a problem soil from continuously cropped ginseng. Allelochemical markers were screened by OPLS-DA. Seeds and seedlings of maize, Chinese cabbage, cucumber, green beans, wheat, sunflower, and oats were selected to identify potential model plants. Model plants with autotoxic responses similar to those of ginseng were evaluated by comparing morphological, physiological, and biochemical characteristics. The n-butanol extract of the continuously cropped problem soil had the most significant autotoxic activity. Twenty-three ginsenosides and the contributions to autotoxic effects were screened and evaluated. Of potential model plants, seeds and seedlings of cucumber showed similar growth inhibition to that of ginseng under the action of allelochemicals. Thus, metabolomics can be used to screen allelochemicals in soil and predict the autotoxic effects, and the cucumber plant model can be used to rapidly screen allelopathic activity of ginseng. The study will provide reference for methodology in allelopathy research on ginseng.


Assuntos
Cucumis sativus , Panax , Feromônios/farmacologia , Plantas , Plântula , Solo , Metabolômica
15.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903297

RESUMO

The continuous cropping obstacle has become the key factor that seriously restricts the growth, yield, and quality of Pinellia ternata. In this study, the effects of chitosan on the growth, photosynthesis, resistance, yield, and quality of the continuous cropping of P. ternata were investigated by two field spraying methods. The results indicate that continuous cropping significantly (p < 0.05) raised the inverted seedling rate of P. ternata and inhibited its growth, yield, and quality. Spraying of 0.5~1.0% chitosan effectively increased the leaf area and plant height of continuous P. ternata, and reduced its inverted seedling rate. Meanwhile, 0.5~1.0% chitosan spraying could notably increase its photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr), and decrease its soluble sugar, proline (Pro), and malonaldehyde (MDA) contents, as well as promoting its superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. Additionally, 0.5~1.0% chitosan spraying could also effectively enhance its yield and quality. This finding highlights that chitosan can be proposed as an alternative and practicable mitigator for alleviating the continuous cropping obstacle of P. ternata.


Assuntos
Quitosana , Pinellia , Pinellia/metabolismo , Quitosana/farmacologia , Fotossíntese , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Plântula/metabolismo
16.
Microorganisms ; 11(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838451

RESUMO

In poplar cultivation, continuous cropping obstacles affect wood yield and soil-borne diseases, primarily due to structural changes in microbes and fungus infection. The bacterium Bacillus cereus BJS-1-3 has strong antagonistic properties against pathogens that were isolated from the rhizosphere soil of poplars. Poplar rhizospheres were investigated for the effects of Bacillus cereus BJS-1-3 on microbial communities. Three successive generations of soil were used to replant poplar seedlings. BJS-1-3 inoculated poplars were larger, had higher plant height and breast height diameter, and had a greater number of total and culturable bacteria than non-inoculated controls. B. cereus BJS-1-3 inoculated poplar rhizospheres were sequenced, utilizing the Illumina MiSeq platform to analyze changes in diversity and structure. The fungi abundance and diversity in the BJS-1-3 rhizosphere were significantly lower than in the control rhizosphere. In comparison to the control group, Bacillus sp. constituted 2.87% and 2.38% of the total bacterial community, while Rhizoctonia sp. constituted 2.06% and 6.00% of the total fungal community. Among the potential benefits of B. cereus BJS-1-3 in poplar cultivation is that it enhances rhizosphere microbial community structure and facilitates the growth of trees.

17.
Front Microbiol ; 14: 1125564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778850

RESUMO

Introduction: Long-term continuous cropping may result in the outbreak and proliferation of soil-borne diseases, as well as reduction in annual crop production. Overcoming the obstacles of continuous cropping is critical for the long-term growth of modern agriculture. Soil microbes are essential for plant health, but the consequences of continuous cropping on soil microbiome are still poorly understood. Methods: This study analyzed changes in soil bacterial community composition of Aksu (AKS) and Shihezi (SHZ) in Xinjiang Province during 1-20 years of continuous cropping by 16S amplicon sequencing. The results showed that the incidence of cotton Verticillium wilt rose with the number of cropping years. The bacterial alpha diversity in the AKS soil grew as the number of continuous cropping years increased, however it declined in the SHZ soil. Results: The results of beta diversity analysis showed that there were significant differences in soil bacterial communities between different continuous cropping years and between different soils. The results of community composition changes at the level of main phyla and genus showed that the relative abundance of Actinobacteria, Bacteroidetes and Streptomyces decreased with the increase of continuous cropping years in the AKS and the SHZ soils. In addition, Actinobacteria, Propionibacteriales, and Nocardioidaceae were significantly enriched during the early stages of continuous cropping. Network analysis showed that long-term (≥8 years) continuous cropping interfered with the complexity of soil bacterial co-occurrence networks and reduced collaboration between OTUs. Discussion: These findings suggested that continuous cropping and soil origin jointly affected the diversity and structural of bacterial communities, and the loss of Nocardioidaceae and Streptomyces in Actinobacteria might be one of the reasons of continuous cropping obstacles.

18.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257884

RESUMO

The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil fertility, we conducted an analysis using soil samples from both perennial poplar trees and three successive generations of continuously cropped poplar trees. The quantity and community composition of bacteria and fungi in the rhizosphere were assessed using the Illumina MiSeq platform. The objective of this study is to elucidate the impact of continuous cropping challenges on soil fertility and rhizosphere microorganisms in poplar trees, thereby establishing a theoretical foundation for investigating the mechanisms underlying these challenges. The study found that the total bacteria in the BT group is 0.42 times higher than the CK group, and the total fungi is 0.33 times lower than the CK group. The BT and CK groups presented relatively similar bacterial richness and diversity, while the indices showed a significant (p < 0.05) higher fungal richness and diversity in the CK group. The fractions of Bacillus were 2.22% and 2.41% in the BT and CK groups, respectively. There was a 35.29% fraction of Inocybe in the BT group, whereas this was barely observed in the CK group. The fractions of Geopora were 26.25% and 5.99%, respectively in the BT and CK groups. Modifying the microbial community structure in soil subjected to continuous cropping is deemed as the most effective approach to mitigate the challenges associated with this agricultural practice.

19.
Front Microbiol ; 14: 1318586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249485

RESUMO

For potato production, continuous cropping (CC) could lead to autotoxicity buildup and microflora imbalance in the field soil, which may result in failure of crops and reduction in yield. In this study, non-targeted metabolomics (via liquid chromatography with tandem mass spectrometry (LC-MS/MS)) combined with metagenomic profiling (via high-throughput amplicon sequencing) were used to evaluate correlations between metabolomics of potato root exudates and communities of bacteria and fungi around potato plants to illustrate the impacts of CC. Potato plants were grown in soil collected from fields with various CC years (0, 1, 4, and 7 years). Metabolomic analysis showed that the contents and types of potential autotoxins in potato root exudates increased significantly in CC4 and CC7 plants (i.e., grown in soils with 4 and 7 years of CC). The differentially expressed metabolites were mainly produced via alpha-linolenic acid metabolism in plant groups CC0 and CC1 (i.e., no CC or 1 year CC). The metabolomics of the groups CC4 and CC7 became dominated by styrene degradation, biosynthesis of siderophore group non-ribosomal peptides, phenylpropanoid biosynthesis, and biosynthesis of various plant secondary metabolites. Continuous cropping beyond 4 years significantly changed the bacterial and fungal communities in the soil around the potato crops, with significant reduction of beneficial bacteria and accumulation of harmful fungi. Correlations between DEMs and microflora biomarkers were established with strong significances. These results suggested that continuous cropping of potato crops changed their metabolism as reflected in the plant root exudates and drove rhizosphere microflora to directions less favorable to plant growth, and it needs to be well managed to assure potato yield.

20.
Front Bioeng Biotechnol ; 10: 1023693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338132

RESUMO

Continuous cropping obstacle (CCO) in tobacco is a prevalent and intractable issue and has not yet been effectively solved. Many researchers have favored exploring environmentally friendly and sustainable solutions to CCO (e.g, the application of (bio-) organic fertilizers). Therefore, to study the effects of functional organic fertilizers (FOFs) on tobacco CCO, we applied five types of fertilizers in a tobacco continuous cropping field with red soil (i.e., CF: tobacco-special chemical fertilizers; VOF: vermicompost-based FOF; HOF: humic acid-based FOF; WOF: wood biochar-based FOF; COF: compound FOF). The tobacco plant agronomic traits, leaf yield, economic value, and chemical quality (nicotine, total sugar, K2O, Cl contents, etc.) were evaluated via the continuous flow method. Meanwhile, we determined rhizosphere soil physicochemical properties, phenolic acids content, and bacterial community diversity by high-throughput sequencing. The results show that FOFs improved the tobacco plant agronomic traits, leaf yield (by 2.9-42.8%), value (by 1.2-47.4%), and chemical quality when compared with CF. More content of NH4 +-N, available P, and available K were discovered in the rhizosphere soil in VOF, HOF, and WOF. The rhizosphere sinapic acid and total phenolic acids content declined in the FOF treatments (1.23-1.56 and 7.95-8.43 mg kg-1 dry soil, respectively) versus those in the CF treatment (2.01 and 10.10 mg kg-1 dry soil, respectively). Moreover, the rhizosphere bacterial community structure changed under FOF functions: the beneficial microbes Actinobacteria, Firmicutes, Streptomyces, and Bacillus increased, and the harmful microbes Acidobacteria and Gemmatimonadota decreased in abundance. There was a positive correlation between the tobacco leaf yield and soil NH4 +-N, TC content, and the relative abundance of Proteobacteria and Actinobacteriota. In summary, the application of VOF and WOF is a modest, practical, and environmentally friendly strategy to alleviate tobacco CCO from the standpoint of recycling solid waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...