Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Front Physiol ; 15: 1394431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854630

RESUMO

Objective: To evaluate the effectiveness of 3D NerveVIEW sequence with gadolinium contrast on the visualization of pelvic nerves and their branches compared to that without contrast. Methods: Participants were scanned twice using 3D NerveVIEW sequence with and without gadolinium contrast to acquire pelvic nerve images. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast ratio of the nerves were calculated and compared to determine the quality of images. To subjectively assess, using a 3-point scale, branch nerves critical to therapeutic decision-making, including the pelvic splanchnic nerve and pelvic plexus, the superior gluteal nerve, and the pudendal nerve. Results: In the 32 eligible participants after using contrast, the CNRs of the images of nerve-to-bone and nerve-to-vessel significantly increased (p < 0.05). The CR of the images with contrast of all nerve-to-surrounding tissues (i.e., bone, muscle, blood vessels, and fat) were also found significantly higher (p < 0.05). The assessment of observers also shows higher scores for images with contrast compared to images without contrast. Conclusion: The 3D NerveVIEW sequence combined with gadolinium contrast improved vascular suppression, increased the contrast between pelvic nerves and surrounding tissue, and enhanced the visualization of nerves and their branches. This study may be helpful for the technically challenging preoperative planning of pelvic diseases surgery.

2.
Quant Imaging Med Surg ; 14(6): 4031-4040, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846286

RESUMO

Background: The rapid increase in the use of radiodiagnostic examinations in China, especially computed tomography (CT) scans, has led to these examinations being the largest artificial source of per capita effective dose (ED). This study conducted a retrospective analysis of the correlation between image quality, ED, and body composition in 540 cases that underwent thyroid, chest, or abdominal CT scans. The aim of this analysis was to evaluate the correlation between the parameters of CT scans and body composition in common positions of CT examination (thyroid, chest, and abdomen) and ultimately inform potential measures for reducing radiation exposure. Methods: This study included 540 patients admitted to Fudan University Shanghai Cancer Center from January 2015 to December 2019 who underwent both thyroid or chest or abdominal CT scan and body composition examination. Average CT values and standard deviation (SD) values were collected for the homogeneous areas of the thyroid, chest, or abdomen, and the average CT values and SD values of adjacent subcutaneous fat tissue were measured in the same region of interest (ROI). All data were measured three times, and the average was taken to calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for each area. The dose-length product (DLP) was recorded, and the ED was calculated with the following: formula ED = k × DLP. Dual-energy X-ray was used to determine body composition and obtain indicators such as percentage of spinal and thigh muscle. Pearson correlation coefficient was used to analyze the correlations between body composition indicators, height, weight, body mass index (BMI), and ED. Results: The correlation coefficients between the SNR of abdominal CT scan and weight, BMI, and body surface area (BSA) were -0.470 (P=0.001), -0.485 (P=0.001), and -0.437 (P=0.002), representing a moderate correlation strength with statistically significant differences. The correlation coefficients between the ED of chest CT scans and weight, BMI, spinal fat percentage, and BSA were 0.488 (P=0.001), 0.473 (P=0.002), 0.422 (P=0.001), and 0.461 (P=0.003), respectively, indicating a moderate correlation strength with statistical differences. There was a weak statistically significant correlation between the SNR, CNR, and ED of the other scans with each physical and body composition index (P=0.023). Conclusions: There were varying degrees of correlation between CT image quality and ED and physical and body composition indices, which may inform novel solutions for reducing radiation exposure.

3.
J Imaging ; 10(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786569

RESUMO

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

4.
Quant Imaging Med Surg ; 14(4): 2870-2883, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617144

RESUMO

Background: Despite advancements in coronary computed tomography angiography (CTA), challenges in positive predictive value and specificity remain due to limited spatial resolution. The purpose of this experimental study was to investigate the effect of 2nd generation deep learning-based reconstruction (DLR) on the quantitative and qualitative image quality in coronary CTA. Methods: A vessel model with stepwise non-calcified plaque was scanned using 320-detector CT. Image reconstruction was performed using four techniques: hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), DLR, and 2nd generation DLR. The luminal peak CT number, contrast-to-noise ratio (CNR), and edge rise slope (ERS) were quantitatively evaluated via profile curve analysis. Two observers qualitatively graded the graininess, lumen sharpness, and overall lumen visibility on the basis of the degree of confidence for the stenosis severity using a five-point scale. Results: The image noise with HIR, MBIR, DLR, and 2nd generation DLR was 23.0, 21.0, 16.9, and 9.5 HU, respectively. The corresponding CNR (25% stenosis) was 15.5, 15.9, 22.1, and 38.3, respectively. The corresponding ERS (25% stenosis) was 203.2, 198.6, 228.9, and 262.4 HU/mm, respectively. Among the four reconstruction methods, the 2nd generation DLR achieved the significantly highest CNR and ERS values. The score of 2nd generation DLR in all evaluation points (graininess, sharpness, and overall lumen visibility) was higher than those of the other methods (overall vessel visibility score, 2.6±0.5, 3.8±0.6, 3.7±0.5, and 4.6±0.5 with HIR, MBIR, DLR, and 2nd generation DLR, respectively). Conclusions: 2nd generation DLR provided better CNR and ERS in coronary CTA than HIR, MBIR, and previous-generation DLR, leading to the highest subjective image quality in the assessment of vessel stenosis.

5.
J Biophotonics ; 17(6): e202300465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622811

RESUMO

Photoacoustic (PA) imaging is hybrid imaging modality with good optical contrast and spatial resolution. Portable, cost-effective, smaller footprint light emitting diodes (LEDs) are rapidly becoming important PA optical sources. However, the key challenge faced by the LED-based systems is the low light fluence that is generally compensated by high frame averaging, consequently reducing acquisition frame-rate. In this study, we present a simple deep learning U-Net framework that enhances the signal-to-noise ratio (SNR) and contrast of PA image obtained by averaging low number of frames. The SNR increased by approximately four-fold for both in-class in vitro phantoms (4.39 ± 2.55) and out-of-class in vivo models (4.27 ± 0.87). We also demonstrate the noise invariancy of the network and discuss the downsides (blurry outcome and failure to reduce the salt & pepper noise). Overall, the developed U-Net framework can provide a real-time image enhancement platform for clinically translatable low-cost and low-energy light source-based PA imaging systems.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Técnicas Fotoacústicas , Razão Sinal-Ruído , Técnicas Fotoacústicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Animais , Camundongos , Aprendizado Profundo , Luz
6.
Front Radiol ; 4: 1307586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445104

RESUMO

Relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast (DSC) perfusion MR imaging (pMRI) has been shown to be a robust marker of neuroradiological tumor burden. Recent consensus recommendations in pMRI acquisition strategies have provided a pathway for pMRI inclusion in diverse patient care centers, regardless of size or experience. However, even with proper implementation and execution of the DSC-MRI protocol, issues will arise that many centers may not easily recognize or be aware of. Furthermore, missed pMRI issues are not always apparent in the resulting rCBV images, potentiating inaccurate or missed radiological diagnoses. Therefore, we gathered from our database of DSC-MRI datasets, true-to-life examples showcasing the breakdowns in acquisition, postprocessing, and interpretation, along with appropriate mitigation strategies when possible. The pMRI issues addressed include those related to image acquisition and postprocessing with a focus on contrast agent administration, timing, and rate, signal-to-noise quality, and susceptibility artifact. The goal of this work is to provide guidance to minimize and recognize pMRI issues to ensure that only quality data is interpreted.

7.
Phys Eng Sci Med ; 47(2): 717-727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451464

RESUMO

Contrast resolution is an important index for evaluating the signal detectability of computed tomographic (CT) images. Recently, various noise reduction algorithms, such as iterative reconstruction (IR) and deep learning reconstruction (DLR), have been proposed to reduce the image noise in CT images. However, these algorithms cause changes in the image noise texture and blurred image signals in CT images. Furthermore, the contrast-to-noise ratio (CNR) cannot be accurately evaluated in CT images reconstructed using noise reduction methods. Therefore, in this study, we devised a new method, namely, "effective CNR analysis," for evaluating the contrast resolution of CT images. We verified whether the proposed algorithm could evaluate the effective contrast resolution based on the signal detectability of CT images. The findings showed that the effective CNR values obtained using the proposed method correlated well with the subjective visual impressions of CT images. To investigate whether signal detectability was appropriately evaluated using effective CNR analysis, the conventional CNR analysis method was compared with the proposed method. The CNRs of the IR and DLR images calculated using conventional CNR analysis were 13.2 and 10.7, respectively. By contrast, those calculated using the effective CNR analysis were estimated to be 0.7 and 1.1, respectively. Considering that the signal visibility of DLR images was superior to that of IR images, our proposed effective CNR analysis was shown to be appropriate for evaluating the contrast resolution of CT images.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imagens de Fantasmas
8.
Med Phys ; 51(4): 2871-2881, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436473

RESUMO

BACKGROUND: Dual-energy CT (DECT) systems provide valuable material-specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast-to-noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x-ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality. PURPOSE: The goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose. METHODS: The noise propagation in the process of projection based material estimation from DECT measurements is analyzed. The main components of the study are the mean pixel variances for the sinogram and monochromatic image and the CNR, which were shown to depend on the Jacobian matrix of the sinograms-to-DECT measurements map. Analytic estimates for the mean sinogram and monochromatic image pixel variances and the CNR as functions of tube potentials, fluence, and VMI energy are derived, and then used in a virtual phantom experiment as an objective function for optimizing the tube settings and VMI energy to minimize the image noise and maximize the CNR. RESULTS: It was shown that DECT measurements corresponding to kV settings that maximize the square of Jacobian determinant values over a domain of interest lead to improved stability of basis material reconstructions. Instances of non-uniqueness in DECT were addressed, focusing on scenarios where the Jacobian determinant becomes zero within the domain of interest despite significant spectral separation. The presence of non-uniqueness can lead to singular solutions during the inversion of sinograms-to-DECT measurements, underscoring the importance of considering uniqueness properties in parameter selection. Additionally, the optimal VMI energy and tube potentials for maximal CNR was determined. When the x-ray beam filter material was fixed at 2 mm of aluminum and the photon fluence for low and high kV scans were considered equal, the tube potential pair of 60/120 kV led to the maximal iodine CNR in the VMI at 53 keV. CONCLUSIONS: Optimizing DECT scan parameters to maximize the CNR can be done in a systematic way. Also, choosing the parameters that maximize the Jacobian determinant over the set of expected line integrals leads to more stable reconstructions due to the reduced amplification of the measurement noise. Since the values of the Jacobian determinant depend strongly on the imaging task, careful consideration of all of the relevant factors is needed when implementing the proposed framework.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Modelos Teóricos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos
9.
Eur J Nucl Med Mol Imaging ; 51(7): 2036-2046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383743

RESUMO

PURPOSE: High blood glucose (hBG) in patients undergoing [18F]FDG PET/CT scans often results in rescheduling the examination, which may lead to clinical delay for the patient and decrease productivity for the department. The aim of this study was to evaluate whether long-axial field-of-view (LAFOV) PET/CT can minimize the effect of altered bio-distribution in hBG patients and is able to provide diagnostic image quality in hBG situations. MATERIALS AND METHODS: Oncologic patients with elevated blood glucose (≥ 8.0 mmol/l) and normal blood glucose (< 8.0 mmol/l, nBG) levels were matched for tumor entity, gender, age, and BMI. hBG patients were further subdivided into two groups (BG 8-11 mmol/l and BG > 11 mmol/l). Tracer uptake in the liver, muscle, and tumor was evaluated. Furthermore, image quality was compared between long acquisitions (ultra-high sensitivity mode, 360 s) on a LAFOV PET/CT and routine acquisitions equivalent to a short-axial field-of-view scanner (simulated (sSAFOV), obtained with high sensitivity mode, 120 s). Tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) were used as the main image quality criteria. RESULTS: Thirty-one hBG patients met the inclusion criteria and were matched with 31 nBG patients. Overall, liver uptake was significantly higher in hBG patients (SUVmean, 3.07 ± 0.41 vs. 2.37 ± 0.33; p = 0.03), and brain uptake was significantly lower (SUVmax, 7.58 ± 0.74 vs. 13.38 ± 3.94; p < 0.001), whereas muscle (shoulder/gluteal) uptake showed no statistically significant difference. Tumor uptake was lower in hBG patients, resulting in a significantly lower TBR in the hBG cohort (3.48 ± 0.74 vs. 5.29 ± 1.48, p < 0.001). CNR was higher in nBG compared to hBG patients (12.17 ± 4.86 vs. 23.31 ± 12.22, p < 0.001). However, subgroup analysis of nBG 8-11 mmol/l on sSAFOV PET/CT compared to hBG (> 11 mmol/l) patients examined with LAFOV PET/CT showed no statistical significant difference in CNR (19.84 ± 8.40 vs. 17.79 ± 9.3, p = 0.08). CONCLUSION: While elevated blood glucose (> 11 mmol) negatively affected TBR and CNR in our cohort, the images from a LAFOV PET-scanner had comparable CNR to PET-images acquired from nBG patients using sSAFOV PET/CT. Therefore, we argue that oncologic patients with increased blood sugar levels might be imaged safely with LAFOV PET/CT when rescheduling is not feasible.


Assuntos
Glicemia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Glicemia/análise , Análise por Pareamento , Neoplasias/diagnóstico por imagem , Adulto , Compostos Radiofarmacêuticos/farmacocinética
10.
Sci Rep ; 14(1): 3109, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326410

RESUMO

Small-field-of-view reconstruction CT images (sFOV-CT) increase the pixel density across airway structures and reduce partial volume effects. Multi-instance learning (MIL) is proposed as a weakly supervised machine learning method, which can automatically assess the image quality. The aim of this study was to evaluate the disparities between conventional CT (c-CT) and sFOV-CT images using a lung nodule system based on MIL and assessments from radiologists. 112 patients who underwent chest CT were retrospectively enrolled in this study between July 2021 to March 2022. After undergoing c-CT examinations, sFOV-CT images with small-field-of-view were reconstructed. Two radiologists analyzed all c-CT and sFOV-CT images, including features such as location, nodule type, size, CT values, and shape signs. Then, an MIL-based lung nodule system objectively analyzed the c-CT (c-MIL) and sFOV-CT (sFOV-MIL) to explore their differences. The signal-to-noise ratio of lungs (SNR-lung) and contrast-to-noise ratio of nodules (CNR-nodule) were calculated to evaluate the quality of CT images from another perspective. The subjective evaluation by radiologists showed that feature of minimal CT value (p = 0.019) had statistical significance between c-CT and sFOV-CT. However, most features (all with p < 0.05), except for nodule type, location, volume, mean CT value, and vacuole sign (p = 0.056-1.000), had statistical differences between c-MIL and sFOV-MIL by MIL system. The SNR-lung between c-CT and sFOV-CT had no statistical significance, while the CNR-nodule showed statistical difference (p = 0.007), and the CNR of sFOV-CT was higher than that of c-CT. In detecting the difference between c-CT and sFOV-CT, features extracted by the MIL system had more statistical differences than those evaluated by radiologists. The image quality of those two CT images was different, and the CNR-nodule of sFOV-CT was higher than that of c-CT.


Assuntos
Neoplasias Pulmonares , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Doses de Radiação , Algoritmos
11.
Med Phys ; 51(2): 1047-1060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37469179

RESUMO

BACKGROUND: Image quality of photon-counting and energy integrating CT scanners changes with object size, dose to the object, and kernel selection. PURPOSE: To comprehensively compare task-generic image quality of photon-counting CT (PCCT) and energy integrating CT (EICT) systems as a function of phantom size, dose, and reconstruction kernel. METHODS: A size-variant phantom (Mercury Phantom 3.0) was used to characterize the image quality of PCCT and EICT systems as a function of object size. The phantom contained five cylinders attached by slanted tapered sections. Each cylinder contained two sections: one uniform for noise, and the other with inserts for spatial resolution and contrast measurements. The phantom was scanned on Siemens' SOMATOM Force and NAEOTOM Alpha at 1.18 and 7.51 mGy without tube current modulation. CTDIvol was matched across two systems by setting the required tube currents, else, all other acquisition settings were fixed. CT sinograms were reconstructed using FBP and iterative (ADMIRE2 - Force; QIR2 - Alpha) algorithms with Body regular (Br) kernels. Noise Power Spectrum (NPS), Task Transfer Function (TTF), contrast-to-noise ratio (CNR), and detectability index (d') for a task of identifying 2-mm disk were evaluated based on AAPM TG-233 metrology using imQuest, an open-source software package. Averaged noise frequency (fav ) and 50% cut-off frequency for TTF (f50 ) were used as scalar metrics to quantify noise texture and spatial resolution, respectively. The difference between image quality metrics' measurements was calculated as IQPCCT - IQEICT . RESULTS: From Br40 (soft) to Br64 (sharp), f50 for air insert increased from 0.35 mm-1  ± 0.04 (standard deviation) to 0.76 mm-1  ± 0.17, 0.34 mm-1  ± 0.04 to 0.77 mm-1  ± 0.17, 0.37 mm-1  ± 0.02 to 0.95 mm-1  ± 0.17 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively, when averaged over all sizes and dose levels. Similarly, from Br40 to Br64, noise magnitude increased from 10.86 HU ± 7.12 to 38.61 HU ± 18.84, 10.94 HU ± 7.08 to 38.82 HU ± 18.70, 13.74 HU ± 11.02 to 52.11 HU ± 26.22 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively. The difference in fav was consistent across all sizes and dose levels. PCCT-70keV-VMI showed better consistency in contrast measurements for iodine and bone inserts than PCCT-T3D and EICT; however, PCCT-T3D had higher contrast for both inserts. From Br40 to Br64, considering all sizes and dose levels, CNR for iodine insert decreased from 52.30 ± 46.44 to 12.18 ± 10.07, 40.42 ± 33.42 to 9.48 ± 7.16, 39.94 ± 37.60 to 7.84 ± 6.67 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively. CONCLUSIONS: Both PCCT image types, T3D and 70-keV-VMI exhibited similar or better noise, contrast, CNR than EICT when comparing kernels with similar names. For 512 × 512 matrix, PCCT's sharp kernels had lower resolution than EICT's sharp kernels. For all image quality metrics, except extreme low, every dose condition had a similar set of IQ-matching kernels. It suggests that considering patient size and dose level to determine IQ-matching kernel pairs across PCCT and EICT systems may not be imperative while translating protocols, except when the signal to the detector is extremely low.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Imagens de Fantasmas , Algoritmos , Doses de Radiação
12.
Cardiol Ther ; 13(1): 103-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062285

RESUMO

INTRODUCTION: The use of serial coronary computed tomography angiography (CCTA) allows for the early assessment of coronary plaque progression, a crucial factor in averting major adverse cardiac events (MACEs). Traditionally, serial CCTA is assessed using anatomical landmarks to match baseline and follow-up scans. Recently, a tool has been developed that allows for the automatic quantification of local plaque thickness differences in serial CCTA utilizing plaque contour delineation. The aim of this study was to determine thresholds of plaque thickness differences that define whether there is plaque progression and/or regression. These thresholds depend on the contrast-to-noise ratio (CNR). METHODS: Plaque thickness differences between two scans acquired at the same moment in time should always be zero. The negative and positive differences in plaque contour delineation in these scans were used along with the CNR in order to create calibration graphs on which a linear regression analysis was performed. This analysis was conducted on a cohort of 50 patients referred for a CCTA due to chest complaints. A total of 300 coronary vessels were analyzed. First, plaque contours were semi-automatically determined for all major epicardial coronary vessels. Second, manual drawings of seven regions of interest (ROIs) per scan were used to quantify the scan quality based on the CNR for each vessel. RESULTS: A linear regression analysis was performed on the CNR and negative and positive plaque contour delineation differences. Accounting for the standard error of the estimate, the linear regression analysis revealed that above 1.009 - 0.002 × CNR there is an increase in plaque thickness (progression), and below - 1.638 + 0.012 × CNR there is a decrease in plaque thickness (regression). CONCLUSION: This study demonstrates the feasibility of developing vessel-specific, quality-based thresholds for visualizing local plaque thickness differences evaluated by serial CCTA. These thresholds have the potential to facilitate the early detection of atherosclerosis progression.

13.
Photodiagnosis Photodyn Ther ; 45: 103891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37949385

RESUMO

BACKGROUND: To quantitatively evaluate the effectiveness of the Noise2Noise (N2N) model, a deep learning (DL)-based noise reduction algorithm, on enhanced depth imaging-optical coherence tomography (EDI-OCT) images with different noise levels. METHODS: The study included 30 subfoveal EDI-OCT images averaged with 100 frames from 30 healthy participants. Artificial Gaussian noise at 25.00, 50.00, and 75.00 standard deviations were added to the averaged (original) images, and the images were grouped as 25N, 50N, and 75N. Afterward, noise-added images were denoised with the N2N model and grouped as 25dN, 50dN, and 75dN, according to previous noise levels. The choroidal vascularity index (CVI) and deep choroidal contrast-to-noise ratio (CNR) were calculated for all images, and noise-added and denoised images were compared with the original images. The structural similarity of the noise-added and denoised images to the original images was assessed by the Multi-Scale Structural Similarity Index (MS-SSI). RESULTS: The CVI and CNR parameters of the original images (68.08 ± 2.47 %, and 9.71 ± 2.80) did not differ from the only 25dN images (67.97 ± 2.34 % and 8.50 ± 2.43) (p:1.000, and p:0.062, respectively). Noise reduction improved the MS-SSI at each noise level (p < 0.001). However, the highest MS-SSI was achieved in 25dN images. CONCLUSIONS: The DL-based N2N denoising model can be used effectively for images with low noise levels, but at increasing noise levels, this model may be insufficient to provide both the original structural features of the choroid and structural similarity to the original image.


Assuntos
Aprendizado Profundo , Fotoquimioterapia , Humanos , Tomografia de Coerência Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Corioide/diagnóstico por imagem
14.
Acta Radiol Open ; 12(12): 20584601231220324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075408

RESUMO

Background: The assessment of small metastatic liver tumours using dual-energy computed tomography (DECT) has not been fully established. Purpose: To assess the effect of low-keV virtual monochromatic imaging (VMI) with non-contrast and contrast-enhanced DECT on the qualitative and quantitative image parameters of small liver metastases. Material and methods: Two radiologists retrospectively evaluated 92 metastatic liver tumours (5-20 mm) in 32 patients. Non-contrast and contrast-enhanced VMI were reconstructed at seven energy levels (40-100 keV) with 10-keV intervals. Lesion boundary, lesion delineation, image noise, and overall image quality were evaluated using the visual analogue scale. A high subjective score indicates good overall image quality, clear nodal boundaries and delineation, and less noticeable image noise. Subjective scores were compared using the Kruskal-Wallis test. A quantitative analysis involving the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was performed. Results: The lesion boundary was highest at 40 keV and significantly improved during the non-contrast portal venous phase compared to that at higher keV (p < .005). The lesion delineation score was significantly higher at 40 keV and tended to decrease at higher keV. Image noise and overall image quality were rated low at low keV; however, those at 80, 90, and 100 keV were rated the highest (p < .005). The CNR and SNR were highest for non-contrast CT at 100 keV. During the portal venous phase, no significant differences were observed in CNR and SNR at each keV. Conclusion: Low-keV imaging using non-contrast and contrast-enhanced DECT is useful for delineating small hepatic metastatic tumours.

15.
BMC Med Imaging ; 23(1): 171, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904089

RESUMO

A super-resolution deep learning reconstruction (SR-DLR) algorithm trained using data acquired on the ultrahigh spatial resolution computed tomography (UHRCT) has the potential to provide better image quality of coronary arteries on the whole-heart, single-rotation cardiac coverage on a 320-detector row CT scanner. However, the advantages of SR-DLR at coronary computed tomography angiography (CCTA) have not been fully investigated. The present study aimed to compare the image quality of the coronary arteries and in-stent lumen between SR-DLR and model-based iterative reconstruction (MBIR). We prospectively enrolled 70 patients (median age, 69 years; interquartile range [IQR], 59-75 years; 50 men) who underwent CCTA using a 320-detector row CT scanner between January and August 2022. The image noise in the ascending aorta, left atrium, and septal wall of the ventricle was measured, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the proximal coronary arteries were calculated. Of the twenty stents, stent strut thickness and luminal diameter were quantitatively evaluated. The image noise on SR-DLR was significantly lower than that on MBIR (median 22.1 HU; IQR, 19.3-24.9 HU vs. 27.4 HU; IQR, 24.2-31.2 HU, p < 0.01), whereas the SNR (median 16.3; IQR, 11.8-21.8 vs. 13.7; IQR, 9.9-18.4, p = 0.01) and CNR (median 24.4; IQR, 15.5-30.2 vs. 19.2; IQR, 14.1-23.2, p < 0.01) on SR-DLR were significantly higher than that on MBIR. Stent struts were significantly thinner (median, 0.68 mm; IQR, 0.61-0.78 mm vs. 0.81 mm; IQR, 0.72-0.96 mm, p < 0.01) and in-stent lumens were significantly larger (median, 1.84 mm; IQR, 1.65-2.26 mm vs. 1.52 mm; IQR, 1.28-2.25 mm, p < 0.01) on SR-DLR than on MBIR. Although further large-scale studies using invasive coronary angiography as the reference standard, comparative studies with UHRCT, and studies in more challenging population for CCTA are needed, this study's initial experience with SR-DLR would improve the utility of CCTA in daily clinical practice due to the better image quality of the coronary arteries and in-stent lumen at CCTA compared with conventional MBIR.


Assuntos
Angiografia por Tomografia Computadorizada , Aprendizado Profundo , Masculino , Humanos , Idoso , Angiografia por Tomografia Computadorizada/métodos , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária/métodos , Stents , Átrios do Coração , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Doses de Radiação
16.
Med Phys ; 50(11): 6779-6788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669507

RESUMO

BACKGROUND: The feasibility of oral dark contrast media is under exploration in abdominal computed tomography (CT) applications. One of the experimental contrast media in this class is dark borosilicate contrast media (DBCM), which has a CT attenuation lower than that of intra-abdominal fat. PURPOSE: To evaluate the performances of DBCM using single- and multi-energy CT imaging on a clinical photon-counting-detector CT (PCD-CT). METHODS: Five vials, three with iodinated contrast agent (5, 10, and 20 mg/mL; Omnipaque 350) and two with DBCM (6% and 12%; Nextrast, Inc.), and one solid-water rod (neutral contrast agent) were inserted into two multi-energy CT phantoms, and scanned on a clinical PCD-CT system (NAEOTOM Alpha) at 90, 120, 140, Sn100, and Sn140 kV (Sn: tin filter) in multi-energy mode. CARE keV IQ level was 180 (CTDIvol: 3.0 and 12.0 mGy for the small and large phantoms, respectively). Low-energy threshold images were reconstructed with a quantitative kernel (Qr40, iterative reconstruction strength 2) and slice thickness/increment of 2.0/2.0 mm. Virtual monoenergetic images (VMIs) were reconstructed from 40 to 140 keV at 10 keV increments. On all images, average CT numbers for each vial/rod were measured using circular region-of-interests and averaged over eight slices. The contrast-to-noise ratio (CNR) of iodine (5 mg/mL) against DBCM was calculated and plotted against tube potential and VMI energy level, and compared to the CNR of iodine against water. Similar analyses were performed on iodine maps and VNC images derived from the multi-energy scan at 120 kV. RESULTS: With increasing kV or VMI keV, the negative HU of DBCM decreased only slightly, whereas the positive HU of iodine decreased across all contrast concentrations and phantom sizes. CT numbers for DBCM decreased from -178.5 ± 9.6 to -194.4 ± 6.3 HU (small phantom) and from -181.7 ± 15.7 to -192.1 ± 11.9 HU (large phantom) for DBCM-12% from 90 to Sn140 kV; on VMIs, the CT numbers for DBCM decreased minimally from -147.1 ± 15.7 to -185.1 ± 9.2 HU (small phantom) and -158.8 ± 28.6 to -188.9 ± 14.7 HU (large phantom) from 40 to 70 keV, but remained stable from 80 to 140 keV. The highest iodine CNR against DBCM in low-energy threshold images was seen at 90 or Sn140 kV for the small phantom, whereas all CNR values from low-energy threshold images for the large phantom were comparable. The CNR values of iodine against DBCM computed on VMIs were highest at 40 or 70 keV depending on iodine and DBCM concentrations. The CNR values of iodine against DBCM were consistently higher than iodine to water (up to 460% higher dependent on energy level). Further, the CNR of iodine compared to DBCM is less affected by VMI energy level than the identical comparison between iodine and water: CNR values at 140 keV were reduced by 46.6% (small phantom) or 42.6% (large phantom) compared to 40 keV; CNR values for iodine compared to water were reduced by 86.3% and 83.8% for similar phantom sizes, respectively. Compared to 70 keV VMI, the iodine CNR against DBCM was 13%-79% lower on iodine maps and VNC. CONCLUSIONS: When evaluated at different tube potentials and VMI energy levels using a clinical PCD-CT system, DBCM showed consistently higher CNR compared to iodine versus water (a neutral contrast).


Assuntos
Meios de Contraste , Iodo , Tomografia Computadorizada por Raios X/métodos , Iohexol , Imagens de Fantasmas , Água , Razão Sinal-Ruído
17.
Acta Radiol ; 64(10): 2714-2721, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700572

RESUMO

BACKGROUND: Deep learning (DL)-based methods have been used to improve the imaging quality of magnetic resonance imaging (MRI) by denoising. PURPOSE: To assess the effects of DL-based MR reconstruction (DLR) method on late gadolinium enhancement (LGE) image quality. MATERIAL AND METHODS: A total of 85 patients who underwent cardiovascular magnetic resonance (CMR) examination, including LGE imaging using conventional construction and DLR with varying levels of noise reduction (NR) levels, were included. Both magnitude LGE (MLGE) and phase-sensitive LGE (PSLGE) images were reviewed independently by double-blinded observers who used a 5-point Likert scale for multiple measures regarding image quality. Meanwhile, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge sharpness of images were calculated and compared between conventional LGE imaging and DLR LGE imaging. RESULTS: Both MLGE and PSLGE with DLR at 50% and 75% noise reduction levels received significantly higher scores than conventional imaging for overall imaging quality (all P < 0.01). In addition, the SNR, CNR, and edge sharpness of all DLR LGE imaging are higher than conventional imaging (all P < 0.01). The highest subjective score and best image quality is obtained when the DLR noise reduction level is at 75%. CONCLUSION: DLR reduced image noise while improving image contrast and sharpness in the cardiovascular LGE imaging.


Assuntos
Meios de Contraste , Aprendizado Profundo , Humanos , Gadolínio , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
18.
Phys Med Biol ; 68(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37531961

RESUMO

Objective.Non-invasive functional brain imaging modalities are limited in number, each with its own complex trade-offs between sensitivity, spatial and temporal resolution, and the directness with which the measured signals reflect neuronal activation. Magnetic particle imaging (MPI) directly maps the cerebral blood volume (CBV), and its high sensitivity derives from the nonlinear magnetization of the superparamagnetic iron oxide nanoparticle (SPION) tracer confined to the blood pool. Our work evaluates functional MPI (fMPI) as a new hemodynamic functional imaging modality by mapping the CBV response in a rodent model where CBV is modulated by hypercapnic breathing manipulation.Approach.The rodent fMPI time-series data were acquired with a mechanically rotating field-free line MPI scanner capable of 5 s temporal resolution and 3 mm spatial resolution. The rat's CBV was modulated for 30 min with alternating 5 min hyper-/hypocapnic states, and processed using conventional fMRI tools. We compare our results to fMRI responses undergoing similar hypercapnia protocols found in the literature, and reinforce this comparison in a study of one rat with 9.4T BOLD fMRI using the identical protocol.Main results.The initial image in the time-series showed mean resting brain voxel SNR values, averaged across rats, of 99.9 following the first 10 mg kg-1SPION injection and 134 following the second. The time-series fit a conventional General Linear Model with a 15%-40% CBV change and a peak pixel CNR between 12 and 29, 2-6× higher than found in fMRI.Significance.This work introduces a functional modality with high sensitivity, although currently limited spatial and temporal resolution. With future clinical-scale development, a large increase in sensitivity could supplement other modalities and help transition functional brain imaging from a neuroscience tool focusing on population averages to a clinically relevant modality capable of detecting differences in individual patients.


Assuntos
Circulação Cerebrovascular , Hipercapnia , Ratos , Animais , Hipercapnia/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Fenômenos Magnéticos , Mapeamento Encefálico
19.
Med Phys ; 50(11): 6693-6703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602816

RESUMO

BACKGROUND: High tube current generates a high flux of x-rays to photon counting detectors (PCDs) that can potentially result in the piling up of pulses formed by concurrent photons, which can cause count loss and energy resolution degradation. PURPOSE: To evaluate the performance of clinical photon-counting CT (PCCT) systems in high flux, potentially influenced by pulse pileup effects, in terms of task-generic image quality metrics. METHODS: A clinical phantom was scanned on a commercial PCCT scanner (NAEOTOM Alpha, Siemens) at 120 kV under fourteen different tube current levels (40-1000 mA) with a rotation time of 0.25 s and a pitch of 1. The dose levels corresponded to CTDIvol (32 cm phantom) of 0.79-19.8 mGy. CT sinograms were reconstructed using QIR-off mode (noniterative reconstruction algorithm), Br44 kernel, and a voxel size of 0.4102 × 0.4102 × 3 mm 3 $0.4102 \times 0.4102 \times 3{\mathrm{\ mm}}^3$ . imQuest, an open-source MATLAB-based software package was used to calculate noise power spectrum (NPS), task transfer function (TTF), contrast-to-noise ratio (CNR), and CT number according to AAPM Task Group 233 metrology. RESULTS: The 50% cut-off frequency of TTF (f50 ) remained mostly constant across all higher tube currents for all inserts, namely polyethylene, bone, air, and acrylic. Using the lowest two data points (40 and 80 mA), the expected relationship between noise magnitude and tube current was determined to be noise ∝ $ \propto \ $ mA-0.47 . The measured noise magnitude were up to 11.1% higher than the expected value at the highest tube current. The average frequency of NPS (fav ) decreased from 0.32 to 0.29 mm-1 as tube current increased from 40 to 1000 mA. No considerable effects were observed in CT number measurement of any insert; however, CT numbers for air and bone changed almost monotonically as tube current increased. Absolute CNR increased monotonically for all inserts; however, the difference between measured and expected CNRs were approximately -6% to 12% across all tube currents. CONCLUSIONS: Increasing tube currents did not affect the spatial resolution, but slightly affected the CT number and noise measurements of the clinical PCCT system. However, the effects were only considerable at clinically irrelevant tube currents used on a small 20-cm phantom. In general clinical practices, automatic exposure control techniques are used to decrease the variation of flux on the detector, which alleviates the chances of detector saturation due to high count rates. The observed effects could be due to pulse pileup, signal-dependent filtration of the system, or nonlinearities in the reconstruction algorithm. In conclusion, either the deadtime of the detector used in the photon-counting CT system is shorter such that count losses due to pulse pileup are negligible, or pulse pileup has inconsiderable effects on the image quality of clinical photon-counting CT systems in routine clinical practice due to possible corrections applied on the system.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Telúrio , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Fótons
20.
BMC Med Imaging ; 23(1): 95, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464338

RESUMO

OBJECTIVE: This study aimed to assess the feasibility of software-aided selection of monoenergetic level for acute necrotising pancreatitis (ANP) depiction compared to other automatic image series generated using dual-energy computed tomography (CT). METHODS: The contrast-enhanced dual-source dual-energy CT images in the portal venous phase of 48 patients with ANP were retrospectively analysed. Contrast-to-noise ratio (CNR) of pancreatic parenchyma-to-necrosis, signal-to-noise ratio (SNR) of the pancreas, image noise, and score of subjective diagnosis were measured, calculated, and compared among the CT images of 100 kV, Sn140 kV, weighted-average 120 kV, and optimal single-energy level for CNR. RESULTS: CNR of pancreatic parenchyma-to-necrosis in the images of 100 kV, Sn140 kV, weighted-average 120 kV, and the optimal single-energy level for CNR was 5.18 ± 2.39, 3.13 ± 1.35, 5.69 ± 2.35, and 9.99 ± 5.86, respectively; SNR of the pancreas in each group was 6.31 ± 2.77, 4.27 ± 1.56, 7.21 ± 2.69, and 11.83 ± 6.30, respectively; image noise in each group was 18.78 ± 5.20, 17.79 ± 4.63, 13.28 ± 3.13, and 9.31 ± 2.96, respectively; and score of subjective diagnosis in each group was 3.56 ± 0.50, 3.00 ± 0.55, 3.48 ± 0.55, and 3.88 ± 0.33, respectively. The four measurements of the optimal single-energy level for CNR images were significantly different from those of images in the other three groups (P < 0.05). CNR of pancreatic parenchyma-to-necrosis, SNR of the pancreas, and score of subjective diagnosis in the images of the optimal single-energy level for CNR were significantly higher, while the image noise was lower than those in the other three groups (all P = 0.000). CONCLUSION: Optimal single-energy level imaging for CNR of dual-source CT could improve quality of CT images in patients with ANP, enhancing the display of necrosis in the pancreas.


Assuntos
Pancreatite Necrosante Aguda , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Pancreatite Necrosante Aguda/diagnóstico por imagem , Estudos Retrospectivos , Estudos de Viabilidade , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Software , Razão Sinal-Ruído , Necrose , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...