Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.122
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38946605

RESUMO

Studies on targeted temperature management for postcardiac arrest syndrome have shown no difference in outcomes between normothermia and hypothermia in patients with postcardiac arrest brain injury. Therefore, further development of therapeutic methods for temperature control in cardiac arrest patients is desirable. Although animal studies have shown that inducing hypothermia during cardiac arrest improves outcomes, no clinically effective method has yet been reported. We investigated whether intra-arrest lung cooling (IALC) effectively lowers brain temperature. A device capable of cooling oxygen was developed. The pigs were subjected to cardiac arrest using the device, ventilated, cooled during cardiopulmonary resuscitation, and resuscitated for 1 hour, with changes in brain temperature closely monitored. A device capable of cooling oxygen to -30°C was used to cool the lungs during cardiac arrest. Through this approach, IALC successfully reduced the brain temperature. Optimal cooling efficiency was observed when chest compressions and ventilation were synchronized at a ratio of 5:1, resulting in an approximate brain temperature reduction of 1.5°C/h. Our successful development of an oxygen-cooling device underscores the potential for lowering brain temperature through IALC using inhaled oxygen cooling.

2.
Small ; : e2403084, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958079

RESUMO

Residual alkali is one of the biggest challenges for the commercialization of sodium-based layered transition metal oxide cathode materials since it can even inevitably appear during the production process. Herein, taking O3-type Na0.9Ni0.25Mn0.4Fe0.2Mg0.1Ti0.05O2 as an example, an active strategy is proposed to reduce residual alkali by slowing the cooling rate, which can be achieved in one-step preparation method. It is suggested that slow cooling can significantly enhance the internal uniformity of the material, facilitating the reintegration of Na+ into the bulk material during the calcination cooling phase, therefore substantially reducing residual alkali. The strategy can remarkably suppress the slurry gelation and gas evolution and enhance the structural stability. Compared to naturally cooled cathode materials, the capacity retention of the slowly cooled electrode material increases from 76.2% to 85.7% after 300 cycles at 1 C. This work offers a versatile approach to the development of advanced cathode materials toward practical applications.

3.
Eur Heart J Case Rep ; 8(7): ytae301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966596

RESUMO

Background: The hybrid convergent procedure is approved to treat symptomatic patients with long-standing persistent atrial fibrillation (AF). Despite direct visualization during surgical ablation as well as the use of luminal oesophageal temperature (LET) monitoring, oesophageal injury is still possible. A dedicated device for proactive oesophageal cooling has recently been cleared by the Food and Drug Administration to reduce the likelihood of ablation-related oesophageal injury resulting from radiofrequency cardiac ablation procedures. This report describes the first uses of proactive oesophageal cooling for oesophageal protection during the epicardial ablation portion of hybrid convergent procedures. Case summary: Five patients with long-standing persistent AF underwent hybrid convergent ablations with the use of proactive oesophageal cooling as means of oesophageal protection. All cases were completed successfully with no adverse effects. Most notably, cases were shorter when compared to cases using LET monitoring, likely due to lack of pauses for overheating of the oesophagus that would otherwise be required to prevent damage to the oesophagus. Discussion: This report describes the first uses of proactive oesophageal cooling for oesophageal protection during the epicardial ablation portion of five hybrid convergent procedures. Use of cooling enabled uninhibited deployment of lesions without the need to pause energy delivery due to elevated temperatures in the oesophagus, providing a feasible alternative to LET monitoring.

4.
Heliyon ; 10(11): e32101, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961973

RESUMO

In the continuously advancing field of mechanical engineering, digitalization is bringing a major transformation, specifically with the concept of digital twins. Digital twins are dynamic digital models of real-world systems and processes, crucial for Industry 4.0 and the emerging Industry 5.0, which are changing how humans and machines work together in manufacturing. This paper explores the combination of physics-based and data-driven modeling using advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques. This approach provides a comprehensive understanding of mechanical systems, improving materials design and manufacturing processes. The focus is on the advanced 42SiCr alloy, where AI-driven digital twinning is used to optimize cooling rates during Quenching and Partitioning (Q-P) treatments. This leads to significant improvements in the mechanical properties of 42SiCr steel. Given its complex properties influenced by various factors, this alloy is perfect for digital twinning. The Q-P heat treatment process not only restores the material's deformability but also gives it advanced high-strength steel (AHSS) properties. The findings show how AI and ML can effectively guide the development of high-strength steels and enhance their treatment processes. Additionally, integrating digital twins with new technologies like the Metaverse offers exciting possibilities for simulated production, remote monitoring, and collaborative design. By establishing a clear workflow from physical to digital twins and presenting empirical results, this paper connects theoretical modeling with practical applications, paving the way for smarter manufacturing solutions in mechanical engineering. Furthermore, this paper analyzes how digital twins can be integrated into advanced technologies like the Metaverse, opening up new possibilities for simulated production, remote monitoring, design collaboration, training simulations, analytics, and complete supply chain visibility. This integration is a crucial step toward realizing the full potential of digitalization in mechanical engineering.

5.
Sci Rep ; 14(1): 15193, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956145

RESUMO

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Assuntos
Temperatura Baixa , Aves Canoras , Animais , Regiões Árticas , Aves Canoras/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Cruzamento , Reprodução/fisiologia , Feminino , Masculino , Temperatura
6.
ACS Nano ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965899

RESUMO

Optically driven cooling of a material, or optical refrigeration, is possible when optical up-conversion via anti-Stokes photoluminescence (ASPL) is achieved with near-unity quantum yield. The recent demonstration of optical cooling of CsPbBr3 perovskite nanocrystals (NCs) has provided a path forward in the development of semiconductor-based optical refrigeration strategies. However, the mechanism of ASPL in CsPbBr3 NCs is not yet settled, and the prospects for cooling technologies strongly depend on details of the mechanism. By analyzing the Arrhenius behavior of ASPL in CsPbBr3 NCs, we investigated the relationship between the average energy gained per photon during up conversion, ΔE, and the thermal activation energy, Ea. We find that Ea is systematically larger than ΔE, and that Ea increases for larger ΔE. We suggest that the additional energetic cost is due to a rearrangement of the crystal lattice as charge carriers pass from surface localized, structurally distinct sub-gap polaron states to the free exciton state during up-conversion. Our interpretation is further corroborated by quantifying the impact of ligand coverage on the NC surface. These findings help inform the development of CsPbBr3 NCs for applications in optical refrigeration.

7.
Exp Physiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970776

RESUMO

Post-exercise hot (HWI) and cold (CWI) water immersion are popular strategies used by athletes in a range of sporting contexts, such as enhancing recovery or adaptation. However, prolonged heating bouts increase neuroendocrine responses that are associated with perceptions of fatigue. Fourteen endurance-trained runners performed three trials consisting of two 45-min runs at 95% lactate threshold on a treadmill separated by 6 h of recovery. Following the first run, participants completed one of HWI (30 min, 40°C), CWI (15 min, 14°C) or control (CON, 30 min rest in ambient conditions) in a randomised order. Perceived effort and recovery were measured using ratings of perceived exertion (RPE) and the Acute Recovery and Stress Scale (ARSS), whilst physiological responses including venous concentrations of a range of neuroendocrine markers, superficial femoral blood flow, heart rate and rectal temperature were measured. Exercise increased neuroendocrine responses of interleukin-6, adrenaline and noradrenaline (all P < 0.001). Additionally, perceptions of overall recovery (P < 0.001), mental performance capacity (P = 0.02), physical performance capability (P = 0.01) and emotional balance (P = 0.03) were reduced prior to the second run. However, there was no effect of condition on these variables (P > 0.05), nor RPE (P = 0.68), despite differences in rectal temperature, superficial femoral blood flow following the first run, and participants' expected recovery prior to the intervention (all P < 0.001). Therefore, athletes may engage in post-exercise hot or cold-water immersion without negatively impacting moderate-intensity training sessions performed later the same day.

8.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951984

RESUMO

The cost of annual energy consumption in buildings in the United States exceeds 430 billion dollars ( Science 2019, 364 (6442), 760-763), of which about 48% is used for space thermal management (https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019), revealing the urgent need for efficient thermal management of buildings and dwellings. Radiative cooling technologies, combined with the booming photonic and microfabrication technologies ( Nature 2014, 515 (7528), 540-544), enable energy-free cooling by radiative heat transfer to outer space through the atmospheric transparent window ( Nat. Commun. 2024, 15 (1), 815). To pursue all-season energy savings in climates with large temperature variations, switchable and tunable radiative coolers (STRC) have emerged in recent years and quickly gained broad attention. This Perspective introduces the existing STRC technologies and analyzes their benefits and challenges in future large-scale applications, suggesting ways for the development of future STRCs.

9.
Am J Emerg Med ; 83: 32-39, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944919

RESUMO

BACKGROUND: Heatstroke (HS), associated with the early activation of the coagulation system and frequently presenting with thrombocytopenia, poses a significant healthcare challenge. Understanding the relationship of nadir platelet count (PLT) within 24 h for adverse outcomes in HS patients is crucial for optimizing management strategies. METHODS: This retrospective cohort study, conducted in six tertiary care hospitals, involved patients diagnosed with HS and admitted to the emergency departments. The primary and secondary outcomes included in-hospital mortality and various acute complications, respectively, with logistic regression models utilized for assessing associations between nadir PLT and outcomes. The PLT count change curve was described using a generalized additive mixed model (GAMM), with additional analyses involving body temperature (BT) at 2 h also conducted. RESULTS: Of the 152 patients included, 19 (12.5%) died in-hospital. The median nadir PLT within 24 h was 99.5 (58.8-145.0)*10^9/L. Notably, as a continuous variable (10*10^9/L), nadir PLT was significantly associated with in-hospital mortality (OR 0.76; 95% CI 0.64-0.91; P = 0.003) and other adverse outcomes like acute kidney and liver injury, even after adjustment for confounders. GAMM revealed a more rapid and significant PLT decline in the non-survival group over 24 h, with differential PLT dynamics also observed based on BT at 2 h. CONCLUSIONS: Nadir PLT within 24 h were tied to in-hospital mortality and various adverse outcomes in HS patients. Early effective cooling measures demonstrated a positive impact on these associations, underscoring their importance in patient management.

10.
Food Chem ; 456: 139962, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38945049

RESUMO

Fresh fruit and vegetables usually suffer from quality deterioration when exposed to inappropriate temperatures. Common energy-input temperature regulation is widely applied but there remain challenges of increasing energy consumption. Passive temperature management regulates the heat transfer without energy consumption, showing a sustainable strategy for food preservation. Here, thermoresponsive hydrogels were constructed by incorporating NaCl and sodium dodecyl sulfate (SDS) micelles into a poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-AM)) network. Due to the excellent mechanical properties and reversible thermochromism at 14 °C and 37 °C, Gel-8 wt%-NaCl could inhibit temperature rise and avoid sunburn damage to peppers under direct sunlight by blocking the input of solar energy and accelerating moisture evaporation. Additionally, hydrogels could act as a feasible sensor by providing real-time visual warnings for inappropriate temperatures during banana storage. Based on the self-adaptive thermoresponsive behaviour, the prepared hydrogels showed effective performance of temperature regulation and quality preservation of fruit and vegetables.

11.
Sci Rep ; 14(1): 14682, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918559

RESUMO

Evaluating physical properties and mechanical parameters of rock slopes and their spatial variability is challenging, particularly at locations inaccessible for fieldwork. This obstacle can be bypassed by acquiring spatially-distributed field data indirectly. InfraRed Thermography (IRT) has emerged as a promising technology to statistically infer rock properties and inform slope stability models. Here, we explore the use of Cooling Rate Indices (CRIs) to quantify the thermal response of a granodiorite rock wall within the recently established Pozáry Test Site in Czechia. We observe distinct cooling patterns across different segments of the wall, compatible with the different degrees of weathering evaluated in the laboratory and suggested by IRT observations of cored samples. Our findings support previous examinations of the efficacy of this method and unveil correlations between cooling phases in the field and in the laboratory. We discuss the scale-dependency of the Informative Time Window (ITW) of the CRIs, noting that it may serve as a reference for conducting systematic IRT field surveys. We contend that our approach not only represents a viable and scientifically robust strategy for characterising rock slopes but also holds the potential for identifying unstable areas.

12.
Entropy (Basel) ; 26(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920520

RESUMO

Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system's performance from both thermodynamic and exergoeconomic perspectives. Results show that the system could achieve the thermal efficiency, exergy efficiency, and levelized cost of exergy (LCOE) of 70.67%, 39.13%, and 11.67 USD/GJ, respectively. The analysis identifies the combustion chamber of the EFGT as the component with the highest rate of exergy destruction. Further analysis on parameters indicates that improvements in thermodynamic performance are achievable with increased air compressor pressure ratio and gas turbine inlet temperature, or reduced pinch point temperature difference, while the LCOE can be minimized through adjustments in these parameters. Optimized operation conditions demonstrate a potential 5.7% reduction in LCOE at the expense of a 2.5% decrease in exergy efficiency when compared to the baseline scenario.

13.
Proc Natl Acad Sci U S A ; 121(25): e2320052121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870056

RESUMO

Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO[Formula: see text], an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of [Formula: see text] due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn-Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric response of single-crystal TmVO[Formula: see text], and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications and provides insight into the dynamic quadrupole strain susceptibility.

14.
Toxicol Res ; 40(3): 431-440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38911548

RESUMO

The Internet Data Center (IDC) is one of the most important infrastructures in the field of information technology. The cooling system for heat dissipation of IDC is indispensable due to it generates a large amount of heat during its calculation process, which may potentially harm its normal operation. Electronic fluorinated fluids have been widely used in cooling systems of IDC with stable physical and chemical properties. However, the biological toxicity of electronic fluorinated fluids has not been fully evaluated and there is a lack of unified safety standards, which may pose potential risks to the environment and human health. Here, hexafluoropropylene terpolymer (HFPT) as an example has been systematically studied, fully considering the application scenarios of data centers. Also, the emergency effects of fluorinated coolants in mammalian models from the perspectives of inhalation, skin contact, accidental entry into eyes, accidental ingestion, and chronic toxicity, are evaluated. Multiple in vivo experiments have proven that HFPT not only has stable physical and chemical properties, that can maintain the safe operation of IDC, but also has low physiological toxicity to mammals and can provide health benefits to data center staff and the assurance of surrounding environment. This study proves the good biological safety of electronic fluorinated fluids and provides a reference for environmental assessment and risk management of liquid cooling technology in IDC. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00234-3.

15.
J Am Heart Assoc ; 13(13): e9757, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934857

RESUMO

BACKGROUND: Outcomes from cardiopulmonary resuscitation (CPR) following sudden cardiac arrest are suboptimal. Postresuscitation targeted temperature management has been shown to have benefit in subjects with sudden cardiac arrest due to ventricular fibrillation, but there are few data for outcomes from sudden cardiac arrest due to pulseless electrical activity. In addition, intra-CPR cooling is more effective than postresuscitation cooling. Physical cooling is associated with increased protein kinase B activity. Therefore, our group developed a novel peptide, TAT-PHLPP9c, which regulates protein kinase B. We hypothesized that when given during CPR, TAT-PHLPP9c would improve survival and neurologic outcomes following pulseless electrical activity arrest. METHODS AND RESULTS: In 24 female pigs, pulseless electrical activity was induced by inflating balloon catheters in the right coronary and left anterior descending arteries for ≈7 minutes. Advanced life support was initiated. In 12 control animals, epinephrine was given after 1 and 3 minutes. In 12 peptide-treated animals, 7.5 mg/kg TAT-PHLPP9c was also administered at 1 and 3 minutes of CPR. The balloons were removed after 2 minutes of support. Animals were recovered and neurologically scored 24 hours after return of spontaneous circulation. Return of spontaneous circulation was more common in the peptide group, but this difference was not significant (8/12 control versus 12/12 peptide; P=0.093), while fully intact neurologic survival was significantly more common in the peptide group (0/12 control versus 11/12 peptide; P<0.00001). TAT-PHLPP9c significantly increased myocardial nicotinamide adenine dinucleotide levels. CONCLUSIONS: TAT-PHLPP9c resulted in improved survival with full neurologic function after sudden cardiac arrest in a swine model of pulseless electrical activity, and the peptide shows potential as an intra-CPR pharmacologic agent.


Assuntos
Reanimação Cardiopulmonar , Modelos Animais de Doenças , Parada Cardíaca , Animais , Reanimação Cardiopulmonar/métodos , Feminino , Parada Cardíaca/terapia , Parada Cardíaca/fisiopatologia , Parada Cardíaca/tratamento farmacológico , Suínos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Fatores de Tempo
16.
Adv Mater ; : e2400930, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940323

RESUMO

Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high-performance thermal management can be achieved using these eco-friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single-mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual-mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual-mode thermal management on a macro/microscale. The devices use black paint-coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and -11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated.

17.
Int J Biol Macromol ; 275(Pt 1): 133533, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945339

RESUMO

Firefighting clothing is an indispensable protective equipment for firefighters performing rescue activities under extreme heat and fire conditions. However, few bio-based thermal management materials that provide thermal comfort to firefighters in different operational scenarios have been reported. Herein, we present a novel strategy to prepare Janus-type aerogels based on sodium alginate biological macromolecules, consisting of a SiO2 nanoparticle layer and a microencapsulated paraffin@SiO2 phase-change composite layer. A passive radiative cooling and thermal energy storage was integrated into a functional dual-mode material system. Results show that Janus-type aerogel to cool down by 11.5 °C on a hot summer day. Meanwhile, paraffin@SiO2 has a high melting enthalpy of 127.5 J g-1 that effectively buffers temperature rise during the phase-change process. This Janus-type aerogel has ultra-low heat insulation (0.042 W/(m·K)), it can delay approximately 76.6 s to reach second-degree burn time for skin at a radiant heat exposure of 18.4 kW m-2. The work provides an innovative way to develop bio-based thermal management materials, which could enable multi-scenario thermal management for firefighting clothing.

19.
Cryobiology ; 116: 104932, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38925357

RESUMO

Non-permeable disaccharides are widely used as cryoprotectant agents due to their low cytotoxicity, but their protective effect is insufficient when the disaccharides are present only extracellularly. On the other hand, cryoprotectant agent (CPA)-free cryopreservation has been recently achieved by instantaneously inkjet-freezing cells as tiny droplets. However, CPA-free cryopreservation requires skilled handling operations due to instability of the vitreous water without the CPA. In this study, the effectiveness of separately adding two types of disaccharides in inkjet freezing of 3T3 cells was evaluated and the following results were obtained. First, trehalose showed the highest effect at 0.57 M, twice the plasma osmolarity, with a maximum cell viability of over 90 % when freezing 70 pL droplets. However, higher concentrations of trehalose decreased cell viability due to damage caused by dehydration. Similarly, sucrose gave cell viability close to 90 % at 0.57 M with 70 pL droplets, and higher concentrations decreased cell viability. Next, the relationship between minimum trehalose concentrations to prevent intracellular and extracellular ice crystal formation and droplet size was analyzed. The results indicated that trehalose of less than 0.57 M was able to inhibit intracellular ice crystal formation even in the largest droplet used in this study, 450 pL, while trehalose of nearly 0.57 M was required to inhibit extracellular ice crystal formation in the smallest droplet, 70 pL. In other words, the suppression of extracellular ice crystals by the addition of CPA was shown to be crucial in improving the viability of inkjet superflash freezing.

20.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893741

RESUMO

Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels' surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...