Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Case Rep Ophthalmol ; 15(1): 532-541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015239

RESUMO

Introduction: The purpose of this clinical report was to describe an unprecedented case of bilateral pressure-induced stromal keratopathy (PISK) following corneal photorefractive keratectomy, associated with presumed herpetic keratitis, and to present tomographic and biomechanical findings before and after appropriate treatment. Case Presentation: A 33-year-old male patient was referred to our clinic with suspected delayed corneal epithelial healing 3 weeks after an uncomplicated PRK. A central layer of corneal opacity with a presumed fluid-filled interface area was observed upon slit lamp biomicroscopy. Scheimpflug images from the Pentacam® revealed a hyperreflective area beneath the central cornea. Scheimpflug-based corneal tomography, biomechanical assessment using the Pentacam® AXL Wave, and the Corvis ST® were conducted. Goldmann applanation tonometry measured 23/13 mm Hg, while noncontact tonometry intraocular pressure measured with the Corvis ST® (Corvis ST IOPnct) was 40.5/43.5 mm Hg. Treatment with oral valacyclovir, combined with ocular hypotensive therapy, led to a significant reduction in IOP and improved corneal deformation parameters after 1 month. Conclusion: Surgeons should be aware of the inaccuracy of Goldmann applanation tonometry in PISK, which can occur after LASIK or surface ablation.

2.
Front Med (Lausanne) ; 11: 1384694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071083

RESUMO

Purpose: To compare corneal biomechanical properties and intraocular pressure (IOP) measurements in patients who underwent Descemet's stripping with endothelial keratoplasty (DSEK) with those of the follow healthy eyes. Methods: In this retrospective comparative study, a total of 35 eyes of 35 patients who underwent DSEK by a single surgeon from 2015.02 to 2019.12 were enrolled along with their fellow healthy eyes. Corneal biomechanical parameters were assessed at least 3 months post-DSEK using Corneal Visualization Scheimpflug Technology (CST). IOP was measured by CST, Goldmann applanation tonometry (GAT), and MacKay-Marg tonometer. Results: Central corneal thickness (CCT) and stiffness parameter at first applanation (SP-A1) were significantly increased after DSEK when compared to the fellow eyes. In DSEK eyes, biomechanically-corrected intraocular pressure (bIOP) and MacKay-Marg IOP correlated significantly with GAT IOP measurements, with bIOP showed the lowest IOP values. All the IOP values did not correlate with CCT. However, GAT-IOP and MacKay-Marg IOP showed a positive correlation with SP-A1. Conclusion: The corneal stiffness increased after DSEK. Central corneal thickness may have less influence than corneal biomechanics on IOP measurements in eyes after DSEK. Biomechanically-corrected IOP obtained by CST seemed to be lower than other tonometry techniques in DSEK eyes, perhaps because of correction for corneal stiffness, CCT and age.

3.
Diagnostics (Basel) ; 14(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061693

RESUMO

The study aimed to investigate the extended effects and interrelations of corneal biomechanics, corneal optical density (COD), corneal thickness (CT), and intraocular pressure (IOP) following cataract surgery. Sixteen eyes were analyzed prospectively. The Corneal Visualization Scheimpflug Technology (Corvis ST) device assessed corneal biomechanics, while the Pentacam AxL® (Pentacam) measured COD and CT. Postoperative data were collected around six months after surgery, with a subgroup analysis of data at nine months. The Pearson correlation was used to examine the relationship between surgical-induced changes in corneal biomechanics and COD. At six months, significant postoperative differences were observed in various biomechanical indices, including uncorrected IOP (IOPuct) and biomechanics-corrected IOP (bIOP). However, many indices lost statistical significance by the nine-month mark, suggesting the reversibility of postoperative corneal changes. Postoperative COD increased at the anterior layer of the 2-6 mm annulus and incision site. The changes in COD correlated with certain biomechanical indices, including maximal (Max) deformative amplitude (DA) and stiffness parameter (SP). In conclusion, despite significant immediate postoperative changes, corneal biomechanics, COD, and IOP experienced a gradual recovery process following cataract surgery. Clinicians should maintain vigilance for any unusual changes during the short-term observation period to detect abnormalities early.

4.
Int Ophthalmol ; 44(1): 302, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954134

RESUMO

PURPOSE: To compare early changes in the corneal biomechanical parameters after photorefractive keratectomy (PRK) and small incision lenticule extraction (SMILE) and their correlations with corneal shape parameters. METHODS: One hundred twenty four eyes received myopic PRK and SMILE for similar amounts of myopia. Corneal tomography with Pentacam HR, biomechanical parameters using Corvis ST, and Ocular Response Analyzer (ORA) were evaluated before and 2 weeks after surgery. The change in each parameter was compared between groups, while the difference in central corneal thickness and cornea-compensated intraocular pressure measured before and after surgery were considered as covariates. RESULTS: A significant reduction was seen in the corneal stiffness parameter at first applanation, and an increase in deformation amplitude ratio (DAR), and integrated inverse radius (IIR) in both groups after surgery (p < 0.001) Changes in DAR, and IIR were significantly greater in the SMILE than in the PRK group (p < 0.001) Corneal hysteresis (CH) and corneal resistance factor (CRF) decreased in both SMILE and PRK groups after surgery, (p < 0.001) with no statistically significant difference between groups (p > 0.05) Among new Corvis ST parameters, DAR showed a significant correlation with changes in Ambrosio relational thickness in both groups (p < 0.05). CONCLUSIONS: Both techniques caused significant changes in corneal biomechanics in the early postoperative period, with greater elastic changes in the SMILE group compared to the PRK group, likely due to lower tension in the SMILE cap and thinner residual stromal bed in SMILE. There were no differences in viscoelastic changes between them, so the lower CH may reflect the volume of tissue removed.


Assuntos
Córnea , Elasticidade , Miopia , Ceratectomia Fotorrefrativa , Humanos , Ceratectomia Fotorrefrativa/métodos , Miopia/cirurgia , Miopia/fisiopatologia , Córnea/cirurgia , Córnea/fisiopatologia , Córnea/diagnóstico por imagem , Feminino , Masculino , Adulto , Elasticidade/fisiologia , Fenômenos Biomecânicos , Adulto Jovem , Lasers de Excimer/uso terapêutico , Pressão Intraocular/fisiologia , Cirurgia da Córnea a Laser/métodos , Refração Ocular/fisiologia , Topografia da Córnea , Substância Própria/cirurgia , Período Pós-Operatório , Acuidade Visual/fisiologia , Estudos Prospectivos , Seguimentos
5.
Front Bioeng Biotechnol ; 12: 1366408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840667

RESUMO

Purpose: This study aims to investigate the differences in binocular corneal parameters and their interrelation with binocular biometric parameters asymmetry in patients with simple myopic anisometropia, thereby elucidating the influence of myopia process on various corneal parameters. Methods: In this cross-sectional study, 65 patients with anisometropia in monocular myopia were included. They were divided into low anisometropia group: 3.00D<Δ spherical equivalent (SE)≤-1.00D (Δ represents the difference between the two eyes, i.e., myopic data minus emmetropic data) and high anisometropia group: ΔSE ≤ -3.00D. Corneal and ocular biometric parameters were measured using Pentacam, Corvis ST, and IOL Master 700. Statistical analyses focused on the binocular corneal parameters asymmetry, using the contralateral emmetropia as a control. Results: The mean age of participants was 18.5 ± 1.3 years, with the average SE for myopia and emmetropia being -2.93 ± 1.09D and -0.16 ± 0.41D, respectively. The central corneal thickness (CCT), flat keratometry (Kf), keratometry astigmatism (Ka), total corneal aberration (6 mm) (TOA), surface variance index (ISV), vertical asymmetry index (IVA), stress-strain index (SSI), and first applanation stiffness parameter (SPA1) and ambrosia relational thickness-horizontal (ARTh) showed significant differences between anisometropic fellow eyes (p < 0.05). There were significant differences in ΔIVA, Δ the difference between the mean refractive power of the inferior and superior corneas (I-S), Δ deviation value of Belin/Ambrósio enhanced ectasia display (BAD-D), Δ deformation amplitude ratio max (2 mm) (DAR)and Δ tomographic biomechanical index (TBI) (p < 0.05) in two groups. Asymmetry of corneal parameters was correlated with asymmetry of ocular biometric parameters. Anisometropia (ΔSE) was positively correlated with ΔIVA (r = 0.255, p = 0.040), ΔBAD-D (r = 0.360, p = 0.006), and ΔSSI (r = 0.276, p = 0.039) and negatively correlated with ΔDAR (r = -0.329, p = 0.013) in multiple regression analysis. Δ mean keratometry (Km), Δ anterior chamber depth (ACD), and Δ biomechanically corrected intraocular pressure (bIOP) were also associated with binocular corneal differences. Conclusion: Compared to contralateral emmetropia, myopic eyes have thinner corneas and smaller corneal astigmatism. Myopic corneas exhibit relatively more regular surface morphology but are more susceptible to deformation and possess marginally inferior biomechanical properties. In addition, there is a certain correlation between anisometropia and corneal parameter asymmetry, which would be instrumental in predicting the development of myopia.

6.
Ophthalmol Ther ; 13(7): 2023-2035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824471

RESUMO

INTRODUCTION: The study aims to demonstrate and estimate the prevalence of clinical corneal ectasia and keratoconus (KC) in patients with relatively low keratometry (low-K KC). METHODS: In a retrospective, analytical, and non-interventionist study, one eye was randomly selected from 1054 patients from the original Tomographic Biomechanical Index (TBIv1) study and the external validation (from Rio de Janeiro, Brazil, and Milan, Italy clinics). Patients were stratified into three groups. Group 1 included 736 normal patients, and groups 2 and 3 included 318 patients with clinical KC in both eyes, divided into low-K KC (90 patients) and high-K KC (228 patients), respectively. All patients underwent a comprehensive ophthalmological evaluation along with Pentacam and Corvis ST (Oculus, Wetzlar, Germany) examinations. Cases with maximum mean zone 3 mm keratometry (Kmax zone mean 3 mm) lower than 47.6 diopters (D) were considered as low-keratometry keratoconus, and cases with Kmax zone mean 3 mm higher than 47.6 D were regarded as high-keratometry keratoconus. RESULTS: Ninety (28.30%) of the 318 KC group presented ectasia with low-keratometric values (low-Kmax). The average age in the normal group was 39.28 years (range 6.99-90.12), in the low-Kmax KC group it was 37.49 (range 13.35-78.45), and in the high-Kmax KC group it was 34.22 years (range 12.7-80.34). Mean and SD values and median (range), respectively, of some corneal tomographic and biomechanical parameters evaluated from the low-Kmax KC group were as follows: Belin-Ambrósio enhanced ectasia display (BAD-D) 3.79 ± 1.62 and 3.66 (0.83-9.73); Pentacam random forest index (PRFI) 0.78 ± 0.25 and 0.91 (0.05-1); corneal biomechanical index (CBI) 0.58 ± 0.43 and 0.75 (0-1); TBI 0.93 ± 0.17 and 1 (0.35-1); and stiffness parameter at A1 (SP-A1) 86.16 ± 19.62 and 86.05 (42.94-141.66). CONCLUSION: Relatively low keratometry, with a Kmax lower than 47.6 D, can occur in up to 28.30% of clinical keratoconus. These cases have a less severe presentation of the disease. Future studies involving larger populations and prospective designs are necessary to confirm the prevalence of keratoconus with low keratometry and define prognostic factors in such cases.

7.
Int J Ophthalmol ; 17(3): 596-602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721520

RESUMO

AIM: To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty (SLAK) with corneal crosslinking (CXL) on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis (FS-LASIK). METHODS: A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo. The lenticules were collected from patients undertaking small incision lenticule extraction (SMILE) for the correction of myopia. Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength. RESULTS: All surgeries were conducted successfully with no significant complications. Their best corrected visual acuity (BCVA) ranged from 0.05 to 0.8-2 before surgery. The pre-operational total corneal thickness ranged from 345-404 µm and maximum keratometry (Kmax) ranged from 50.8 to 86.3. After the combination surgery, both the corneal keratometry (range 55.9 to 92.8) and total corneal thickness (range 413-482 µm) significantly increased. Four out of 5 patients had improvement of corneal biomechanical parameters (reflected by stiffness parameter A1 in Corvis ST). However, 3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze. Despite the onset of corneal edema right after SLAK, the corneal topography and thickness generally stabilized after 3mo. CONCLUSION: SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia. Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.

8.
Bioengineering (Basel) ; 11(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790289

RESUMO

BACKGROUND: To evaluate the corneal biomechanics of stable keratoconus suspects (Stable-KCS) at 1-year follow-up and compare them with those of subclinical keratoconus (SKC). METHODS: This prospective case-control study included the eyes of 144 patients. Biomechanical and tomographic parameters were recorded (Corvis ST and Pentacam). Patients without clinical signs of keratoconus in both eyes but suspicious tomography findings were included in the Stable-KCS group (n = 72). Longitudinal follow-up was used to evaluate Stable-KCS changes. Unilateral keratoconus contralateral eyes with suspicious tomography were included in the SKC group (n = 72). T-tests and non-parametric tests were used for comparison. Multivariate general linear models were used to adjust for confounding factors for further analysis. Receiver operating characteristic (ROC) curves were used to analyze the distinguishability. RESULTS: The biomechanical and tomographic parameters of Stable-KCS showed no progression during the follow-up time (13.19 ± 2.41 months, p > 0.05). Fifteen biomechanical parameters and the Stress-Strain Index (SSI) differed between the two groups (p < 0.016). The A1 dArc length showed the strongest distinguishing ability (area under the ROC = 0.888) between Stable-KCS and SKC, with 90.28% sensitivity and 77.78% specificity at the cut-off value of -0.0175. CONCLUSIONS: The A1 dArc length could distinguish between Stable-KCS and SKC, indicating the need to focus on changes in the A1 dArc length for keratoconus suspects during the follow-up period. Although both have abnormalities on tomography, the corneal biomechanics and SSI of Stable-KCS were stronger than those of SKC, which may explain the lack of progression of Stable-KCS.

9.
Curr Eye Res ; 49(8): 798-802, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629736

RESUMO

PURPOSE: To investigate the percent change in central corneal thickness (%ΔCCT) during air-puff-induced deformation as an indicator of corneal biomechanical response. METHODS: Forty ex vivo human eyes from forty donors were imaged using the CorVis ST at experimentally controlled intraocular pressure (IOP) of 10, 20, 30, and 40 mmHg, followed by uniaxial strip testing to calculate tensile modulus. The CorVis ST research software tracked the anterior and posterior cornea edges and determined the dynamic corneal response (DCR) parameters. Eyes were excluded if image quality or posterior tracking issues were present. Custom algorithms were used to calculate CCT during deformation using a ray-tracing method to correct for Scheimpflug and optical distortion within each image. Correlation and stepwise regression analyses between the shape-related DCR parameters and %ΔCCT were conducted. A mixed model analysis was performed to test the effect of IOP and the strongest significant predictors of the stepwise regression on %ΔCCT. The significance threshold was set to p < 0.05. RESULTS: Thirty eyes were ultimately analyzed and CCT increased significantly from the pre-deformation state to the highest concavity state at each IOP level (p < 0.001). IOP and multiple shape DCRs were found to be significantly related to %ΔCCT (p < 0.0001). The strongest predictor of %ΔCCT was integrated inverse radius (IIR) (p < 0.0001; partial R2 = 0.4772) with no other parameter having a partial R2 value greater than 0.04. The mixed model analysis showed that IIR was the sole predictor (p = 0.0098) and IOP was no longer significant as a single predictor. However, the interaction of IIR with IOP (p = 0.0023) had a significant effect on %ΔCCT. CONCLUSION: Percent change in CCT is influenced by corneal stiffness as indicated by the significant relationship with IIR. The %ΔCCT may be a potential biomarker for determining differences in corneal deformation response with corneal diseases.


Assuntos
Córnea , Pressão Intraocular , Humanos , Córnea/fisiologia , Córnea/diagnóstico por imagem , Pressão Intraocular/fisiologia , Masculino , Feminino , Fenômenos Biomecânicos/fisiologia , Pessoa de Meia-Idade , Idoso , Adulto , Elasticidade/fisiologia , Doadores de Tecidos , Paquimetria Corneana , Tonometria Ocular , Idoso de 80 Anos ou mais
10.
Curr Eye Res ; 49(8): 792-797, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587365

RESUMO

PURPOSE: The aim of this study was to evaluate the effects of different stages of diabetic retinopathy (DR) and metabolic control of blood glucose levels on corneal biomechanical parameters. METHODS: Diabetic patients were categorized into three groups: no DR group, nonproliferative DR (NPDR) group, and proliferative DR (PDR) group. Of the 141 eyes examined, 40 belonged to the control group, 34 to no DR group, 34 to NPDR group, and 33 to PDR group. Using an Ocular Response Analyzer to measure corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated IOP (IOPcc). IOP was assessed using a Tono-Pen, while central corneal thickness (CCT) was determined using an ultrasonic pachymeter. HbA1c levels were also recorded. We conducted comparisons among these groups across biomechanical parameters and IOP (tonopen), and CCT, while also investigating the impact of HbA1c levels on these parameters. RESULTS: Among any groups show a statistically significant difference in CCT, IOP (tonopen), CH, CRF, IOPg, and IOPcc. In diabetic patients, CRF, CTT, and IOPg values were significantly higher in those with HbA1c levels ≥ 7 mg/dl than in those with HbA1c levels < 7 mg/dl (p = 0.009, p = 0.013, p = 0.038), respectively, while there was no statistically significant difference in IOPcc, CH, and IOP (tonopen). Linear regression analysis showed that CH was positively associated with CCT (p < 0.001) and negatively associated with IOPcc (p < 0.001), while CRF was positively associated with CCT (p < 0.001), HbA1c (p < 0.05), and negatively associated with diagnosis of DR (p < 0.05). CONCLUSION: This study underscores the influence of metabolic control, as reflected by HbA1c levels, on corneal biomechanical parameters in diabetic patients, emphasizing the importance of monitoring and managing glycemic control in this population.


Assuntos
Glicemia , Córnea , Retinopatia Diabética , Hemoglobinas Glicadas , Pressão Intraocular , Tonometria Ocular , Humanos , Córnea/fisiopatologia , Pressão Intraocular/fisiologia , Masculino , Glicemia/metabolismo , Feminino , Retinopatia Diabética/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/sangue , Pessoa de Meia-Idade , Hemoglobinas Glicadas/metabolismo , Fenômenos Biomecânicos , Elasticidade/fisiologia , Idoso , Adulto , Estudos Transversais
11.
Ophthalmic Physiol Opt ; 44(5): 977-986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563586

RESUMO

INTRODUCTION: Research assuming linearity has concluded that corneal biomechanics are compromised in high myopia. We investigated whether this assumption was appropriate and re-examined these associations across different levels of myopia. METHODS: Myopic (spherical equivalent refraction, SER ≤ -0.50 D) eyes of 10,488 adults aged 40-69 years without any history of systemic and ocular conditions were identified in the UK Biobank. Ordinary least squares (OLS) regression was employed to test the linear association between corneal hysteresis (CH) or corneal resistance factor (CRF), separately, and SER while controlling for age, sex, corneal radius and intraocular pressure. Quantile regression (QR) was used to test the same set of associations across 49 equally spaced conditional quantiles of SER. RESULTS: In OLS regression, each standard deviation (SD) decrease in CH and CRF was associated with 0.08 D (95% CI: 0.04-0.12; p < 0.001) and 0.10 D (95% CI: 0.04-0.15; p < 0.001) higher myopia, respectively. However, residual analysis indicated that the linearity assumption was violated. QR revealed no evidence of a significant association between CH/CRF and SER in low myopia, but a significant (p < 0.05) positive association became evident from -2.78 D (0.06 and 0.08 D higher myopia per SD decrease in CH and CRF). The magnitude of association increased exponentially with increasing myopia: in the -5.03 D quantile, every SD decrease in CH and CRF was associated with 0.17 D (95% CI: 0.08-0.25; p < 0.001) and 0.21 D (95% CI: 0.10-0.31; p < 0.001) higher myopia. In the -8.63 D quantile, this further increased to 0.54 D (95% CI: 0.33-0.76; p < 0.001) and 0.67 D (95% CI: 0.41-0.93; p < 0.001) higher myopia per SD decrease in CH and CRF. CONCLUSIONS: Corneal biomechanics appeared compromised from around -3.00 D. These changes were observed to be exponential with increasing myopia.


Assuntos
Córnea , Pressão Intraocular , Refração Ocular , Humanos , Pessoa de Meia-Idade , Córnea/fisiopatologia , Feminino , Masculino , Adulto , Idoso , Fenômenos Biomecânicos , Refração Ocular/fisiologia , Pressão Intraocular/fisiologia , Miopia/fisiopatologia , Miopia/epidemiologia , Elasticidade , Miopia Degenerativa/fisiopatologia
12.
Cont Lens Anterior Eye ; 47(3): 102134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38472014

RESUMO

PURPOSE: To explore the biomechanical proteins different between low myopic corneas and moderate to high myopic corneas. METHODS: A total of 27 myopic corneas were used for the Tandem Mass Tag (TMT) proteomics analysis. Differentially expressed proteins (DEPs) were clustered with fold changes > 1.20 or < 0.83 and p < 0.05. Proteins and Proteins Interactions (PPIs) were conducted to find hub proteins; Uniprot database was to screen proteins with biomechanical functions, and Parallel Reaction Monitoring (PRM) was performed to verify the TMT results. Pearson analysis was used to reveal the correlations between myopic degrees and biomechanical proteins. The Immunofluorescence (IF) staining was used to observe the protein distributions. RESULTS: In total, 34 DEPs were observed between moderate myopic corneas and low myopic corneas; 103 DEPs were observed between high myopic corneas and low myopic corneas, 20 proteins overlapped. The PPIs analysis showed keratin 2, keratins 10 and PRSS1 were hub proteins. The Uniprot function analysis suggested keratin 2 and keratin 10 exhibited biomechanical functions. The PRM demonstrated keratin 2 and keratin 10 levels were significantly lower in moderate and high myopic corneas, which was consistent with the TMT proteomics results. IF staining also demonstrated keratin 2 and keratin 10 were less distributed in moderate and high myopic corneas than in low myopic corneas. CONCLUSIONS: The levels of biomechanical proteins keratin 2 and keratin 10 are significantly lower in moderate and high myopic corneas than in low myopic corneas.


Assuntos
Córnea , Proteínas do Olho , Miopia , Proteômica , Humanos , Feminino , Miopia/metabolismo , Miopia/fisiopatologia , Córnea/metabolismo , Masculino , Adulto , Fenômenos Biomecânicos , Proteínas do Olho/metabolismo , Adulto Jovem , Pessoa de Meia-Idade
13.
Int Ophthalmol ; 44(1): 148, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502381

RESUMO

PURPOSE: To investigate corneal biomechanical properties and its associations with the severity of lens dislocation in patients with Marfan syndrome. METHODS: A total of 30 patients with Marfan syndrome and 30 age-, sex- and axial length (AL)-matched controls were recruited. Corneal biomechanical parameters of both groups were measured by CorVis ST and were compared between groups. Potential associations between corneal biomechanical parameters and severity of lens dislocation were also investigated. RESULTS: Lower applanation 1 velocity (A1V) (0.13 ± 0.004 vs. 0.15 ± 0.003, P = 0.016), shorter applanation 2 time (A2T)(22.64 ± 0.11 vs. 22.94 ± 0.11, P = 0.013), longer peak distance (PD) (5.03 ± 0.07 vs. 4.81 ± 0.05, P = 0.008), longer radius (R) of highest concavity (7.44 ± 0.16 vs. 6.93 ± 0.14, P = 0.012), greater Ambrosio relational thickness horizontal (ARTh) (603 ± 20 vs. 498 ± 12, P < 0.001), and integrated radius (IR) (8.32 ± 0.25 vs. 8.95 ± 0.21, P = 0.033) were detected among Marfan eyes compared with controls (all P < 0.05). Marfan individuals with more severe lens dislocation tended to have increased stiffness parameter as longer A1T, slower A1V, shorter A2T, slower application 2 velocity (A2V), smaller PD and smaller Distance Amplitude (DA) (P < 0.05). CONCLUSION: Marfan patients were detected to have increased corneal stiffness compared with normal subjects. Corneal biomechanical parameters were significantly associated with the severity of lens dislocation in Marfan patients.


Assuntos
Subluxação do Cristalino , Síndrome de Marfan , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Pressão Intraocular , Fenômenos Biomecânicos , Córnea , Subluxação do Cristalino/diagnóstico , Subluxação do Cristalino/etiologia , Tonometria Ocular
14.
Comput Biol Med ; 172: 108286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493602

RESUMO

PURPOSE: To ascertain whether the integration of raw Corvis ST data with an end-to-end CNN can enhance the diagnosis of keratoconus (KC). METHOD: The Corvis ST is a non-contact device for in vivo measurement of corneal biomechanics. The CorNet was trained and validated on a dataset consisting of 1786 Corvis ST raw data from 1112 normal eyes and 674 KC eyes. Each raw data consists of the anterior and posterior corneal surface elevation during air-puff induced dynamic deformation. The architecture of CorNet utilizes four ResNet-inspired convolutional structures that employ 1 × 1 convolution in identity mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the attention allocation to diagnostic areas. Discriminative performance was assessed using metrics including the AUC of ROC curve, sensitivity, specificity, precision, accuracy, and F1 score. RESULTS: CorNet demonstrated outstanding performance in distinguishing KC from normal eyes, achieving an AUC of 0.971 (sensitivity: 92.49%, specificity: 91.54%) in the validation set, outperforming the best existing Corvis ST parameters, namely the Corvis Biomechanical Index (CBI) with an AUC of 0.947, and its updated version for Chinese populations (cCBI) with an AUC of 0.963. Though the ROC curve analysis showed no significant difference between CorNet and cCBI (p = 0.295), it indicated a notable difference between CorNet and CBI (p = 0.011). The Grad-CAM visualizations highlighted the significance of corneal deformation data during the loading phase rather than the unloading phase for KC diagnosis. CONCLUSION: This study proposed an end-to-end CNN approach utilizing raw biomechanical data by Corvis ST for KC detection, showing effectiveness comparable to or surpassing existing parameters provided by Corvis ST. The CorNet, autonomously learning comprehensive temporal and spatial features, demonstrated a promising performance for advancing KC diagnosis in ophthalmology.


Assuntos
Ceratocone , Humanos , Ceratocone/diagnóstico , Topografia da Córnea , Córnea/diagnóstico por imagem , Curva ROC , Fenômenos Biomecânicos
15.
Bioengineering (Basel) ; 11(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534495

RESUMO

Keratoconus (KC), a leading cause of vision impairment, has an unclear aetiology. This study used Mendelian randomization (MR) to explore the causal links between various factors (smoking, asthma, Down syndrome, inflammatory bowel disease, atopic dermatitis, and serum 25-hydroxyvitamin D levels) and KC. A two-sample MR design, grounded in genome-wide association study (GWAS) summary statistics, was adopted using data from FinnGen, UK Biobank, and other GWAS-related articles. The inverse-variance weighted (IVW) method was employed, complemented by the Wald ratio method for factors with only one single-nucleotide polymorphism (SNP). Sensitivity and stability were assessed through Cochrane's Q test, the MR-Egger intercept test, MR-PRESSO outlier test, and the leave-one-out analysis. The IVW results for the ORA (Ocular Response Analyzer) biomechanical parameters indicated significant associations between tobacco smoking (CH: p < 0.001; CRF: p = 0.009) and inflammatory bowel disease (CH: p = 0.032; CRF: p = 0.001) and corneal biomechanics. The Wald ratio method showed tobacco smoking was associated with a lower risk of KC (p = 0.024). Conversely, asthma (p = 0.009), atopic dermatitis (p = 0.012), inflammatory bowel disease (p = 0.017), and serum 25-hydroxyvitamin D levels (p = 0.039) were associated with a higher risk of KC by IVW, and the same applied to Down syndrome (p = 0.004) using the Wald ratio. These results underscore the role of corneal biomechanics as potential mediators in KC risk, warranting further investigation using Corvis ST and Brillouin microscopy. The findings emphasise the importance of timely screening for specific populations in KC prevention and management.

16.
Clin Ophthalmol ; 18: 901-912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529005

RESUMO

Purpose: To characterize corneal biomechanical properties using the CORVIS-ST device in myopic individuals. Methods: This prospective cross-sectional study included patients with myopia. Our study included 154 eyes of 154 myopic patients aged between 18 and 40 years, with stable refraction for at least 2 years. A full ophthalmological examination and corneal tomography were performed using a Pentacam HR device. Corneal biomechanical parameters were assessed using the CORVIS-ST device in mild, moderate, severe, and extreme myopia groups. Results: Statistically significant differences were observed in the DA ratio (p = 0.033), SP-A (p=0.009), CBI (p=0.041), SSI (p=0.000), and Peak distance (p = 0.032). In correlation with different Corvis ST biomechanical variables, SE was found to be correlated with DA ratio(r=-0.191, p=0.018), SP-A(r=0.199, p=0.013) and SSI(r=-0.336, p=0.000), while in multiple regression analysis, SE was found to be independently correlated with SSI and peak distance(p=0.036,0.038 respectively) while the grade of myopia was found to be independently correlated with SP-A(p=0.034). Conclusion: SSI, Peak distance, and SP-A were independently related to SE and myopia grade, confirming the hypothesis that eyes with higher myopia are more deformable and less stress resistant.

17.
J Fr Ophtalmol ; 47(4): 104096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382278

RESUMO

PURPOSE: To describe the biometric and corneal characteristics of patients with Marfan Syndrome (MFS) and ectopia lentis. STUDY DESIGN: Observational, descriptive, prospective study. Subjects Individuals with MFS with ectopia lentis (EL). METHODS: Fourty-four eyes of 23 patients underwent Scheimpflug analysis using the Pentacam (Oculus, Wetzlar, Germany), axial length (AL) using the IOL master 700 (Carl Zeiss AG, Oberkochen, Germany), endothelial cell count (ECC) using the CEM-350 (NIDEK, Maihama, Japan) and corneal biomechanics evaluation with the Ocular Response Analyzer: ORA (Reichert Ophthalmic Instruments, Buffalo, New York, USA) and Corvis (Oculus, Wetzlar, Germany). Statistical analysis was performed using IBM SPSS Statistics 25.0. RESULTS: The direction of lens subluxation was most frequently supero-nasal 40.9% (18/44). Mean keratometry (Km) was 40.22±1.76 Diopters (D); mean corneal astigmatism was 1.68±0.83 D; total corneal aberrometric root mean square (RMS) was 2.237±0.795µm; higher-order aberrations (HOAs) RMS were 0.576±0.272µm; mean AL was 25.63±3.65mm; mean ECC was 3315±459cell/mm2; mean CBI was 0.13±0.24, mean TBI was 0.31±0.25, mean posterior elevation was 4.3±4.5µm; mean total corneal densitometry was 16.0±2.14 grayscale units (GSU). CONCLUSION: Increased axial length, flatter and thicker corneas with higher regular astigmatism, normal densitometry, normal corneal biomechanical indices and normal posterior elevation were observed in Marfan patients with EL.


Assuntos
Astigmatismo , Ectopia do Cristalino , Síndrome de Marfan , Humanos , Biometria , Córnea/diagnóstico por imagem , Ectopia do Cristalino/diagnóstico , Ectopia do Cristalino/epidemiologia , Ectopia do Cristalino/etiologia , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Estudos Prospectivos , Acuidade Visual
18.
Int Ophthalmol ; 44(1): 22, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324098

RESUMO

PURPOSE: To compare the corneal biomechanical parameters in healthy corneas with symmetric and asymmetric bow-tie topographic patterns. METHODS: In this cross-sectional study, 144 eyes were divided based on inferior-superior asymmetry value (I-S) into symmetric (zero I-S: - 0.50 to + 0.50 D) and asymmetric bow-tie topographic patterns with inferior (positive I-S: + 0.51 to + 1.4 D) or superior (negative I-S: - 2.5 to - 0.51 D) steepening. The biomechanical assessment was performed using Corvis ST and ocular response analyzer (ORA). A general linear model univariate analysis was used to compare the parameters, while the central corneal thickness, intraocular pressure, and age were considered covariates. RESULTS: Only the peak distance (PD) at the highest concavity phase (P = 0.007) and tomographic biomechanical index (TBI, P = 0.001) showed statistically significant differences between the three groups. For TBI, this difference was statistically significant between the positive I-S group separately with the zero I-S group (P < 0.001), and with the negative I-S group (P = 0.022). For PD, the significant difference was between the negative I-S group separately with zero I-S (P = 0.019), and positive I-S groups (P = 0.018). There was a statistically significant correlation between the I-S value with PD (r = 0.281, P = 0.001) and TBI (r = 0.170, P = 0.044). CONCLUSIONS: Most corneal biomechanical parameters are not statistically significant compared to the zero I-S group. However, superior steepening is associated with a stiffer response based solely on the shorter PD values seen in this group, and the group with the inferior steepening shows the highest or more suspicious values based on TBI.


Assuntos
Córnea , Nível de Saúde , Humanos , Estudos Transversais , Pressão Intraocular , Tonometria Ocular
19.
Clin Ophthalmol ; 18: 545-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410632

RESUMO

Purpose: To address if corneal biomechanical behavior has a predictive value for the presence of glaucomatous optical neuropathy in eyes with high myopia. Patients and Methods: This observational cross-sectional study included 209 eyes from 108 consecutive patients, divided into four groups: high myopia and primary open-angle glaucoma (POAG) - HMG, n = 53; high myopia without POAG - HMNG, n = 53; non-myopic with POAG - POAG, n = 50; non-myopic and non-POAG- NMNG, n = 53. Biomechanical assessment was made through a Scheimpflug-camera-based technology. Receiver operating characteristic curves were made for the discrimination between groups. Multivariable logistic regression models were performed to address the predictive value of corneal biomechanics for the presence of glaucoma. Results: Areas Under the Receiver Operating Characteristic (AUROCs) above 0.6 were found in 6 parameters applied to discriminate between HMG and HMNG and six parameters to discriminate between POAG and NMNG. The biomechanical models with the highest power of prediction for the presence of glaucoma included 5 parameters with an AUROC of 0.947 for eyes with high myopia and 6 parameters with an AUROC of 0.857 for non-myopic eyes. In the final model, including all eyes, and adjusted for the presence of high myopia, the highest power of prediction for the presence of glaucoma was achieved including eight biomechanical parameters, with an AUROC of 0.917. Conclusion: Corneal biomechanics demonstrated differences in eyes with glaucoma and mainly in myopic eyes. A biomechanical model based on multivariable logistic regression analysis and adjusted for high myopia was built, with an overall probability of 91.7% for the correct prediction of glaucomatous damage.

20.
Biomimetics (Basel) ; 9(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392119

RESUMO

Implementing in silico corneal biomechanical models for surgery applications can be boosted by developing patient-specific finite element models adapted to clinical requirements and optimized to reduce computational times. This research proposes a novel corneal multizone-based finite element model with octants and circumferential zones of clinical interest for material definition. The proposed model was applied to four patient-specific physiological geometries of keratoconus-affected corneas. Free-stress geometries were calculated by two iterative methods, the displacements and prestress methods, and the influence of two boundary conditions: embedded and pivoting. The results showed that the displacements, stress and strain fields differed for the stress-free geometry but were similar and strongly depended on the boundary conditions for the estimated physiological geometry when considering both iterative methods. The comparison between the embedded and pivoting boundary conditions showed bigger differences in the posterior limbus zone, which remained closer in the central zone. The computational calculation times for the stress-free geometries were evaluated. The results revealed that the computational time was prolonged with disease severity, and the displacements method was faster in all the analyzed cases. Computational times can be reduced with multicore parallel calculation, which offers the possibility of applying patient-specific finite element models in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...