RESUMO
Neutralizing antibody (nAb) responses against SARS-CoV-2 variants after inactivated virus vaccine (CoronaVac) in kidney transplant recipients (KTRs) with or without SARS-CoV-2 infection history remains unclear. We aimed to evaluate the neutralizing antibody responses against emerging SARS-CoV-2 variants after two doses of CoronaVac in these patients. 22.2% of participants had hybrid immunity. Anti-spike IgG antibodies were evidenced in 44% of the patients. nAbs against B.1.111, Mu, and Omicron were detected in 28.5%, 17.9%, and 21.4% of naïve KTRs, respectively. Furthermore, nearly 100% of KTRs with hybrid immunity had nAbs against the variants evaluated. Thus, a significant proportion of infection-naïve KTRs had no detectable nAb titers against Mu and Omicron variants after two doses of the CoronaVac vaccine. However, the nAb titers were significantly higher in patients with hybrid immunity, and it was no association between the immunosuppressive regimen and the seropositivity rate of anti-SARS-CoV-2 neutralizing antibodies. Therefore, hybrid KTRs are protected against COVID-19 by emerging variants able to escape from vaccine-elicited nAbs such as Mu and Omicron.
RESUMO
OBJECTIVES: The National Vaccination Plan against SARS-CoV-2/COVID-19 was launched by the Ministry of Health and Social Protection on 14 February 2021. The main objective of this study was to evaluate the effectiveness of the CoronaVac in preventing the three clinical outcomes of infection, hospitalisation, or death, in a real-world scenario. DESIGN: This was a population-based retrospective dynamic cohort study using a multivariate Cox model to calculate hazard ratios to estimate vaccine effectiveness from 17 February 2021 to 30 June 2022. The data were collected from surveillance systems for 12 months for each individual. Four cities were selected on the basis of the reliability of their data bases. RESULTS: The rates of CoronaVac effectiveness were 32% (95% confidence interval [CI] 31-33) for preventing infection, 55% (95% CI 54-56) for hospitalisation, and 90% (95% CI 89-90) for death, at the end of follow-up. These findings were more consistent during the first 4 months. Compared with the unvaccinated group, homologous booster doses appeared to increase effectiveness in preventing hospitalisation, whereas heterologous booster doses increased protection for both hospitalisation and death. Booster doses did not improve effectiveness among those already vaccinated with CoronaVac, even when they received heterologous boosters. CONCLUSIONS: CoronaVac demonstrated effectiveness in preventing death and hospitalisation during the first year of follow-up, but its effectiveness in preventing infection was lower, decreasing rapidly after the first 4 months of follow-up. The effectiveness was higher among children aged between 3 and 12 years, and among adults aged ≥60 years. Booster doses did not improve effectiveness among those already vaccinated with CoronaVac.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , Humanos , Colômbia/epidemiologia , Estudos Retrospectivos , Masculino , COVID-19/prevenção & controle , COVID-19/epidemiologia , Feminino , Pessoa de Meia-Idade , Adulto , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Adolescente , Hospitalização/estatística & dados numéricos , Adulto Jovem , Idoso , SARS-CoV-2/imunologia , Criança , Eficácia de Vacinas , Cidades , Pré-Escolar , Vacinação , Lactente , Modelos de Riscos Proporcionais , Vacinas de Produtos InativadosRESUMO
The SARS-CoV-2 Omicron variant and its sublineages continue to cause COVID-19-associated pediatric hospitalizations, severe disease, and death globally. BNT162b2 and CoronaVac are the main vaccines used in Chile. Much less is known about the Wuhan-Hu-1 strain-based vaccines in the pediatric population compared to adults. Given the worldwide need for booster vaccinations to stimulate the immune response against new Omicron variants of SARS-CoV-2, we characterized the humoral and cellular immune response against Omicron variant BA.1 in a pediatric cohort aged 10 to 16 years who received heterologous vaccination based on two doses of CoronaVac, two doses of CoronaVac (2x) plus one booster dose of BNT162b2 [CoronaVac(2x) + BNT162b2 (1x)], two doses of CoronaVac plus two booster doses of BNT162b2 [CoronaVac(2x) + BNT162b2 (2x)], and three doses of BNT162b2. We observed that the [CoronaVac(2x) + BNT162b2 (2x)] vaccination showed higher anti-S1 and neutralizing antibody titers and CD4 and CD8 T cell immunity specific to the Omicron variant compared to immunization with two doses of CoronaVac alone. Furthermore, from all groups tested, immunity against Omicron was highest in individuals who received three doses of BNT162b2. We conclude that booster vaccination with BNT162b2, compared to two doses of CoronaVac alone, induces a greater protective immunity.
RESUMO
Global investment in developing COVID-19 vaccines has been substantial, but vaccine hesitancy has emerged due to misinformation. Concerns about adverse events, vaccine shortages, dosing confusion, mixing vaccines, and access issues contribute to hesitancy. Initially, the WHO recommended homologous vaccination (same vaccine for both doses), but evolving factors led to consideration of heterologous vaccination (different vaccines). The study compared reactogenicity and antibody response for both viral protein spike (S) and nucleocapsid (N) in 205 participants who received three vaccination regimens: same vaccine for all doses (Pfizer), two initial doses of the same vaccine (CoronaVac or AstraZeneca), and a Pfizer booster. ChAdOx1 and BNT162b2 vaccines were the most reactogenic vaccines, while CoronaVac vaccine was the least. ChAdOx1 and BNT162b2 achieved 100% of S-IgG seropositivity with one dose, while CoronaVac required two doses, emphasizing the importance of the second dose in achieving complete immunization across the population with different vaccine regimes. Pfizer recipients showed the highest S-IgG antibody titers, followed by AstraZeneca recipients, both after the first and second doses. A third vaccine dose was essential to boost the S-IgG antibodies and equalize the antibody levels among the different vaccine schedules. CoronaVac induced N-IgG antibodies, while in the Pfizer and AstraZeneca groups, they were induced by a natural infection, reinforcing the role of N protein as a biomarker of infection.
Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Esquemas de Imunização , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Imunização Secundária , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/efeitos adversosRESUMO
Several technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: BNT162b2 (group 1; 22) and ChAdOx1 (group 2; 18). Everyone received BNT162b2 in the first booster while in the second booster CoronaVac, Ad26.COV2.S, or BNT162b2. Blood samples were collected from 2021 to 2023 to analyze specific RBD (ELISA) and neutralizing antibodies (PRNT50). We observed a progressive increase in anti-RBD and neutralizing antibodies in each subsequent dose, remaining at high titers until the end of follow-up. Group 1 had higher anti-RBD antibody titers than group 2 after beginning the primary regimen, with significant differences after the 2nd and 3rd doses. Group 2 showed a more expressive increase after the first booster with BNT162B2 (heterologous booster). Group 2 also presented high levels of neutralizing antibodies against the Gamma and Delta variants until five months after the second booster. In conclusion, the circulating levels of anti-RBD and neutralizing antibodies against the two variants of SARS-CoV-2 were durable even five months after the 4th dose, suggesting that periodic booster vaccinations (homologous or heterologous) induced long-lasting immunity.
RESUMO
Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas/imunologia , Citocinas/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Vacinação , SeguimentosRESUMO
INTRODUCTION: Although the adaptive immune responses to the CoronaVac vaccine are known, their dynamics in indigenous communities remain unclear. In this study, we assessed the humoral and cellular immune responses to CoronaVac (Sinovac Biotech Life Sciences, 2021 NCT05225285, Beijing, China), in immunized Brazilian indigenous individuals. METHODS: We conducted a prospective cohort study on indigenous Brazilian people between February 2021 and June 2021. Analyses of immune responses were carried out before (T1) and after a vaccination schedule was completed (T2). Demographic data were collected using a questionnaire. RESULTS: We initially included 328 patients; among them, 120 (36.6%) had no SARS-CoV-2 antibodies. Peripheral blood mononuclear cells (PBMCs) were collected from 106 patients during follow-up visits, of which 91 samples were analyzed by immunophenotyping assay to detect SARS-CoV-2-specific memory T-cell response. Post-vaccination, the levels of memory B-cells and Natural Killer T-lymphocytes increased. Bororó village residents, females, and Terena ethnic group members had higher levels of anti-spike IgG antibodies post-vaccination, whereas alcohol and tobacco users had lower concentrations. CONCLUSIONS: To our best knowledge, this was the first comprehensive assessment of antibody and T-cell responses against CoronaVac vaccination in indigenous patients. Our findings showed that antibody response and T-cell immunity against SARS-CoV-2 were present in most patients following the vaccination schedule.
RESUMO
Introduction: The control of the COVID-19 epidemic has been focused on the development of vaccines against SARS-CoV-2. All developed vaccines have reported safety and efficacy results in preventing infection and its consequences, although the quality of evidence varies depending on the vaccine considered. Different methodological designs have been used for their evaluation, which can influence our understanding of the effects of these interventions. CoronaVac is an inactivated vaccine, and it has been assessed in various studies, including clinical trials and observational studies. Given these differences, our objective was to explore the published information to answer the question: how has the efficacy/effectiveness and safety of CoronaVac been evaluated in different studies? This is to identify potential gaps and challenges to be addressed in understanding its effect. Methods: A scoping review was carried out following the methodology proposed by the Joanna Briggs Institute, which included studies carried out in humans as of 2020, corresponding to systematic reviews, clinical trials, analytical or descriptive observational studies, in which the effectiveness and/or safety of vaccines for COVID19 were evaluated or described. There were no age restrictions for the study participants. Results: The efficacy/effectiveness and safety of this vaccine was assessed through 113 studies. Nineteen corresponded to experimental studies, 7 of Phase II, 5 of Phase IV, and 4 were clinical trials with random assignment. Although some clinical trials with random assignment have been carried out, these have limitations in terms of feasibility, follow-up times, and with this, the possibility of evaluating safety outcomes that occur with low frequencies. Not all studies have used homogeneous methods of analysis. Both the prevention of infection, and the prevention of outcomes such as hospitalization or death, have been valued through similar outcomes, but some through multivariate analysis of dependencies, and others through analysis that try to infer causally through different control methods of confounding. Conclusion: Published information on the evaluation of the efficacy/effectiveness and safety of the CoronaVac is abundant. However, there are differences in terms of vaccine application schedules, population definition, outcomes evaluated, follow-up times, and safety assessment, as well as non-standardization in the reporting of results, which may hinder the generalizability of the findings. It is important to generate meetings and consensus strategies for the methods and reporting of this type of studies, which will allow to reduce the heterogeneity in their presentation and a better understanding of the effect of these vaccines.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2 , Vacinação , Eficácia de Vacinas , Vacinas de Produtos InativadosRESUMO
Introduction: Vaccines are essential for the prevention and control of several diseases, indeed, monitoring the immune response generated by vaccines is crucial. The immune response generated by vaccination against SARS-CoV-2 in children and adolescents is not well defined regarding to the intensity and medium to long-term duration of a protective immune response, which may point out the need of booster doses and might support the decisions in public health. Objective: The study aims to evaluate the immunogenicity and safety of inactivated SARS-CoV-2 vaccine (CoronaVac) in a two-dose primary protocol in children and adolescent aging from 3 to 17 years old in Brazil. Methods: Participants were invited to participate in the research at two public healthcare centers located in Serrana (São Paulo) and Belo Horizonte (Minas Gerais), Brazil. Participants underwent medical interviews to gather their medical history, including COVID-19 history and medical records. Physical exams were conducted, including weight, blood pressure, temperature, and pulse rate measurements. Blood samples were obtained from the participants before vaccination, 1 month after the first dose, and 1, 3, and 6 months after the second dose and were followed by a virtual platform for monitoring post-vaccination reactions and symptoms of COVID-19. SARS-CoV-2 genome from Swab samples of COVID-19 positive individuals were sequenced by NGS. Total antibodies were measured by ELISA and neutralizing antibodies to B.1 lineage and Omicron variant (BA.1) quantified by PRNT and VNT. The cellular immune response was evaluated by flow cytometry by the quantification of systemic soluble immune mediators. Results: The follow-up of 640 participants showed that the CoronaVac vaccine (Sinovac/Butantan Institute) was able to significantly induce the production of total IgG antibodies to SARS-CoV-2 and the production of neutralizing antibodies to B.1 lineage and Omicron variant. In addition, a robust cellular immune response was observed with wide release of pro-inflammatory and regulatory mediators in the early post-immunization moments. Adverse events recorded so far have been mild and transient except for seven serious adverse events reported on VigiMed. Conclusions: The results indicate a robust and sustained immune response induced by the CoronaVac vaccine in children and adolescents up to six months, providing evidences to support the safety and immunogenicity of this effective immunizer.
RESUMO
ABSTRACT Purpose: To evaluate macular chorioretinal flow changes on optical coherence tomography angiography, in participants who received inactivated and messenger RNA (mRNA) vaccines to prevent coronavirus disease 2019 (COVID-19). Methods: In this prospective cohort study, healthy participants who received two doses of an inactivated COVID-19 vaccine (CoronaVac) and then one dose of an mRNA vaccine (BNT162b2) were examined before and after each vaccination. Ophthalmologic examination and imaging with optical coherence tomography angiography were performed during each visit. We evaluated vascular densities in the superficial and deep capillary plexuses in foveal, parafoveal, and perifoveal areas; the foveal avascular zone; and choriocapillaris flows (in 1- and 6-mm-diameter areas). Results: One eye in each of the 24 participants was assessed. Superficial capillary plexus vascular densities in the parafoveal area were significantly lower after the second dose of the CoronaVac vaccine than after the first dose. In the deep capillary plexus, vascular attenuation was observed only in the parafoveal region after the first CoronaVac dose. However, in all regions, the deep capillary plexus vascular densities and subfoveal choriocapillaris flow were significantly decreased after the second CoronaVac dose. After the BNT162b2 dose, the superficial capillary plexus vascular densities, the deep capillary plexus vascular densities, and subfoveal choriocapillaris flow of most regions were significantly lower than those before vaccinations. Conclusion: Vascular attenuation, observed particularly after the second dose of the CoronaVac vaccine, may explain the pathogenesis of postvaccine ocular ischemic disorders reported in the literature. However, these disorders are extremely rare, and the incidence of thrombotic events caused by COVID-19 itself is higher.
RESUMO
We measured anti-SARS-CoV-2 antibody responses before and after CoronaVac (inactivated) vaccination in a case-control study performed in CoronaVac-immunized individuals participating in a longitudinal prospective study of adults in Manaus (DETECTCoV-19). Antibody responses were measured by standard serological immunoassays. Peak anti-S-RBD and neutralizing RBD-ACE2 blocking antibody responses after two doses of CoronaVac vaccine were similar in vaccine breakthrough cases (n = 9) and matched controls (n = 45). Individuals with hybrid immunity resulting from prior SARS-CoV-2 infection followed by vaccination (n = 22) had elevated levels of anti-N, anti-S-RBD and RBD-ACE2 blocking antibodies after the second vaccine dose compared to infection-naïve individuals (n = 48). Post-vaccination SARS-CoV-2-specific antibody responses rapidly waned in infection-naïve individuals. Antibody responses wane after vaccination, making individuals susceptible to infection by SARS-CoV-2 variants. These findings support the need for booster doses after primary vaccination. Population antibody serosurveys provide critical information toward implementing optimal timing of booster doses.
Assuntos
Enzima de Conversão de Angiotensina 2 , Formação de Anticorpos , Adulto , Humanos , Brasil , Estudos de Casos e Controles , Estudos Prospectivos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19RESUMO
During the COVID-19 pandemic, the importance of vaccinating children against SARS-CoV-2 was rapidly established. This study describes the safety of CoronaVac® in children and adolescents between 3- and 17-years-old in a multicenter study in Chile with two vaccine doses in a 4-week interval. For all participants, immediate adverse events (AEs), serious AEs (SAEs), and AEs of special interest (AESIs) were registered throughout the study. In the safety subgroup, AEs were recorded 28 days after each dose. COVID-19 surveillance was performed throughout the study. A total of 1139 individuals received the first and 1102 the second dose of CoronaVac®; 835 were in the safety subgroup. The first dose showed the highest number of AEs: up to 22.2% of participants reported any local and 17.1% systemic AE. AEs were more frequent in adolescents after the first dose, were transient, and mainly mild. Pain at the inoculation site was the most frequent AE for all ages. Fever was the most frequent systemic AE for 3-5 years old and headache in 6-17 years old. No SAEs or AESIs related to vaccination occurred. Most of the COVID-19 cases were mild and managed as outpatients. CoronaVac® was safe and well tolerated in children and adolescents, with different safety patterns according to age.
RESUMO
Introduction: Severe acute respiratory syndrome virus 2 (SARS-CoV-2) has caused over million deaths worldwide, with more than 61,000 deaths in Chile. The Chilean government has implemented a vaccination program against SARS-CoV-2, with over 17.7 million people receiving a complete vaccination scheme. The final target is 18 million individuals. The most common vaccines used in Chile are CoronaVac (Sinovac) and BNT162b2 (Pfizer-Biotech). Given the global need for vaccine boosters to combat the impact of emerging virus variants, studying the immune response to SARS-CoV-2 is crucial. In this study, we characterize the humoral immune response in inoculated volunteers from Chile who received vaccination schemes consisting of two doses of CoronaVac [CoronaVac (2x)], two doses of CoronaVac plus one dose of BNT162b2 [CoronaVac (2x) + BNT162b2 (1x)], and three doses of BNT162b2 [BNT162b2 (3x)]. Methods: We recruited 469 participants from Clínica Dávila in Santiago and the Health Center Víctor Manuel Fernández in the city of Concepción, Chile. Additionally, we included participants who had recovered from COVID-19 but were not vaccinated (RCN). We analyzed antibodies, including anti-N, anti-S1-RBD, and neutralizing antibodies against SARS-CoV-2. Results: We found that antibodies against the SARS-CoV-2 nucleoprotein were significantly higher in the CoronaVac (2x) and RCN groups compared to the CoronaVac (2x) + BNT162b2 (1x) or BNT162b2 (3x) groups. However, the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups exhibited a higher concentration of S1-RBD antibodies than the CoronaVac (2x) group and RCN group. There were no significant differences in S1-RBD antibody titers between the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups. Finally, the group immunized with BNT162b2 (3x) had higher levels of neutralizing antibodies compared to the RCN group, as well as the CoronaVac (2x) and CoronaVac (2x) + BNT162b2 (1x) groups. Discussion: These findings suggest that vaccination induces the secretion of antibodies against SARS-CoV-2, and a booster dose of BNT162b2 is necessary to generate a protective immune response. In the current state of the pandemic, these data support the Ministry of Health of the Government of Chile's decision to promote heterologous vaccination as they indicate that a significant portion of the Chilean population has neutralizing antibodies against SARS-CoV-2.
Assuntos
COVID-19 , Vacinas , Humanos , Imunidade Humoral , SARS-CoV-2 , Vacina BNT162 , Chile , COVID-19/prevenção & controle , Vacinação , Anticorpos NeutralizantesRESUMO
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, imposing the need for periodic booster doses. However, whether booster doses should be applied to the entire population or groups, and the booster doses interval, remains unclear. In this study, we evaluated humoral reactivity kinetics from before the first dose to 180 days after the third booster dose in different schedules in a well-controlled health worker cohort. Among the 2,506 employees, the first 500 vaccinated health workers were invited to participate. The third booster dose was administered 8 months after the first dose. Among the invited participants, 470 were included in the study; 258 received inactivated vaccine CoronaVac (VAC group) and 212 received viral vector vaccine ChAdOx1 (AZV group). The groups were homogeneous in terms of age and sex. 347 participants were followed up after the booster dose with AZV or BNT162b2 (Pfizer, BNT group): 63 with VAC/AZV, 117 with VAC/BNT, 72 with the AZV/AZV and 95 with AZV/BNT schedules. Blood samples were collected immediately before, 28 days after each dose and 180 days after the primary vaccination and booster dose. Anti-SARS-CoV-2 antibodies were measured by chemiluminescence and plaque reduction neutralization test (PRNT). Plasma immune mediators were quantified using a multiplex immunoassay. Geometric mean of antibodies increased 28 days after the second dose with 100 % seroconversion rate in both groups and decreased 180 days after the first dose. In the baseline-seropositive VAC group, the levels of plasma immune mediators increased after the second dose. Booster dose was applied at 4-6 months after the primary vaccination. Heterologous booster in VAC or AZV primary vaccinees were effective maintaining the titers of anti-SARS-CoV-2 antibodies even after 6 months of follow-up. The heterologous schedule induced higher and stable antibody reactivity, even after 180 days, protecting to ancestral (Wuhan), Delta, and Omicron variants.
RESUMO
BACKGROUND: We sought to identify potential antigens for discerning between humoral responses elicited after vaccination with CoronaVac (a severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] inactivated vaccine), natural infection, or breakthrough infection. METHODS: Serum samples obtained from volunteers immunized with CoronaVac (2 and 3 doses), breakthrough case patients, and from convalescent individuals were analyzed to determine the immunoglobulin (Ig) G responses against 3 structural and 8 nonstructural SARS-CoV-2 antigens. RESULTS: Immunization with CoronaVac induced higher levels of antibodies against the viral membrane (M) protein compared with convalescent subjects both after primary vaccination and after a booster dose. Individuals receiving a booster dose displayed equivalent levels of IgG antibodies against the nucleocapsid (N) protein, similar to convalescent subjects. Breakthrough case patients produced the highest antibody levels against the N and M proteins. Antibodies against nonstructural viral proteins were present in >50% of the convalescent subjects. CONCLUSIONS: Vaccinated individuals elicited a different humoral response compared to convalescent subjects. The analysis of particular SARS-CoV-2 antigens could be used as biomarkers for determining infection in subjects previously vaccinated with CoronaVac.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vírion , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes , VacinaçãoRESUMO
BACKGROUND: Although CoronaVac was the only Covid-19 vaccine adopted in the first months of the Brazilian vaccination campaign, randomized clinical trials to evaluate its efficacy in elderly adults were limited. In this study, we use routinely collected surveillance and SARS-CoV-2 vaccination and testing data comprising the population of the fifth largest city of Brazil to evaluate the effectiveness of CoronaVac in adults 60+ years old against severe outcomes. METHODS: Using large observational databases on vaccination and surveillance data from the city of Fortaleza, Brazil, we defined a retrospective cohort including 324,302 eligible adults aged ≥60 years to evaluate the effectiveness of the CoronaVac vaccine. The cohort included individuals vaccinated between January 21, 2021, and August 31, 2021, who were matched with unvaccinated persons at the time of rollout following a 1:1 ratio according to baseline covariates of age, sex, and Human Development Index of the neighborhood of residence. Only Covid-19-related severe outcomes were included in the analysis: hospitalization, ICU admission, and death. Vaccine effectiveness for each outcome was calculated by using the risk ratio between the two groups, with the risk obtained by the Kaplan-Meier estimator. RESULTS: We obtained 62,643 matched pairs for assessing the effectiveness of the two-dose regimen of CoronaVac. The demographic profile of the matched population was statistically representative of the population of Fortaleza. Using the cumulative incidence as the risk associated with each group, starting at day 14 since the receipt of the second dose, we found an 82.3 % (95 % CI 66.3-93.9) effectiveness against Covid-19-related death, 68.4 % (95 % CI 42.3-86.4) against ICU admission, and 55.8 % (95 % CI 42.7-68.3) against hospital admission. CONCLUSIONS: Our results show that, despite critical delays in vaccine delivery and limited evidence in efficacy trial estimates, CoronaVac contributed to preventing deaths and severe morbidity due to Covid-19 in elderly adults.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Humanos , Adulto , Pessoa de Meia-Idade , Vacinas contra COVID-19/uso terapêutico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Brasil/epidemiologia , Estudos Retrospectivos , SARS-CoV-2RESUMO
Cancer patients on chemotherapy have a lower immune response to SARS-CoV-2 vaccines. Therefore, through a prospective cohort study of patients with solid tumors receiving chemotherapy, we aimed to determine the immunogenicity of an mRNA vaccine booster (BNT162b2) among patients previously immunized with an inactivated (CoronaVac) or homologous (BNT162b2) SARS-CoV-2 vaccine. The primary outcome was the proportion of patients with anti-SARS-CoV-2 neutralizing antibody (NAb) seropositivity at 8-12 weeks post-booster. The secondary end points included IgG antibody (TAb) seropositivity and specific T-cell responses. A total of 109 patients were included. Eighty-four (77%) had heterologous vaccine schedules (two doses of CoronaVac followed by the BNT162b2 booster) and twenty-five had (23%) homologous vaccine schedules (three doses of BNT162b2). IgG antibody positivity for the homologous and heterologous regimen were 100% and 96% (p = 0.338), whereas NAb positivity reached 100% and 92% (p = 0.13), respectively. Absolute NAb positivity and Tab levels were associated with the homologous schedule (with a beta coefficient of 0.26 with p = 0.027 and a geometric mean ratio 1.41 with p = 0.044, respectively). Both the homologous and heterologous vaccine regimens elicited a strong humoral and cellular response after the BNT162b2 booster. The homologous regimen was associated with higher NAb positivity and Tab levels after adjusting for relevant covariates.
RESUMO
OBJECTIVE: The objective of the present study was to provide statewide estimates of real-world effectiveness in reducing the odds of one primary (symptomatic COVID-19 infection) and two secondary outcomes (hospitalization and severe COVID-19 infection) by four vaccines BNT162b2 (Pfizer-BioNTech), ChAdOx1 (AstraZeneca), Ad5-nCoV (CanSinoBIO), and CoronaVac (Sinovac Life Sciences), used in Northeast Mexico. DESIGN: We conducted a test-negative case-control study and analyzed statewide surveillance data from December 2020 to August 2021. SITE: Primary attention and hospitalization. PARTICIPANTS: Two inclusion criteria were applied, age≥18 years and having a real-time reverse-transcriptase-polymerase-chain-reaction assay or a rapid test for antigen detection in postnasal samples (N=164,052). The vaccination was considered complete if at least 14 days had passed since the application of the single or second dose and the beginning of symptomatology. INTERVENTIONS: Does not apply. MAIN MEASUREMENTS: Point and 95% confidence intervals (CI) of vaccine effectiveness were calculated per type of vaccine using the formula 1 - odds ratio, adjusted by sex and age. RESULTS: Complete vaccination offered from none (CoronaVac - Sinovac) to 75% (95%CI 71, 77) (BNT162b2 - Pfizer) effectiveness in reducing symptomatic COVID-19 infection, regardless of sex and age. The fully ChAdOx1 (AstraZeneca) scheme reached the maximum effectiveness in hospitalization (80%, 95%CI 69, 87) and the fully BNT162b2 (Pfizer) scheme the maximum effectiveness in severity (81%, 95%CI 64, 90). CONCLUSIONS: More studies are needed to compare benefits of different vaccines and guide policy makers select the best option for their population.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , Estudos de Casos e Controles , México/epidemiologiaRESUMO
BACKGROUND: Herein, we aimed to follow up on the cellular and humoral immune responses of a group of individuals who initially received the CoronaVac vaccine, followed by a booster with the Pfizer vaccine. METHODS: Blood samples were collected: before and 30 days after the first CoronaVac dose; 30, 90, and 180 days after the second CoronaVac dose, and also 20 days after the booster with the Pfizer vaccine. RESULTS: Whilst the positivity to gamma interferon-type cellular response increased after the first CoronaVac dose, neutralizing and IgG antibody levels only raised 30 days after the second dose, followed by a drop in these responses after 90 and 180 days. The booster with the Pfizer vaccine elicited a robust cellular and humoral response. A higher number of double-negative and senescent T cells, as well as increased pro-inflammatory cytokines levels were found in the participants with lower humoral immune responses. CONCLUSION: CoronaVac elicited an early cellular response, followed by a humoral response, which dropped 90 days after the second dose. The booster with the Pfizer vaccine significantly enhanced these responses. Furthermore, a pro-inflammatory systemic status was found in volunteers who presented senescent T cells, which could putatively impair the immune response to vaccination.
RESUMO
BACKGROUND: The Omicron variant has challenged the control of the COVID-19 pandemic due to its immuno-evasive properties. The administration of a booster dose of a SARS-CoV-2 vaccine showed positive effects in the immunogenicity against SARS-CoV-2, effect that is even enhanced after the administration of a second booster. METHODS: During a phase-3 clinical trial, we evaluated the effect of a second booster of CoronaVac®, an inactivated vaccine administered 6 months after the first booster, in the neutralization of SARS-CoV-2 (n = 87). In parallel, cellular immunity (n = 45) was analyzed in stimulated peripheral mononuclear cells by flow cytometry and ELISPOT. FINDINGS: Although a 2.5-fold increase in neutralization of the ancestral SARS-CoV-2 was observed after the second booster when compared with prior its administration (Geometric mean units p < 0.0001; Geometric mean titer p = 0.0002), a poor neutralization against the Omicron variant was detected. Additionally, the activation of specific CD4+ T lymphocytes remained stable after the second booster and, importantly, equivalent activation of CD4+ T lymphocytes against the Omicron variant and the ancestral SARS-CoV-2 were found. INTERPRETATION: Although the neutralizing response against the Omicron variant after the second booster of CoronaVac® was slightly increased, these levels are far from those observed against the ancestral SARS-CoV-2 and could most likely fail to neutralize the virus. In contrast, a robust CD4+T cell response may confer protection against the Omicron variant. FUNDING: The Ministry of Health, Government of Chile, the Confederation of Production and Commerce, Chile and SINOVAC Biotech.NIHNIAID. The Millennium Institute on Immunology and Immunotherapy.