Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Phys Med ; 122: 103390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833878

RESUMO

PURPOSE: This study discusses the measurement of dose in clinical commissioning tests described in IAEA-TECDOC-1583. It explores the application of Monte Carlo (MC) modelled medium dependency correction factors (Kmed) for accurate dose measurement in bone and lung materials using the CIRS phantom. METHODS: BEAMnrc codes simulate radiation sources and model radiation transport for 6 MV and 15 MV photon beams. CT images of the CIRS phantom are converted to an MC compatible phantom. The PTW 30013 farmer chamber measures doses within modeled CIRS phantom. Kmed are determined by averaging values from four central voxels within the sensitive volume of the farmer chamber. Kmed is calculated for Dm.m and Dw.w algorithm types in bone and lung media for both photon beams. RESULTS: Average modelled correction factors for Dm.m calculations using the farmer chamber are 0.976 (±0.1 %) for 6 MV and 0.979 (±0.1 %) for 15 MV in bone media. Correspondingly, correction factors for Dw.w calculations are 0.99 (±0.3 %) and 0.992 (±0.4 %), respectively. For lung media, average correction factors for Dm.m calculations are 1.02 (±0.3 %) for 6 MV and 1.022 (±0.4 %) for 15 MV. Correspondingly, correction factors for Dw.w calculations are 1.01 (±0.3 %) and 1.012 (±0.2 %), respectively. CONCLUSIONS: This study highlights the significant impact of applying Kmed on dose differences between measurement and calculation during the dose audit process.


Assuntos
Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Radiometria/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
2.
Front Nutr ; 11: 1388645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699547

RESUMO

Objective: This study aimed to establish an accurate and efficient scientific calculation model for the nutritional composition of catering food to estimate energy and nutrient content of catering food. Methods: We constructed a scientific raw material classification database based on the Chinese food composition table by calculating the representative values of each food raw material type. Using China's common cooking methods, we cooked 150 dishes including grains, meat, poultry, fish, eggs, and vegetables and established a database showing the raw and cooked ratios of various food materials by calculating the ratio of raw to cooked and the China Total Diet Research database. The effects of various cooking methods on the nutritional composition of catering food were analyzed to determine correction factors for such methods on the nutritional components. Finally, we linked the raw material classification, raw and cooked ratio, and nutritional component correction factor databases to establish a model for calculating the nutritional components of catering food. The model was verified with nine representative Chinese dishes. Results: We have completed the construction of an accurate and efficient scientific calculation model for the nutritional composition of catering food, which improves the accuracy of nutrition composition calculation. Conclusion: The model constructed in this study was scientific, accurate, and efficient, thereby promising in facilitating the accurate calculation and correct labeling of nutritional components in catering food.

3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621905

RESUMO

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Assuntos
Antracenos , Medicamentos de Ervas Chinesas , Epimedium , Perileno/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Ácido Clorogênico , Flavonoides/análise , Medicamentos de Ervas Chinesas/química , Epimedium/química
4.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452383

RESUMO

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Campos Magnéticos , Método de Monte Carlo
5.
Phys Imaging Radiat Oncol ; 29: 100561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38463218

RESUMO

Background and purpose: For dosimetry in magnetic resonance (MR) guided radiotherapy, assessing the magnetic field correction factors of air-vented ionization chambers is crucial. Novel MR-optimized chambers reduce MR-imaging artefacts, enhancing their quality assurance utility. This study aimed to characterize two new MR-optimized ionization chambers with sensitive volumes of 0.07 and 0.016 cm3 regarding magnetic field correction factors and intra-type variation and compare them to their conventional counterparts. Material and methods: Five chambers of each type were evaluated in a water phantom, using a clinical linear accelerator and an electromagnet, as well as a 1.5 T MR-linac system. The magnetic field correction factor kB→,Q, addressing the change of response caused by a magnetic field, was assessed together with its intra-type variation. MR-optimized and conventional chambers were compared using a Mann-Whitney U-Test. Results: Considering 1.5 T and a perpendicular chamber orientation, we observed significant differences in the magnetic field-induced change in chamber reading between the two 0.016 cm3 chamber versions (p = 0.03). For a 7 MV beam, MR-optimized chambers (0.016/0.07 cm3) showed kB→,Q values of 1.0426(66) and 1.0463(44), compared to 1.0319(53) and 1.0480(41) of their conventional counterparts. In anti-parallel orientation, kB→,Q was 1.0012(69) and 0.9863(49) for the MR-optimized chambers. The average intra-type variation of kB→,Q over all chamber types was 0.3%. Conclusion: Magnetic field correction factors were successfully determined for four ionization chamber types, including two new MR-optimized versions, allowing their use in MR-linac absolute dosimetry. Evaluation of the intra-type variation enabled the assessment of their contribution to the uncertainty of tabulated kB→,Q.

6.
Res Sq ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38313268

RESUMO

The traditional method for sampling for lead on surfaces uses inductively coupled plasma atomic emission spectroscopy (ICP-AES) to analyze the concentration of lead and other metals on surfaces. This type of analysis is time consuming and costly. Field portable X-ray fluorescence (FP XRF) is another analysis method that is not as accurate as traditional laboratory methods but is more cost efficient and has a turnaround time of less than an hour. The primary goal of this study is to find the best method to increase the level of agreement between the ICP-AES concentrations and the FP XRF concentrations when analyzing lead concentrations on surface wipes. Inverse regression and ratio of the means correction factors were analyzed to try to improve the prediction of ICP-AES concentrations using FP XRF results. Fifty-seven dust wipe samples were analyzed using a split-half design. Half of the samples were used to create the correction factor and the other half were used to test the level of agreement. Linear regression and Bland -Altman plots were used to determine the correction factor that provided the highest level of agreement. A ratio of the means correction factor was determined to be the most appropriate.

7.
Entropy (Basel) ; 26(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392362

RESUMO

The paper analyzes the probability distribution of the occupancy numbers and the entropy of a system at the equilibrium composed by an arbitrary number of non-interacting bosons. The probability distribution is obtained through two approaches: one involves tracing out the environment from a bosonic eigenstate of the combined environment and system of interest (the empirical approach), while the other involves tracing out the environment from the mixed state of the combined environment and system of interest (the Bayesian approach). In the thermodynamic limit, the two coincide and are equal to the multinomial distribution. Furthermore, the paper proposes to identify the physical entropy of the bosonic system with the Shannon entropy of the occupancy numbers, fixing certain contradictions that arise in the classical analysis of thermodynamic entropy. Finally, by leveraging an information-theoretic inequality between the entropy of the multinomial distribution and the entropy of the multivariate hypergeometric distribution, Bayesianism of information theory and empiricism of statistical mechanics are integrated into a common "infomechanical" framework.

8.
J Am Vet Med Assoc ; : 1-7, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417255

RESUMO

OBJECTIVE: To determine the sodium correction factor for clinical use in hyperglycemic diabetic dogs. SAMPLE: Retrospective analysis of 76 hospitalization episodes from 67 different dogs presenting to the University of Georgia Veterinary Teaching Hospital between January 1, 2015, and January 1, 2023. METHODS: For each hospitalization episode, paired blood sodium and glucose concentration measurements were recorded from the time of presentation until glucose concentration was ≤ 201 mg/dL. Therapies administered, primary diagnosis, and concurrent diseases were also recorded for each episode. A linear mixed model was used to determine the sodium correction factor per 100-mg/dL increase in glucose. Piecewise linear mixed models were also constructed for blood glucose measurements ≤ 400 mg/dL and > 400 mg/dL to explore potential correction factor differences between low and high glucose concentrations. RESULTS: A sodium correction factor of a 1.6-mEq/L (95% CI, 1.3 to 1.9 mEq/L) decrease in sodium concentration per 100-mg/dL increase in blood glucose concentration was calculated. Differences in the correction factor between conditions of low and high glucose concentrations could not be determined due to a small sample size of blood glucose values > 400 mg/dL. Most dogs received similar treatments throughout the study period, including balanced isotonic crystalloids (97% [74/76]), electrolyte supplementation (84% [64/76]), and regular insulin (97% [74/76]). Almost all patients (93% [71/76]) had 1 or more concurrent diseases. CLINICAL RELEVANCE: A sodium correction factor of 1.6 mEq/L (decrease in sodium per 100-mg/dL increase in glucose) is recommended for clinical use in hyperglycemic diabetic dogs.

9.
Res Sq ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260675

RESUMO

When analyzing metal concentrations in the soil and ambient air, accurate and reliable results are essential. Inductively coupled plasma mass spectrometry (ICP-MS) is considered the benchmark analytical method for environmental soil and air filter samples containing metals. Field portable X-ray fluorescence (FP XRF) can provide more timely results with lower ongoing costs, but the results are not as accurate as ICP-MS. The primary goal of this study was to find an optimal method to maximize the level of agreement between FP XRF results and ICP-MS results when analyzing metal concentrations in soil and ambient air samples in a U.S. Superfund community. Two different correction factor methods were tested to improve the prediction of ICP-MS concentrations using FP XRF for arsenic and lead in soil and ambient air. Ninety-one residential soil samples and 42 ambient air filter samples were analyzed in a split-half design, where half the samples were used to create the correction factors and the other half to evaluate the level of agreement between the analytical methods following FP XRF correction. Paired t-tests, linear regression plots, and Bland-Altman plots were utilized to examine which correction factor provided the highest level of agreement between the two methods. Based on the results from this study, it was determined that a ratio correction factor method provided the best fit for this FP XRF analytical device.

10.
Sci Total Environ ; 917: 170206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278271

RESUMO

To account for potential differences in bioavailability (and toxicity) due to different soil organic matter (OM) contents in natural and artificial soil (AS), in the current European environmental risk assessment (ERA) a correction factor (CF) of 2 is applied to toxicity endpoints for so called lipophilic pesticides (i.e. log Kow > 2) generated from laboratory tests with soil invertebrates. However, the appropriateness of a single CF is questioned. To improve the accuracy of ERA, this study investigated the influence of soil OM content on the toxicity to the earthworm Eisenia andrei of five active substances used in pesticides covering a wide range of lipophilicity. Laboratory toxicity tests were performed in AS containing 10 %, 5 % and 2.5 % peat, and a natural LUFA 2.2 soil (4.5 % OM), assessing effects on survival, biomass change and reproduction. Pesticide toxicity differed significantly between soils. For all pesticides, toxicity values (LC50, EC50) strongly correlated with soil OM content in AS (r2 > 0.82), with toxicity decreasing with increasing OM content. Obtained regression equations were used to calculate the toxicity at OM contents of 10.0 % and 5.0 %. Model-estimated toxicity between these soils differed by factors of 1.9-3.6, and 2.1-3.2 for LC50 and EC50 values, respectively. No clear relationships between pesticide lipophilicity and toxicity-OM relationships were observed: the toxicity of non-lipophilic and lipophilic pesticides was influenced by OM content in a similar manner. The results suggest that the CF of 2 may not be appropriate as it is based on incorrect assumptions regarding the relationships between lipophilicity, OM content and toxicity. Further research should be conducted to understand the mechanistic link between toxicity and soil OM content to better define more chemically and ecologically appropriate CFs for ERA.


Assuntos
Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Toxicidade
11.
Med Phys ; 51(4): 2998-3009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060696

RESUMO

BACKGROUND: The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models. PURPOSE: The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian. METHODS: Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter. RESULTS: Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively. CONCLUSIONS: For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.


Assuntos
Radiometria , Radioterapia Guiada por Imagem , Eficiência Biológica Relativa , Campos Magnéticos , Método de Monte Carlo , Água
12.
Phys Med ; 117: 103179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042061

RESUMO

PURPOSE: As the dosimetry protocol TRS 398 is being revised and the ICRU report 90 provides new recommendations for density correction as well as the mean ionization energies of water and graphite, updated beam quality correction factors kQ are calculated for reference dosimetry in electron beams and for independent validation of previously determined values. METHODS: Monte Carlo simulations have been performed using EGSnrc to calculate the absorbed dose to water and the dose to the active volumes of ionization chambers SNC600c, SNC125c and SNC350p (all Sun Nuclear, A Mirion Medical Company, Melbourne, FL). Realistic clinical electron beam spectra were used to cover the entire energy range of therapeutic electron accelerators. The Monte Carlo simulations were validated by measurements on a clinical linear accelerator. With regards to the cylindrical chambers, the simulations were performed according to the setup recommendations of TRS 398 and AAPM TG 51, i.e. with and without consideration of a reference point shift by rcav/2. RESULTS: kQ values as a function of the respective beam quality specifier R50 were fitted by recommended equations for electron beam dosimetry in the range of 5 MeV to 18 MeV. The fitting curves to the calculated values showed a root mean square deviation between 0.0016 and 0.0024. CONCLUSION: Electron beam quality correction factors kQ were calculated by Monte Carlo simulations for the cylindrical ionization chambers SNC600c and SNC125c as well as the plane parallel ionization chamber SNC350p to provide updated data for the TRS 398 and TG 51 dosimetry protocols.


Assuntos
Elétrons , Fenilpropionatos , Radiometria , Radiometria/métodos , Eficiência Biológica Relativa , Método de Monte Carlo , Água
13.
Phys Med Biol ; 69(3)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38157548

RESUMO

Objective.The noise characteristics of digital x-ray imaging devices are determined by contributions such as photon noise, electronic noise, and fixed pattern noise, and can be evaluated from measuring the noise power spectrum (NPS), which is the power spectral density of the noise. Hence, accurately measuring NPS is important in developing detectors for acquiring low-noise digital x-ray images. To make accurate measurements, it is necessary to understand NPS, identify problems that may arise, and know how to process the obtained x-ray images.Approach.The primitive concept of NPS is first introduced with a periodogram-based estimate and its bias and variance are discussed. In measuring NPS based on the IEC62220 standards, various issues, such as the fixed pattern noise, high-precision estimates, and lag corrections, are summarized with simulation examples.Main results.High-precision estimates can be provided for an appropriate number of samples extracted from x-ray images while compromising spectral resolution. Depending on medical imaging systems, by eliminating the influence of fixed pattern noise, NPS, which represents only photon and electronic noise, can be efficiently measured. For NPS measurements in dynamic detectors, an appropriate lag correction technique can be selected depending on the emitted x-rays and image acquisition process.Significance.Various issues in measuring NPS are reviewed and summarized for accurately evaluating the noise performance of digital x-ray imaging devices.


Assuntos
Fótons , Intensificação de Imagem Radiográfica , Raios X , Intensificação de Imagem Radiográfica/métodos , Simulação por Computador
14.
J Biomech ; 160: 111815, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37783185

RESUMO

The purpose of this study was to compare the in-water force of young competitive swimmers using tethered swimming and differential pressure sensors. Thirty-one swimmers (16 girls and 15 boys) were randomly assigned to perform two in-water tests. Swimmers completed two maximum bouts of 25 m front crawl with a differential pressure system and a 30 s maximum bout with an attached load cell (tethered-swimming). The peak force (FPEAK, in N) of dominant and non-dominant upper limbs was retrieved for further analysis. Comparison between methods revealed significant differences in all force variables (p ≤ 0.05) and the biases (mean differences) were large in girls (FPEAK dominant, 45.89 N; FPEAK non-dominant, 43.79 N) and boys (FPEAK dominant, 67.26 N; FPEAK non-dominant, 61.78 N). Despite that, simple linear regression models between the two methods showed significant relationships with a moderate effect in all variables for girls, whereas in boys a high and moderate effect was verified for FPEAK of dominant and non-dominant limbs (respectively). It seems that using pressure sensors and tethered swimming leads to different FPEAK values in young competitive, where correction factors are needed to compare data between both methods.

15.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4253-4260, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802794

RESUMO

This study aims to establish a method for the simultaneous determination of 7 active components in Dracocephalum tanguticum and to evaluate the quality of medicinal materials from different habitats. The method was established with high performance liquid chromatography(HPLC) and the gradient elution was performed with the mobile phase of acetonitrile-methanol-0.2% phosphoric acid solution at a column temperature of 35 ℃, an injection volume of 15 µL, and a flow rate of 0.6 mL·min~(-1). The detection wavelength was set as 215 nm. With rosmarinic acid as the internal reference, the relative correction factors and the content of other 6 components were calculated. The results were compared with those obtained with the external standard method. The results showed that the samples from Huangzhong county, Qinghai province had the best quality, with the highest content of p-hydroxybenzoic acid, cosmosiin, rosmarinic acid, oleanolic acid, and ursolic acid(9.29, 12.14, 6.02, 3.11, 17.67 mg·g~(-1) respectively). The samples from Chaya county, Tibet autonomous region ranked the second, with the highest content of betulin and betulinic acid(15.53, 7.17 mg·g~(-1), respectively). The method is accurate, reliable, and repeatable and suitable for the simultaneous determination of multiple components in D. tanguticum. The content of functional components varied in the samples from different producing areas and can be used as the indicator for the quality evaluation of medicinal materials.


Assuntos
Medicamentos de Ervas Chinesas , Lamiaceae , Cinamatos , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Ácido Rosmarínico
16.
Phys Med Biol ; 68(18)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579752

RESUMO

Objective. In current dosimetry protocols, the estimated uncertainty of the measured absorbed dose to waterDwin carbon-ion beams is approximately 3%. This large uncertainty is mainly contributed by the standard uncertainty of the beam quality correction factorkQ. In this study, thekQvalues in four cylindrical chambers and two plane-parallel chambers were calculated using Monte Carlo (MC) simulations in the plateau region. The chamber-specific perturbation correction factorPof each chamber was also determined through MC simulations.Approach.kQfor each chamber was calculated using MC code Geant4. The simulatedkQratios in subjected chambers and reference chambers were validated through comparisons against our measured values. In the measurements in Heavy-Ion Medical Accelerator in Chiba,kQratios were obtained fromDwvalues of60Co, 290- and 400 MeV u-1carbon-ion beams that were measured with the subjected ionization chamber and the reference chamber. In the simulations,fQ(the product of the water-to-air stopping power ratio andP) was acquired fromDwand the absorbed dose to air calculated in the sensitive volume of each chamber.kQvalues were then calculated from the simulatedfQand the literature-extractedWairand compared with previous publications.Main results. The calculatedkQratios in the subjected chambers to the reference chamber agreed well with the measuredkQratios. ThekQuncertainty was reduced from the current recommendation of approximately 3% to 1.7%. ThePvalues were close to unity in the cylindrical chambers and nearly 1% above unity in the plane-parallel chambers.Significance. ThekQvalues of carbon-ion beams were accurately calculated in MC simulations and thekQratios were validated through ionization chamber measurements. The results indicate a need for updating the current recommendations, which assume a constantPof unity in carbon-ion beams, to recommendations that consider chamber-induced differences.


Assuntos
Fazendeiros , Radiometria , Humanos , Radiometria/métodos , Íons , Carbono , Método de Monte Carlo
17.
Phys Med ; 113: 102664, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573811

RESUMO

PURPOSE: To evaluate the applicability of TRS-483 output correction factors (CFs) for small-field output factors (OFs) using different multi-leaf collimators (MLC) and field-shaping types. METHODS: All measurements were performed on TrueBeam, TrueBeam STx, and Halcyon using 6 MV flattening filter-free energy. Four detectors, including CC01, CC04, microDiamond, and EDGE, were used. Nominal field sizes ranging from 1 × 1 to 4 × 4, and 10 × 10 cm2 were used to measure small-field OFs at source-to-axis distance of 100 cm with a 0° gantry angle in a 3D water phantom. Further, the field-shaping types were defined using jaw collimator or MLC (five different configurations). A field size of 10 × 10 cm2 was used as the reference for calculation of OFs obtained as ratio of detector readings (OFdet). The percentage difference and coefficient of variation of OFdet and OFdet corrected by applying CF were compared for each field size and configuration. RESULTS: For OFdet corrected by applying CF, the ranges of percentage difference and coefficient of variation in all configurations for ≥ 2 × 2 cm2 fields were reduced from 1.2-2.2 to 0.8-1.3 percentage points (%pt) and from 0.5-1.0 to 0.4-0.7%, respectively. For 1 × 1 cm2 field, the ranges of percentage difference and coefficient of variation were reduced from 3.3-5.7 to 1.2-2.2 %pt and from 2.2-3.7 to 0.8-1.1%, respectively. CONCLUSIONS: The CFs described in TRS-483 dosimetry protocol have broad applicability in reducing OF variations between detectors under different MLC and field-shaping types.


Assuntos
Fótons , Radiometria , Aceleradores de Partículas , Imagens de Fantasmas
18.
Phys Med Biol ; 68(17)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567226

RESUMO

Objective. In this contribution we present a special Fano test for charged particles in presence of magnetic fields in the MC code TOol for PArticle Simulation (TOPAS), as well as the determination of magnetic field correction factorskBfor Farmer-type ionization chambers using proton beams.Approach. Customized C++ extensions for TOPAS were implemented to model the special Fano tests in presence of magnetic fields for electrons and protons. The Geant4-specific transport parameters,DRoverRandfinalRange,were investigated to optimize passing rate and computation time. ThekBwas determined for the Farmer-type PTW 30013 ionization chamber, and 5 custom built ionization chambers with same geometry but varying inner radius, testing magnetic flux density ranging from 0 to 1.0 T and two proton beam energies of 157.43 and 221.05 MeV.Main results. Using the investigated parameters, TOPAS passed the Fano test within 0.39 ± 0.15% and 0.82 ± 0.42%, respectively for electrons and protons. The chamber response (kB,M,Q) gives a maximum at different magnetic flux densities depending of the chamber size, 1.0043 at 1.0 T for the smallest chamber and 1.0051 at 0.2 T for the largest chamber. The local dose differencecBremained ≤ 0.1% for both tested energies. The magnetic field correction factorkB, for the chamber PTW 30013, varied from 0.9946 to 1.0036 for both tested energies.Significance. The developed extension for the special Fano test in TOPAS MC code with the adjusted transport parameters, can accurately transport electron and proton particles in magnetic field. This makes TOPAS a valuable tool for the determination ofkB. The ionization chambers we tested showed thatkBremains small (≤0.72%). To the best of our knowledge, this is the first calculations ofkBfor proton beams. This work represents a significant step forward in the development of MRgPT and protocols for proton dosimetry in presence of magnetic field.


Assuntos
Fazendeiros , Prótons , Humanos , Método de Monte Carlo , Radiometria/métodos , Campos Magnéticos
19.
Waste Manag ; 169: 232-242, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473662

RESUMO

Understanding the behavior of organic carbon in municipal solid waste landfills is a major challenge for estimating methane (CH4) emissions using the Intergovernmental Panel on Climate Change (IPCC) first-order decay (FOD) model. According to the IPCC guidelines, the default values of CH4 correction factor (MCF) and fraction of CH4 (F) for active aeration landfills are set as 0.4 and 0.5, respectively. However, whether it is reasonable to apply the default values of MCF and F to active aeration landfills is questionable. This study aims to estimate the MCF and develop a method to determine the F value for active aeration landfills. In this investigation, three landfill sites were operated as active aeration landfills to estimate the MCF and the F. The study results indicate that MCF values were lower than the default value of 0.4 provided in the IPCC guidelines under aerobic conditions with a CH4 concentration of less than 5%. According to the carbon balance analyses, there was a mismatch between the theoretical CH4/CO2 ratio based on the F default value of 0.5 and the measured CH4/CO2 ratio. Using the F calculation method proposed in this study, the theoretical CH4/CO2 ratio and the measured CH4/CO2 ratio was calculated equally. The F values during air injection ranged from 0.25 to 0.93 at three landfill sites, suggesting that adapting the F default value of 0.5 for active aeration landfills may lead to significant errors in the estimation of CH4 emissions using the IPCC FOD model.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Dióxido de Carbono/análise , Metano/análise , Poluentes Atmosféricos/análise , Instalações de Eliminação de Resíduos , Mudança Climática , Carbono/análise
20.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430591

RESUMO

The aim of this work is to experimentally determine and evaluate the value of the correction factor for ultrasonic flow meters in order to improve their accuracy. This article concerns flow velocity measurement with the use of an ultrasonic flow meter in the area of disturbed flow behind the distorting element. Clamp-on ultrasonic flow meters are popular among measurement technologies due to their high accuracy and easy, non-invasive installation, because the sensors are mounted directly on the outer surface of the pipe. In industrial applications, installation space is usually limited and, therefore, flow meters frequently have to be mounted directly behind flow disturbances. In such cases, it is necessary to determine the value of the correction factor. The disturbing element was a knife gate valve, a valve often used in flow installations. Water flow velocity tests were performed using an ultrasonic flow meter with clamp-on sensors on the pipeline. The research was performed in 2 series of measurements with different Reynolds numbers of 35,000 and 70,000, which correspond to a velocity of approximately 0.9 m/s and 1.8 m/s. The tests were carried out at different distances from the source of interference, within the range of 3-15 DN (pipe nominal diameter). The position of the sensors at successive measurement points on the circuit of the pipeline was changed by 30 degrees. Flow velocity measurements were carried out for two different levels of the valve's closure: 1/3 and 1/2 of the valve's height. For the collected velocity values at single measurement points, the values of the correction coefficient, K, were determined. The results of the tests and calculations prove that compensation error of measurement performed behind the disturbance without keeping the required straight sections of the pipeline is possible by using the factor K*. The analysis of the results made it possible to identify the optimal measuring point at a distance from the knife gate valve as being smaller than specified in the standards and recommendations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...