Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Epilepsia ; 65(6): 1644-1657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488289

RESUMO

OBJECTIVE: Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS: Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS: Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE: Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.


Assuntos
Idade de Início , Epilepsias Parciais , Imageamento por Ressonância Magnética , Convulsões , Humanos , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico por imagem , Masculino , Feminino , Criança , Pré-Escolar , Convulsões/genética , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/fisiopatologia , Serina-Treonina Quinases TOR/genética , Adolescente , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
2.
Epilepsy Behav ; 150: 109565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070410

RESUMO

Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Adulto , Criança , Humanos , Fosfatidilinositol 3-Quinases , Encéfalo/patologia , Convulsões/patologia , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Estudos Retrospectivos
3.
Neurosci Biobehav Rev ; 155: 105429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863278

RESUMO

Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.


Assuntos
Encéfalo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Modelos Animais , Comportamento Animal/fisiologia , Mamíferos , Modelos Teóricos , Modelos Animais de Doenças
4.
Pediatr Neurol ; 149: 137-140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879138

RESUMO

Lissencephaly with cerebellar hypoplasia (LCH) is a rare variant form of lissencephaly, its distinctive neuroradiological phenotype being an important investigation clue regarding the potential involved genes, including variants in RELN gene. We report on a case of LCH whose clinical and neuroradiological features led to the identification of a homozygous pathogenic variant in RELN gene that has not been previously reported in the scientific literature.


Assuntos
Lisencefalia , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Homozigoto , Mutação/genética
5.
Neurobiol Dis ; 182: 106144, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149062

RESUMO

The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Mosaicismo , Mutação/genética , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Proteínas Ativadoras de GTPase/genética
6.
Genet Med ; 25(7): 100838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057673

RESUMO

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Clin Case Rep ; 11(3): e7057, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911639

RESUMO

A 5-month-old German Shepherd dog was presented with cluster seizures. MR imaging showed a large irregular pseudomass in the central region of the cranial cavity, compatible with a malformation of cortical development. Despite the extensive changes, the patient was neurologically normal interictally 1 year following diagnosis.

8.
J Clin Ultrasound ; 51(2): 283-299, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785503

RESUMO

Fetal MRI is an important tool for the prenatal diagnosis of brain malformations and is often requested after second-trimester ultrasonography reveals a possible abnormality. Despite the immature state of the fetal brain at this early stage, early suggestive signs of the presence of brain malformations can be recognized. To differentiate between the normal dynamics of the growing brain and the developing pathological conditions can be challenging and requires extensive knowledge of normal central nervous system developmental stages and their neuroradiological counterparts at those different stages. This article reviews the second-trimester appearances of some commonly encountered brain malformations, focusing on helpful tricks and subtle signs to aid in the diagnosis of such conditions as rhombencephalosynapsis, various causes of vermian rotation, molar tooth spectrum anomalies, diencephalic-mesencephalic junction dysplasia, ganglionic eminence anomalies, and the most common malformations of cortical development.


Assuntos
Malformações do Sistema Nervoso , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Segundo Trimestre da Gravidez , Encéfalo , Diagnóstico Pré-Natal , Imageamento por Ressonância Magnética
9.
Neurobiol Dis ; 178: 106018, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706927

RESUMO

This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.


Assuntos
Epilepsia , Neocórtex , Animais , Humanos , Neocórtex/patologia , Convulsões/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
10.
Neurobiol Dis ; 168: 105702, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339680

RESUMO

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. DCX is a microtubule-associated protein which plays a key role during neurodevelopment in neuronal migration and differentiation. Dcx knockout (KO) mice show disorganized hippocampal pyramidal neurons. The CA2/CA3 pyramidal cell layer is present as two abnormal layers and disorganized CA3 KO pyramidal neurons are also more excitable than wild-type (WT) cells. To further identify abnormalities, we characterized Dcx KO hippocampal neurons at subcellular, molecular and ultrastructural levels. Severe defects were observed in mitochondria, affecting number and distribution. Also, the Golgi apparatus was visibly abnormal, increased in volume and abnormally organized. Transcriptome analyses from laser microdissected hippocampal tissue at postnatal day 60 (P60) highlighted organelle abnormalities. Ultrastructural studies of CA3 cells performed in P60 (young adult) and > 9 months (mature) tissue showed that organelle defects are persistent throughout life. Locomotor activity and fear memory of young and mature adults were also abnormal: Dcx KO mice consistently performed less well than WT littermates, with defects becoming more severe with age. Thus, we show that disruption of a neurodevelopmentally-regulated gene can lead to permanent organelle anomalies contributing to abnormal adult behavior.


Assuntos
Proteína Duplacortina/genética , Neuropeptídeos , Animais , Proteínas do Domínio Duplacortina , Complexo de Golgi , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mutação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células Piramidais/metabolismo
11.
Acta Neuropathol ; 143(1): 93-104, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797422

RESUMO

Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.


Assuntos
Metilação de DNA , Aprendizado Profundo , Malformações do Desenvolvimento Cortical/classificação , Malformações do Desenvolvimento Cortical/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/etiologia , Feminino , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
Front Genet ; 12: 616761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354730

RESUMO

Occipital cortical malformation (OCCM) is a disease caused by malformations of cortical development characterized by polymicrogyria and pachygyria of the occipital lobes and childhood-onset seizures. The recessive or complex heterozygous variants of the LAMC3 gene are identified as the cause of OCCM. In the present study, we identified novel complex heterozygous variants (c.470G > A and c.4030 + 1G > A) of the LAMC3 gene in a Chinese female with childhood-onset seizures. Cranial magnetic resonance imaging was normal. Functional experiments confirmed that both variant sites caused premature truncation of the laminin γ3 chain. Bioinformatics analysis predicted 10 genes interacted with LAMC3 with an interaction score of 0.4 (P value = 1.0e-16). The proteins encoded by these genes were mainly located in the basement membrane and extracellular matrix component. Furthermore, the biological processes and molecular functions from gene ontology analysis indicated that laminin γ3 chain and related proteins played an important role in structural support and cellular processes through protein-containing complex binding and signaling receptor binding. KEGG pathway enrichment predicted that the LAMC3 gene variant was most likely to participate in the occurrence and development of OCCM through extracellular matrix receptor interaction and PI3K-Akt signaling pathway.

13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161264

RESUMO

Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type-specific α-ß isoform combinations, including α3-ß1 in excitatory neurons and α3-ß2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.


Assuntos
Encéfalo/embriologia , Encéfalo/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Feminino , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Recém-Nascido , Interneurônios/metabolismo , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Neocórtex/embriologia , Neocórtex/enzimologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Fenótipo , Polimicrogiria/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , ATPase Trocadora de Sódio-Potássio/genética
14.
Stem Cell Reports ; 16(4): 968-984, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33798452

RESUMO

Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs. We isolated TBR2-positive (+) IPCs and TBR2-negative (-) cell populations in the developing mouse cortex. Comparative genome-wide gene expression analysis of TBR2+ IPCs versus TBR2- cells revealed differences in key factors involved in chromatid segregation, cell-cycle regulation, transcriptional regulation, and cell signaling. Notably, mutation of many IPC genes in human has led to intellectual disability and caused a wide range of cortical malformations, including microcephaly and agenesis of corpus callosum. Loss-of-function experiments in cortex-specific mutants of Esco2, one of the novel IPC genes, demonstrate its critical role in IPC maintenance, and substantiate the identification of a central genetic determinant of IPC biogenesis. Our data provide novel molecular characteristics of IPCs in the developing mouse cortex.


Assuntos
Acetiltransferases/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Perfilação da Expressão Gênica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Acetiltransferases/genética , Animais , Apoptose/genética , Cromátides/metabolismo , Segregação de Cromossomos/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Mitose/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transdução de Sinais
15.
Cereb Cortex ; 31(9): 4340-4356, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33877363

RESUMO

Neocortical heterotopia consist of ectopic neuronal clusters that are frequently found in individuals with cognitive disability and epilepsy. However, their pathogenesis remains poorly understood due in part to a lack of tractable animal models. We have developed an inducible model of focal cortical heterotopia that enables their precise spatiotemporal control and high-resolution optical imaging in live mice. Here, we report that heterotopia are associated with striking patterns of circumferentially projecting axons and increased myelination around neuronal clusters. Despite their aberrant axonal patterns, in vivo calcium imaging revealed that heterotopic neurons remain functionally connected to other brain regions, highlighting their potential to influence global neural networks. These aberrant patterns only form when heterotopia are induced during a critical embryonic temporal window, but not in early postnatal development. Our model provides a new way to investigate heterotopia formation in vivo and reveals features suggesting the existence of developmentally modulated, neuron-derived axon guidance and myelination factors.


Assuntos
Orientação de Axônios/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios/fisiologia , Animais , Eletroporação/métodos , Feminino , Masculino , Camundongos , Neocórtex/química , Fibras Nervosas Mielinizadas/química , Neurônios/química , Gravidez
16.
J Neurosurg ; : 1-7, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740760

RESUMO

Wilder Penfield (1891-1976) is widely regarded as a dominant figure in 20th century neurobiology for his singular contributions to the structure-function relationship of the brain, his discovery of the language function of the supplementary motor area, the discovery (with Herbert Jasper and Brenda Milner) of the anatomy of recall, and his pioneering work in the surgical treatment of focal epilepsy. But another of his significant discoveries has escaped notice: the recognition that focal microgyria can generate epileptic seizures, and that these can be treated surgically. Penfield discussed the case of the patient through which this discovery was made during his Shattuck Lecture to the Massachusetts Medical Society in 1939. As Penfield gave only a fragmentary account of this case, the patient's chart was retrieved from the Montreal Neurological Institute archives, and his operative note and brain map, intraoperative photographs, and the histopathological and cytological examinations of the resected specimen were reviewed. Based on these primary sources, this paper provides a complete, detailed account of the first case in which microgyria was recognized as a cause of focal epilepsy, which was successfully treated surgically.

17.
Brain Commun ; 3(1): fcaa221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604570

RESUMO

Polymicrogyria is a malformation of cortical development characterized by overfolding and abnormal lamination of the cerebral cortex. Manifestations include epilepsy, speech disturbance and motor and cognitive disability. Causes include acquired prenatal insults and inherited and de novo genetic variants. The proportion of patients with polymicrogyria and a causative germline or mosaic variant is not known. The aim of this study was to identify the monogenic causes of polymicrogyria in a heterogeneous cohort of patients reflective of specialized referral services. Patients with polymicrogyria were recruited from two clinical centres in Australia and Belgium. Patients with evidence of congenital cytomegalovirus infection or causative chromosomal copy number variants were excluded. One hundred and twenty-three patients were tested using deep sequencing gene panels including known and candidate genes for malformations of cortical development. Causative and potentially causative variants were identified and correlated with phenotypic features. Pathogenic or likely pathogenic variants were identified in 25/123 (20.3%) patients. A candidate variant was identified for an additional patient but could not be confirmed as de novo, and therefore it was classified as being of uncertain significance with high clinical relevance. Of the 22 dominant variants identified, 5 were mosaic with allele fractions less than 0.33 and the lowest allele fraction 0.09. The most common causative genes were TUBA1A and PIK3R2. The other eleven causative genes were PIK3CA, NEDD4L, COL4A1, COL4A2, GPSM2, GRIN2B, WDR62, TUBB3, TUBB2B, ACTG1 and FH. A genetic cause was more likely to be identified in the presence of an abnormal head size or additional brain malformations suggestive of a tubulinopathy, such as dysmorphic basal ganglia. A gene panel test provides greater sequencing depth and sensitivity for mosaic variants than whole exome or genome sequencing but is limited to the genes included, potentially missing variants in newly discovered genes. The diagnostic yield of 20.3% indicates that polymicrogyria may be associated with genes not yet known to be associated with brain malformations, brain-specific somatic mutations or non-genetic causes.

18.
Front Neurosci ; 15: 817218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069108

RESUMO

The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors' radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.

20.
Curr Biol ; 31(2): 334-345.e4, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157021

RESUMO

The way in which aberrant neural circuits contribute to epilepsy remains unclear. To elucidate this question, we dissected the circuit mechanisms underlying epileptogenesis using a mouse model of focal cortical malformation with spontaneous epileptiform discharges. We found that spontaneous spike-wave discharges and optogenetically induced hyperexcitable bursts in vivo were present in a cortical region distal to (>0.7 mm) freeze-lesion-induced microgyrus, instead of near the microgyrus. ChR2-assisted circuit mapping revealed ectopic inter-laminar excitatory input from infragranular layers to layers 2/3 pyramidal neurons as the key component of hyperexcitable circuitry. This hyperactivity disrupted the balance between excitation and inhibition and was more prominent in the cortical region distal to the microgyrus. Consistently, the inhibition from both parvalbumin-positive interneurons (PV) and somatostatin-positive interneurons (SOM) to pyramidal neurons were altered in a layer- and site-specific fashion. Finally, closed-loop optogenetic stimulation of SOM, but not PV, terminated spontaneous spike-wave discharges. Together, these results demonstrate the occurrence of highly site- and cell-type-specific synaptic reorganization underlying epileptic cortical circuits and provide new insights into potential treatment strategies.


Assuntos
Córtex Cerebral/anormalidades , Epilepsia/fisiopatologia , Rede Nervosa/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Epilepsia/terapia , Canais Epiteliais de Sódio/genética , Feminino , Humanos , Interneurônios/metabolismo , Masculino , Camundongos Transgênicos , Microeletrodos , Optogenética , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Somatostatina/metabolismo , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...