Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.173
Filtrar
1.
Plant Dis ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39219008

RESUMO

Verticillium wilt (VW), caused by the soil-borne plant pathogenic fungus Verticillium dahliae, is a major disease impacting olive crops globally. In view of the lack of effective post-infection treatments, exclusion and avoidance strategies are essential in disease management. Assessing the risks posed by this pathogen is essential to prevent the spread and to ensure selection of suitable sites for new plantations. This study aimed to elucidate the environmental factors driving V. dahliae establishment in the Andalusia region, in southern Spain, an emblematic Mediterranean landscape for olive cultivation. To this end, we explored ecological niche signals for this fungal pathogen by analyzing 62 environmental variables across 1.6 million hectares dedicated to olive and cotton cultivation, using a 15-yr survey data on VW incidence on presence-absence from both olive and cotton fields. To ensure robust identification of ecological niche signals, we employed randomization-based, non-parametric univariate tests to compare presence records with the broader sampling universe (including absence records). Our findings identified key environmental variables that are associated significantly with V. dahliae presence, including temperature range seasonality (including mean diurnal and annual ranges), summer temperature (maximum of the warmest month, mean of the warmest quarter), and moisture and water availability (near-surface humidity, potential evapotranspiration, vapor pressure) as core niche variables for V. dahliae. Our results replicated the pathogen's known distribution, identifying the Guadalquivir Valley as a particularly high-risk area in view of its mild winters and distinct rainy seasons, providing new insights into the specific environmental conditions that facilitate the pathogen's survival and spread. Furthermore, this study introduces a novel approach to niche modeling that prioritizes variables with consistent effects and significant impact on the presence and distribution of V. dahliae and identifies potential data artifacts. This approach enhances our understanding of ecological requirements in V. dahliae and informs targeted management strategies.

2.
Int J Biol Macromol ; : 135245, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222780

RESUMO

Phosphorus-based flame retardants are widely employed in the study of flame retardancy for cotton fabrics due to their halogen-free nature and high efficiency. The addition of nitrogen and other elements can further enhance flame retardant properties through synergistic effects. However, the synthesis of flame-retardant multifunctional additives based on phosphoramidic ammonium salts has been scarcely reported. In this study, a halogen-free and formaldehyde-free phosphoramidite ammonium salt was synthesized as a synergistic flame retardant multifunctional additive. This compound, with phosphorus as the primary flame retardant element and a nitrogen-containing guanidine group, was used to modify cotton fabrics. The treated fabrics exhibited enhanced flame retardant and antibacterial properties. Notably, cotton fabrics treated with a 17.9 % weight gain showed a damaged length of 4 cm in the vertical flame test, and the LOI value increased to 41.5 %, remaining at 27.3 % even after 50 washing cycles. The results of the cone calorimeter test (CCT) revealed that the peak heat release rate (PHRR) and total heat release (THR) of treated cotton were 30.35 kW/m2 and 5.46 MJ/m2, respectively, representing reductions of 87.04 % and 36.07 % compared to untreated cotton. Physical performance tests indicated only a slight decrease in the strength and whiteness of the cotton fabrics, while softness increased after treatment. Moreover, the treated cotton fabric exhibited excellent antibacterial properties, with antibacterial rates of 99.26 % against E. coli and 98.54 % against S. aureus.

3.
Physiol Plant ; 176(5): e14497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223909

RESUMO

Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H2O2 and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Gossypium/genética , Gossypium/fisiologia , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Estresse Salino/genética , Estresse Salino/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia
4.
Biochem J ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39207824

RESUMO

Cellulosic microfibrils in plant cell walls are largely ensheathed and probably tethered by hydrogen-bonded hemicelluloses. Ensheathing may vary developmentally as hemicelluloses are peeled to enable cell expansion. We characterised a simple method to quantify ensheathed versus naked cellulosic surfaces based on the ability to adsorb a radiolabelled 'cellulose-complementary oligosaccharide', [3H]cellopentaitol. Filter-paper (cellulose) adsorbed 40% and >80% of aqueous 5nM [3H]cellopentaitol within ~1h and ~20h respectively. When [3H]cellopentaitol was rapidly dried onto filter-paper, ~50% of it was desorbable by water, whereas after ~1d annealing in aqueous medium the adsorption became too strong to be reversible in water. 'Strongly' adsorbed [3H]cellopentaitol was, however, ~98% desorbed by 6M NaOH, ~50% by 0.2M cellobiose, and ~30% by 8M urea, indicating a role for hydrogen-bonding reinforced by complementarity of shape. Gradual adsorption was promoted by kosmotropes (1.4M Na2SO4 or 30% methanol), and inhibited by chaotropes (8M urea), supporting a role for hydrogen-bonding. [3H]Cellopentaitol adsorption was strongly competed by non-radioactive cello-oligosaccharides (Cell2-6), the IC50 (half-inhibitory concentration) being highly size-dependent: Cell2, ~70 mM; Cell3, ~7 mM; and Cell4-6, ~0.05 mM. Malto-oligosaccharides (400mM) had no effect, confirming the role of complementarity. The quantity of adsorbed [3H]cellopentaitol was proportional to mass of cellulose. Of seven cottons tested, wild-type Gossypium arboreum fibres were least capable of adsorbing [3H]cellopentaitol, indicating ensheathment of their microfibrillar surfaces, confirmed by their resistance to cellulase digestion, and potentially attributable to a high glucuronoarabinoxylan content. In conclusion, [3H]cellopentaitol adsorption is a simple, sensitive and quantitative way of titrating 'naked' cellulose surfaces.

5.
Sci Rep ; 14(1): 20228, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215054

RESUMO

A two-year field trial was set up to investigate the effects of applying 3 tons ha-1 of wheat (3WB) and cotton biochar (3CB) alone or in combination with chemical nitrogen (N) and phosphorus (P) fertilizers on biochemical properties, yield and nutrient content of safflower under normal irrigation and water stress (irrigation cut-off at flowering stage) conditions. The total water applied in the chemical treatments [150 kg ha-1 N + 50 kg ha-1 P (100% of the recommended dose) and 112.5N + 37.5P (75% of the recommended dose)] under water stress, was significantly higher than other treatments. Application of 112.5N + 37.5P + 3CB increased RWC from 57.5 to 59.4% and the total chlorophyll content from 80.7 to 128.1%, compared to the control. The carotenoid content, catalase and peroxidase in 112.5N + 37.5P + 3CB were lower than chemical fertilizers. Under water stress, the seed yield of 112.5N + 37.5P + 3CB was 10.2-12.6% higher than 112.5N + 37.5P + 3WB. The higher chlorophyll content, RWC, remobilization efficiency and nutrient content in 112.5N + 37.5P + 3CB compared to other treatments was associated with seed yield enhancement. The findings indicate that the combination of CB with 75% recommended dosage of N and P, may be the optimal approach for enhancing safflower production under water stress conditions.


Assuntos
Carthamus tinctorius , Carvão Vegetal , Clorofila , Fertilizantes , Nutrientes , Carthamus tinctorius/metabolismo , Carthamus tinctorius/química , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Clorofila/metabolismo , Fertilizantes/análise , Nutrientes/análise , Nutrientes/metabolismo , Nitrogênio/metabolismo , Nitrogênio/análise , Fósforo/análise , Fósforo/metabolismo , Água/química , Desidratação , Carotenoides/metabolismo
6.
Genes (Basel) ; 15(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39202392

RESUMO

Genome-wide association study (GWAS) has identified numerous significant loci for boll number (BN) and boll weight (BW), which play an essential role in cotton (Gossypium spp.) yield. The North Carolina design II (NC II) genetic mating population exhibits a greater number of genetic variations than other populations, which may facilitate the identification of additional genes. Accordingly, the 3VmrMLM method was employed for the analysis of upland cotton (Gossypium hirsutum L.) in an incomplete NC II genetic mating population across three environments. A total of 204 quantitative trait nucleotides (QTNs) were identified, of which 25 (24.75%) BN and 30 (29.13%) BW QTNs were of small effect (<1%) and 24 (23.76%) BN and 20 (19.42%) BW QTNs were rare (<10%). In the vicinity of these QTNs, two BN-related genes and two BW-related genes reported in previous studies were identified, in addition to five BN candidate genes and six BW candidate genes, which were obtained using differential expression analysis, gene function annotation, and haplotype analysis. Among these, six candidate genes were identified as homologs of Arabidopsis genes. The present study addresses the limitation of heritability missing and uncovers several new candidate genes. The findings of this study can provide a basis for further research and marker-assisted selection in upland cotton.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Locos de Características Quantitativas , Gossypium/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Mapeamento Cromossômico , Proteínas de Plantas/genética
7.
Genes (Basel) ; 15(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39202423

RESUMO

The SEVEN IN ABSENTIA (SINA) E3 ubiquitin ligase is widely involved in drought and salt stress in plants. However, the biological function of the SINA proteins in cotton is still unknown. This study aimed to reveal the function of GhSINAT5 through biochemical, genetic and molecular approaches. GhSINAT5 is expressed in several tissues of cotton plants, including roots, stems, leaves and cotyledons, and its expression levels are significantly affected by polyethylene glycol, abscisic acid and sodium chloride. When GhSINAT5 was silenced in cotton plants, drought and salinity stress occurred, and the length, area and volume of the roots significantly decreased. Under drought stress, the levels of proline, superoxide dismutase, peroxidase and catalase in the GhSINAT5-silenced cotton plants were significantly lower than those in the non-silenced control plants, whereas the levels of hydrogen peroxide and malondialdehyde were greater. Moreover, the expression of stress-related genes in silenced plants under drought stress suggested that GhSINAT5 may play a positive role in the plant response to drought and salt stress by regulating these stress response-related genes. These findings not only deepen our understanding of the mechanisms of drought resistance in cotton but also provide potential targets for future improvements in crop stress resistance through genetic engineering.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Tolerância ao Sal , Gossypium/genética , Gossypium/metabolismo , Gossypium/fisiologia , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inativação Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Resistência à Seca
8.
Genes (Basel) ; 15(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202437

RESUMO

Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Fosfoproteínas , Proteínas de Plantas , Proteômica , Regeneração , Gossypium/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Regeneração/genética , Regeneração/fisiologia , Fosforilação , Proteoma/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Processamento de Proteína Pós-Traducional
9.
Biomed Mater ; 19(6)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39151467

RESUMO

Electrospinning is a versatile and straightforward technique to produce nanofibrous mats with different morphologies. In addition, by optimizing the solution, processing, and environmental parameters, three-dimensional (3D) nanofibrous scaffolds can also be created using this method. In this work, the preparation and characterization of bioactive glass (BG) scaffolds based on the SiO2-CaO sol-gel system, a biomaterial with a highly reactive surface, is reported. The electrospinning technique was combined with sol-gel methods to obtain nanofibrous 3D cotton wool-like scaffolds. The addition of zinc and copper ions to the silica-calcia system was examined, and the influence of these ions on the material properties and characteristics was investigated by various characterization techniques, from morphological and chemical properties to antibacterial and wound closure capability, cell viability and ion release. Our findings show that the cotton wool-like ion-doped nanofibers are promising for wound healing applications.


Assuntos
Materiais Biocompatíveis , Sobrevivência Celular , Cobre , Vidro , Teste de Materiais , Nanofibras , Alicerces Teciduais , Zinco , Cobre/química , Nanofibras/química , Zinco/química , Vidro/química , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Íons , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Dióxido de Silício/química , Engenharia Tecidual/métodos
10.
Nanomaterials (Basel) ; 14(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39120368

RESUMO

Cotton textiles improved with metal oxide nanoparticles acquire additional features that may enhance their action against antimicrobial-resistant pathogens due to the unique properties and characteristics of the nanoparticles. The main objective of this work is to evaluate the antimicrobial features of two-sided-coated cotton textiles with ZnO nanoparticles. Nanoparticles were deposited using green chemistry technology with low-temperature oxygen plasma. ZnO particles formed stable structures on textile fibers. The optimal deposition parameters (150 W plasma power, 120 min immersion time) achieved the best effects against Gram-negative and Gram-positive bacteria and microscopic fungi. Two-sided-coated cotton with ZnO nanoparticles showed high antibacterial action on Gram-negative and Gram-positive bacteria. Modification with zinc oxide inhibited the growth of Candida albicans by more than half.

11.
Plant Commun ; : 101047, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39138865

RESUMO

Calcium-dependent protein kinases (CDPKs) are pivotal signaling transduction enzymes in plants, especially responsive to diverse stress, including herbivory. In this study, through comprehensive analysis of CDPK gene family in upland cotton, we showed that GhCPKs are widely expressed in multiple tissues of cotton and positively respond to various biotic and abiotic stress. We developed a strategy for screening insect-resistant genes based on the CRISPR/Cas9 mutant library of GhCPKs. The library contains 82 members of the GhCPKs using 246 sgRNAs to generate 518 independent T0 plants. The coverage rate of target genes reached to 86.18%, the genome editing rate reached to 89.49%, and the editing heritability reached 82%. Through field insect bioassay, 14 GhCPK mutants resistant or susceptible to insect were identified. The most obvious insect-resistant mutant, cpk33/74 (simultaneously knocking out the homologous genes GhCPK33 and GhCPK74), was selected for further study. Oral secretions (OS) from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid (JA) content. S-adenosylmethionine synthase (SAMS) is an important protein involved in plant stress response, protein interaction experiments provided evidence of interactions between GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2, respectively. Additionally, silencing GhSAMS1 and GhSAM2 in cotton using VIGS resulted in decreased defense against S. litura. This study provides an effective strategy for constructing a mutant library of gene families in polyploid plant species and valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.

12.
Int J Biol Macromol ; : 134644, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128740

RESUMO

This research describes the synthesis of a silane derivative containing phosphorus and nitrogen atoms, leveraging their synergistic flame retardant effect through the incorporation of a PH bond to the isocyanate moiety. The synthesized silane featured alkoxysilyl groups, facilitating permanent bonds with the cotton fabric surface via hydrolysis. Cotton fabrics were modified using silane solutions of varying concentrations (2.5 %, 5 %, and 10 %) through a dip-coating process to determine the effect of the modifier amount on fabric properties. The modified fabrics were subjected to FT-IR, TGA, SEM, and EDS analyses, as well as microcalorimetric and LOI tests, to assess changes in flammability. FT-IR, SEM/EDS, and add-on analyses confirmed effective coverage of the cotton fabric with the flame retardant. Thermogravimetric tests indicated a significant reduction in the mass loss rate during thermal degradation. LOI analyses demonstrated a decrease in flammability (increase in LOI value), while microcalorimetric tests showed a substantial decrease in the heat release rate, correlating with increased modifier concentration on the fabric surface. Post-washing analyses revealed that, although some of the modifier was washed out, the samples still retained reduced flammability.

13.
BMC Plant Biol ; 24(1): 781, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148017

RESUMO

BACKGROUND: Sudden temperature drops, resulting from extreme weather events, often occur during the boll-setting period of cotton in Xinjiang, China, causing decreased expression of Bacillus thuringiensis (Bt) insecticidal proteins in cotton bolls. The precise threshold temperatures and durations that lead to significant changes in Cry1Ac endotoxin levels under low temperatures remain unclear. To address this, we investigated the effects of different temperatures and stress durations on Cry1Ac endotoxin levels in cotton bolls. In 2020-2021, two Bt transgenic cotton varieties, conventional Sikang1 and hybrid Sikang3, were selected as experimental materials. Various low temperatures (ranging from 16 to 20 °C) with different durations (12 h, 24 h and 48 h) were applied during the peak boll-setting period. RESULTS: As the temperature decreased, the Cry1Ac endotoxin content in the boll shell, fiber, and seed exhibited a declining trend. Moreover, the threshold temperature which caused a significant reduction in Cry1Ac endotoxin content increased with the prolonged duration of low-temperature stress. Among the components of cotton bolls, seeds were most affected by low-temperature stress, with the threshold temperature for a significant reduction in Cry1Ac endotoxin content ranging from 17 °C to 19 °C. Correlation analysis indicated that low temperatures led to a decrease in protein synthesis capacity and an increase in degradation ability, resulting in reduced Cry1Ac endotoxin content. Pathway analysis revealed that both free amino acid and peptidase had significant negative effects on Cry1Ac endotoxin content. CONCLUSION: In summary, when the daily average temperature was ≤ 19 °C, implementing cultural practices to reduce free amino acid content and peptidase activity could serve as effective cold defense strategies for Bt cotton production.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Temperatura Baixa , Endotoxinas , Gossypium , Proteínas Hemolisinas , Nitrogênio , Sementes , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sementes/metabolismo , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas , Bacillus thuringiensis
14.
Sci Rep ; 14(1): 19081, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154113

RESUMO

The plant-available soil phosphorus rate and methods for applying phosphatic fertilizer and soil P-fixation capacity are critical factors for lower cotton productivity in Southern Punjab, Pakistan. Hence, a two-year study was conducted in Central Cotton Research Institute (CCRI), Multan, Pakistan, to examine the effects of various P rates and application methods on cotton crop output during the growing seasons of 2014 and 2015. Phosphorus was applied in four rates (0, 40, 80, and 120 kg ha-1 P2O5) using broadcast, band application, and fertigation methods. Results indicated that the impact of P rates was statistically significant on plant height, the number of nodes, monopodial and sympodial branches, leaf area index, harvest index, and seed cotton yield. The greater P application (120 kg P2O5 ha-1) had a better effect on cotton productivity than the lower application rates (0, 40, and 80 kg P2O5 ha-1). The band application responded better on nodes plant-1, sympodial branches plant-1, boll weight, leaf area index, lint yield, and harvest during the growing season 2015. Therefore, by adopting the band application coupled with 120 kg P2O5 ha-1 rather than the conventional method of broadcast, productivity of cotton crops could be increased.

15.
Am J Bot ; 111(8): e16386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39107998

RESUMO

PREMISE: A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS: Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS: We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS: Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.


Assuntos
Conversão Gênica , Gossypium , Filogenia , Poliploidia , Gossypium/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Diploide , Genes de Plantas , Cromossomos de Plantas/genética
16.
Heliyon ; 10(15): e34482, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144938

RESUMO

Due to the shortage of raw fiber materials and stricter legislative conditions, it has become necessary to process even the more contaminated fiber wastes that contain only a small amount of useable fibers. Hence, this paper investigates the impact of different cleaning channels on the Rieter R37 rotor spinning machine in controlling spinning strategy and yarn quality using recovered blowroom cotton waste fibers. The study involves spinning 98-tex yarns with different cleaning channels during the spinning process, using recovered blowroom cotton waste in blends with virgin cotton processed into slivers by two methods. Qualitative indicators in the fiber-sliver-yarn line were evaluated and graphically compared. The statistical significance of the influencing factors was determined using the Generalized Anova. Additionally, the quality of the experimental samples was compared to authentic data from global production using the USTER® STATISTIC. The results underline the significant influence of fiber quality, sliver preparation method and implemented cleaning channels on the arrangement of fibers in yarn structures as evidenced by structural and mechanical parameters. In particular, the comparison with USTER® STATISTICS confirms that all yarns meet the required quality standards for selected applications, including those spun exclusively from 100 % cotton waste. Furthermore, the results demonstrate that this innovative technology enables yarn manufacturers to meet customer demands, ensure optimal yarn quality and achieve cost savings by optimizing waste removal without compromising fiber yield.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39150669

RESUMO

Effective management and remediation strategies are crucial to minimize the impacts of both organic and inorganic contaminants on environmental quality and human health. This study investigates a novel approach utilizing cotton shell activated carbon (CSAC), rice husk activated carbon (RHAC), and wasp hive activated carbon (WHAC), produced through alkali treatment and carbonization under N2 atmosphere at 600 °C. The adsorption capacities of biomass-derived mesoporous activated carbons (CSAC, RHAC, WHAC) alongside macroporous commercial activated carbons (CAC) were evaluated for removing rhodamine B (Rh B) and hexavalent chromium (Cr6+). The CSAC exhibits remarkable adsorption efficiency (255.4 mg.g-1) for Cr(VI) removal, while RHAC demonstrates superior efficacy (174.2 mg.g-1) for Rh B adsorption. Investigating various optimal parameters including initial pH (pH 3 for Cr and pH 7 for Rh B), catalyst dosage (200 mg.L-1), and initial concentration (20 mg.L-1), the Redlich-Peterson isotherm model is applied to reveal a hybrid adsorption mechanism encompassing monolayer (chemisorption) and multilayer (van der Waals adsorption) processes. Kinetic analysis highlights the pseudo-second-order and Elovich models as the most suitable, suggesting physiochemisorption mechanisms. Thermodynamic analysis indicates the endothermic nature of the adsorption process, with increased randomness at the solid-solution interface. Isosteric heat investigations using Clausius-Clapeyron, Arrhenius, and Eyring equations reveal a heterogeneous surface nature across all activated carbons. Further confirmation of Rh B and Cr(VI) adsorption onto activated carbons is provided through FTIR, FESEM, and EDAX analysis. This study highlights the innovation and promise of utilizing biomass-derived activated carbons for effective pollutant removal.

18.
Front Plant Sci ; 15: 1416940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184581

RESUMO

Introduction: Effective pest management is important during the natural growth phases of cotton in the wild. As cotton fields are infested with "tiny pests" (smaller than 32×32 pixels) and "very tiny pests" (smaller than 16×16 pixels) during growth, making it difficult for common object detection models to accurately detect and fail to make sound agricultural decisions. Methods: In this study, we proposed a framework for detecting "tiny pests" and "very tiny pests" in wild cotton fields, named SRNet-YOLO. SRNet-YOLO includes a YOLOv8 feature extraction module, a feature map super-resolution reconstruction module (FM-SR), and a fusion mechanism based on BiFormer attention (BiFormerAF). Specially, the FM-SR module is designed for the feature map level to recover the important feature in detail, in other words, this module reconstructs the P5 layer feature map into the size of the P3 layer. And then we designed the BiFormerAF module to fuse this reconstruct layer with the P3 layer, which greatly improves the detection performance. The purpose of the BiFormerAF module is to solve the problem of possible loss of feature after reconstruction. Additionally, to validate the performance of our method for "tiny pests" and "very tiny pests" detection in cotton fields, we have developed a large dataset, named Cotton-Yellow-Sticky-2023, which collected pests by yellow sticky traps. Results: Through comprehensive experimental verification, we demonstrate that our proposed framework achieves exceptional performance. Our method achieved 78.2% mAP on the "tiny pests" test result, it surpasses the performance of leading detection models such as YOLOv3, YOLOv5, YOLOv7 and YOLOv8 by 6.9%, 7.2%, 5.7% and 4.1%, respectively. Meanwhile, our results on "very tiny pests" reached 57% mAP, which are 32.2% higher than YOLOv8. To verify the generalizability of the model, our experiments on Yellow Sticky Traps (low-resolution) dataset still maintained the highest 92.8% mAP. Discussion: The above experimental results indicate that our model not only provides help in solving the problem of tiny pests in cotton fields, but also has good generalizability and can be used for the detection of tiny pests in other crops.

19.
J Econ Entomol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186571

RESUMO

The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a significant cotton pest worldwide. Bacillus thuringiensis (Bt) cotton producing Cry1Ac has been used since 1997 for the control of this pest in China and a significant increase in H. armigera resistance to Cry1Ac has occurred in northern China. To mitigate resistance evolution, it is necessary to develop and plant pyramided 2- and 3-toxin Bt cotton to replace Cry1Ac cotton. For sustainable use of pyramided Bt cotton, we used diet overlay bioassays to measure the baseline susceptibility of H. armigera to Cry2Ab in 33 populations collected in 2017, 2018, and 2021 in 12 locations from major cotton-producing areas of China. The lethal concentration killing 50% (LC50) or 99% (LC99) of individuals from the populations ranged from 0.030 to 0.138 µg/cm2 and 0.365 to 2.964 µg/cm2, respectively. The ratio of the LC50 for the most resistant and susceptible population was 4.6, indicating moderate among-population variability in resistance. The susceptibility of H. armigera to Cry2Ab did not vary significantly over years. A diagnostic concentration of 2 µg/cm2 was calculated as twice the LC99 from an analysis of pooled data for the field-collected populations. This concentration discriminated well between susceptible and resistant individuals, as it killed all larvae from a susceptible laboratory strain and 0%, 0%, and 23% of larvae from 3 laboratory strains with > 100-fold resistance to Cry2Ab. These baseline susceptibility data and diagnostic concentration for Cry2Ab will be useful for monitoring the evolution of H. armigera resistance to pyramided Bt cotton in China.

20.
Proc Natl Acad Sci U S A ; 121(37): e2403256121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186667

RESUMO

This study reports the earliest directly dated occurrence of archaeological wheat and cotton in the humid forests of West Africa. These are the first archaeobotanical results from the medieval urban center of Ile-Ife, southwestern Nigeria, best known for its famous artworks. Both wheat and cotton likely spread through trans-Saharan trade networks that laid the foundation for later European trade systems. Forty-eight (48) grains of free-threshing wheat (Triticum aestivum/durum) represent the largest assemblage of wheat recovered in sub-Saharan West Africa, which is surprising given that wheat cannot be cultivated locally. Larger quantities of cotton (Gossypium sp.) recovered from late 12th- to early 13th-century CE contexts suggest earlier and more widespread use than wheat. Cotton may have been cultivated and manufactured into cloth locally. The quick adoption of these exotic crops illustrates the active negotiation of prestige through culinary and adornment practices, as well as a high degree of agricultural experimentation.


Assuntos
Arqueologia , Gossypium , Triticum , Nigéria , História Medieval , Agricultura/história , Produtos Agrícolas/história , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA