Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 919
Filtrar
1.
Acta Trop ; 257: 107299, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955320

RESUMO

Q fever is a re-emerging zoonosis whose epidemiological cycle in ruminants is well defined, while the role of other species (including pets) is still debated. In this study, the serological and molecular prevalence of Coxiella burnetii in a sample of dogs in the Campania region, southern Italy was evaluated. A seroprevalence of 5.97 % (16/268) was observed using a commercial multispecies ELISA, compared to only 2.7 % (5/197) at the molecular level. No risk factors correlated with higher levels of exposure except for the size of the animal (small dogs showed significantly higher seroprevalence). Positive samples were further evaluated for reactivity to phase I and II antigens using IFA and phase-specific ELISAs (for specific IgG detection). Two animals showed antibodies against both phases of infection, suggesting that Coxiella burnetii seroconversion in dogs follows similar dynamics to those observed in ruminants. One of the five samples that showed positive results in real-time PCR was confirmed at the PCR endpoint and showed similarity with other Coxiella spp. strains detected in tick and dog samples when sequenced. In this study, we demonstrated exposure to Coxiella burnetii for different categories of dogs in southern Italy, including pet dogs living indoors. Since reports of transmission of infection from pets to humans have been described in both rural and urban areas, careful surveillance of these species is also necessary. In the lack of additional information, comprehending the risk to humans requires monitoring of wild and domestic animal populations.

2.
Front Vet Sci ; 11: 1396714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962707

RESUMO

Introduction: Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods: In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results: The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion: These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.

3.
Proc Natl Acad Sci U S A ; 121(25): e2315481121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870060

RESUMO

Intracellular bacterial pathogens divert multiple cellular pathways to establish their niche and persist inside their host. Coxiella burnetii, the causative agent of Q fever, secretes bacterial effector proteins via its Type 4 secretion system to generate a Coxiella-containing vacuole (CCV). Manipulation of lipid and protein trafficking by these effectors is essential for bacterial replication and virulence. Here, we have characterized the lipid composition of CCVs and found that the effector Vice interacts with phosphoinositides and membranes enriched in phosphatidylserine and lysobisphosphatidic acid. Remarkably, eukaryotic cells ectopically expressing Vice present compartments that resemble early CCVs in both morphology and composition. We found that the biogenesis of these compartments relies on the double function of Vice. The effector protein initially localizes at the plasma membrane of eukaryotic cells where it triggers the internalization of large vacuoles by macropinocytosis. Then, Vice stabilizes these compartments by perturbing the ESCRT machinery. Collectively, our results reveal that Vice is an essential C. burnetii effector protein capable of hijacking two major cellular pathways to shape the bacterial replicative niche.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Complexos Endossomais de Distribuição Requeridos para Transporte , Pinocitose , Vacúolos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Humanos , Células HeLa , Membrana Celular/metabolismo , Animais , Fosfatidilinositóis/metabolismo
4.
Open Forum Infect Dis ; 11(6): ofae277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868311

RESUMO

Background: Identifying and treating patients with acute Q fever who are at an increased risk of progressing to persistent disease is crucial for preventing future complications. In this study, we share our decade-long clinical experience with acute Q fever, highlighting the challenges that clinicians encounter from making an initial diagnosis and performing risk stratification to determining the appropriate prophylaxis regimen and duration. Methods: We retrieved records of adult Mayo Clinic patients (≥18 years) with positive Coxiella burnetii serology results between 1 January 2012 and 31 March 2022. Patients with Q fever anti-phase II immunoglobulin G ≥1:256 by indirect immunofluorescence were further analyzed. Results: Thirty-one patients were included. Their median age was 58 years (IQR, 50-64), and the majority were men (84%). Acute hepatitis (29%), flu-like illness (25.8%), and pneumonia (16%) were the most common presentations. Thirteen patients (42%) received antibiotic prophylaxis to prevent disease progression, with significant variation in the indications and duration across physicians. The combination of doxycycline and hydroxychloroquine was the preferred regimen. Prophylaxis was administered for a median 333 days (IQR, 168-414). Four patients (13%) progressed to Q fever native valve infective endocarditis, with elevated anticardiolipin immunoglobulin G levels being the sole risk factor in 2 cases. The small sample size precluded drawing conclusions on the impact of prophylaxis in preventing disease progression. Conclusions: Management of acute Q fever is complicated by the lack of comprehensive clinical guidelines leading to varied clinical practices. There is a critical need for randomized trials to establish robust evidence-based protocols for management.

5.
Front Cell Infect Microbiol ; 14: 1394019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841112

RESUMO

Introduction: Coxiella burnetii is a gram-negative obligate intracellular bacterium and a zoonotic pathogen that causes human Q fever. The lack of effective antibiotics and a licensed vaccine for Coxiella in the U.S. warrants further research into Coxiella pathogenesis. Within the host cells, Coxiella replicates in an acidic phagolysosome-like vacuole termed Coxiella-containing vacuole (CCV). Previously, we have shown that the CCV pH is critical for Coxiella survival and that the Coxiella Type 4B secretion system regulates CCV pH by inhibiting the host endosomal maturation pathway. However, the trafficking pattern of the 'immature' endosomes in Coxiella- infected cells remained unclear. Methods: We transfected HeLa cells with GFP-tagged Rab proteins and subsequently infected them with mCherry-Coxiella to visualize Rab protein localization. Infected cells were immunostained with anti-Rab antibodies to confirm the Rab localization to the CCV, to quantitate Rab11a and Rab35- positive CCVs, and to quantitate total recycling endosome content of infected cells. A dual-hit siRNA mediated knockdown combined with either immunofluorescent assay or an agarose-based colony-forming unit assay were used to measure the effects of Rab11a and Rab35 knockdown on CCV area and Coxiella intracellular growth. Results: The CCV localization screen with host Rab proteins revealed that recycling endosome-associated proteins Rab11a and Rab35 localize to the CCV during infection, suggesting that CCV interacts with host recycling endosomes during maturation. Interestingly, only a subset of CCVs were Rab11a or Rab35-positive at any given time point. Quantitation of Rab11a/Rab35-positive CCVs revealed that while Rab11a interacts with the CCV more at 3 dpi, Rab35 is significantly more prevalent at CCVs at 6 dpi, suggesting that the CCV preferentially interacts with Rab11a and Rab35 depending on the stage of infection. Furthermore, we observed a significant increase in Rab11a and Rab35 fluorescent intensity in Coxiella-infected cells compared to mock, suggesting that Coxiella increases the recycling endosome content in infected cells. Finally, siRNA-mediated knockdown of Rab11a and Rab35 resulted in significantly smaller CCVs and reduced Coxiella intracellular growth, suggesting that recycling endosomal Rab proteins are essential for CCV expansion and bacterial multiplication. Discussion: Our data, for the first time, show that the CCV dynamically interacts with host recycling endosomes for Coxiella intracellular survival and potentially uncovers novel host cell factors essential for Coxiella pathogenesis.


Assuntos
Coxiella burnetii , Endossomos , Interações Hospedeiro-Patógeno , Vacúolos , Proteínas rab de Ligação ao GTP , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Vacúolos/metabolismo , Vacúolos/microbiologia , Células HeLa , Endossomos/metabolismo , Endossomos/microbiologia , Febre Q/microbiologia , Febre Q/metabolismo
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 154-158, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38857958

RESUMO

OBJECTIVE: To investigate the prevalence of tick-borne rickettsial infections in selected areas of Liupanshui City, Guizhou Province, 2023, so as to provide insights into the management of tick-borne rickettsioses in the city. METHODS: Ticks were captured from the body surface of bovines and sheep in Gaoxing Village, Dashan Township, Liupanshui City, Guizhou Province during the period between April and June, 2023, and tick species were identified using morphological and molecular biological techniques. In addition, tick-borne Rickettsia was identified using a nested PCR assay, including spotted fever group rickettsiae (SFGR), Coxiella spp., Anaplasma spp., Ehrlichia spp., and Orientia spp., and positive amplified fragments were sequenced and aligned with known sequences accessed in the GenBank database. RESULTS: A total of 200 ticks were collected and all tick species were identified as Rhipicephalus microplus. Nestle PCR assay combined with sequencing identified ticks carrying Candidatus Rickettsia jingxinensis (40.50%), Coxiella burnetii (1.50%), and Coxiella-like endosymbionts (27.00%), and Anaplasma spp., Ehrlichia spp. or Orientsia spp. was not detected. CONCLUSIONS: R. microplus carried Candidatus R. jingxinensis, C. burnetii, and Coxiella-like endosymbionts in selected areas of Liupanshui City, Guizhou Province. Intensified monitoring of tickborne rickettsial infections is needed in livestock and humans to reduce the damages caused by rickettsioses.


Assuntos
Rickettsia , Animais , Rickettsia/isolamento & purificação , Rickettsia/genética , China/epidemiologia , Ovinos , Bovinos , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia
7.
Med Vet Entomol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864653

RESUMO

Some dipteran flies play an important role in the transmission of pathogens such as viruses, bacteria, fungi, protozoan and metazoan parasites in humans and other animals. Despite this importance, knowledge of the prevalence and molecular characteristics of some pathogens in flies is limited, and no data are available for Türkiye. In this study, we investigated the possible vector role of muscid fly species for the transmission of Enterocytozoon bieneusi Desportes (Chytridiopsida: Enterocytozoonidae), Encephalitozoon spp., Coxiella burnetii Derrick (Legionellales: Coxiellaceae) and Thelazia spp. using polymerase chain reaction (PCR) and sequence analysis. The flies were trapped in different animal-related places and surroundings from two different geographical regions of Türkiye including Central Anatolia and Middle Black Sea. According to the morphological keys, 850 (85%), 141 (14.1%) and 6 (0.6%) of the total of 1000 fly specimens identified as Musca domestica Linnaeus (Diptera: Muscidae), Stomoxys calcitrans Linnaeus (Diptera: Muscidae) and Musca autumnalis De Geer (Diptera: Muscidae), respectively. The other species including Haematobia irritans Linnaeus (Diptera: Muscidae), Muscina stabulans Fallén (Diptera: Muscidae) and Hydrotaea ignava Harris (Diptera: Muscidae) were each represented by a single specimen. Screening of the pathogens identified E. bieneusi only in M. domestica with a prevalence of 2.4%. Sequence analyses identified three known genotypes, Type IV, BEB6 and BEB8, and one novel genotype named AEUEb of E. bieneusi in M. domestica. Coxiella burnetii was detected in M. domestica and S. calcitrans with prevalences of 2.9% and 2.8%, respectively. The one specimen of H. ignava was also positive for C. burnetii. Encephalitozoon spp. and Thelazia spp. were not found in the examined specimens. Our results contribute to the current knowledge on the vector potential of muscid flies and their possible role in the transmission dynamics of certain pathogens, especially in regions where diseases are prevalent and affect public and animal health.

8.
Front Cardiovasc Med ; 11: 1418949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863900

RESUMO

Q fever is a zoonotic infection caused by Coxiella burnetii. In rare cases, it can lead to vascular complications, including infected aneurysms. Successful treatment involves surgery and antibiotics, but there is no established consensus or clear recommendation for the choice of material graft. We report a case of abdominal aortic aneurysm infected by C. burnetii treated by open surgery with complete resection of the aneurysm and homemade bovine pericardial bifurcated graft reconstruction and long-term antibiotherapy using doxycycline. One year postoperatively, the patient had no sign of persistent infection or vascular complication. Moreover, C. burnetii immunoglobulins titers decreased 6 months postoperatively.

9.
BMC Infect Dis ; 24(1): 591, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886677

RESUMO

BACKGROUND: Q fever, caused by the zoonotic pathogen Coxiella burnetii, exhibits a worldwide prevalence. In China, Q fever is not recognized as a notifiable disease, and the disease is overlooked and underestimated in clinical practice, leading to diagnostic challenges. CASE PRESENTATION: We present a case series of three patients diagnosed with persistent Q fever between 2022 and 2023. The average age of our three cases was 63.33 years old, consisting of two males and one female. The medical history of the individuals included previous valve replacement, aneurysm followed by aortic stent-graft placement and prosthetic hip joint replacement. At the onset of the disease, only one case exhibited acute fever, while the remaining two cases were devoid of any acute symptoms. The etiology was initially overlooked until metagenomic next-generation sequencing test identified Coxiella burnetii from the blood or biopsy samples. Delayed diagnosis was noted, with a duration ranging from three months to one year between the onset of the disease and its confirmation. The epidemiological history uncovered that none of the three cases had direct exposure to domestic animals or consumption of unpasteurized dairy products. Case 1 and 2 resided in urban areas, while Case 3 was a rural resident engaged in farming. All patients received combination therapy of doxycycline and hydroxychloroquine, and no recurrence of the disease was observed during the follow-up period. CONCLUSION: Q fever is rarely diagnosed and reported in clinical practice in our country. We should be aware of persistent Q fever in high-risk population, even with unremarkable exposure history. Metagenomic next-generation sequencing holds great potential as a diagnostic tool for identifying rare and fastidious pathogens such as Coxiella burnetii.


Assuntos
Coxiella burnetii , Diagnóstico Tardio , Febre Q , Febre Q/diagnóstico , Febre Q/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , China/epidemiologia , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genética , Idoso , Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala
10.
Rev Med Interne ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762438

RESUMO

INTRODUCTION: Q fever is a zoonosis caused by Coxiella burnetii. Acute infection is mainly asymptomatic. In other cases it mainly causes a flu-like illness, a pneumonia, or an hepatitis. We present an atypical case of an acute Q fever revealed by a massive pleural effusion. CASE REPORT: We report the case of a 43-year-old man referred to our hospital for an acute respiratory distress. Further analyses showed an exudative eosinophilic pleural effusion, associated with a pulmonary embolism and a deep femoral vein thrombosis. Aetiologic explorations revealed an acute Q fever (IgM and IgG against C. burnetii phase II antigens) associated with anti-phospholipids. The outcome was favorable with vitamin K antagonists, doxycycline, and hydroxychloroquine, till the negativation of the anti-phospholipid antibodies. DISCUSSION AND CONCLUSION: During acute C. burnetii infections, anti-phospholipid antibodies are highly prevalent but thrombotic complications are rare. The 2023 ACR/EULAR APS criteria restricts the diagnosis of APS, as in our case of acute severe infection. In front of an atypical pneumonia and/or thrombotic events, screening of C. burnetii and anti-phospholipid antibodies could be useful. Given its low level of evidence, prolongated treatment by doxycycline, hydroxychloroquine ± anticoagulant for C. burnetii's associated anti-phospholipid syndrome is discussed, but succeeded in our case.

11.
Comp Immunol Microbiol Infect Dis ; 109: 102188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691873

RESUMO

This study aimed to evaluate the bacterial burden and perform molecular characterization of Coxiella burnetii during shedding in pregnant (vaginal, mucus and feces) and postpartum (vaginal mucus, feces and milk) ewes from Saint Kitts. Positive IS1111 DNA (n=250) for C. burnetii samples from pregnant (n=87) and postpartum (n=74) Barbados Blackbelly ewes in a previous investigation were used for this study. Vaginal mucus (n=118), feces (n=100), and milk (n=32) positive IS1111 C. burnetii-DNA were analysed by real time qPCR (icd gene). For molecular characterization of C. burnetii, selected (n=10) IS1111 qPCR positive samples were sequenced for fragments of the IS1111 element and the 16 S rRNA gene. nBLAST, phylogenetic and haplotype analyses were performed. Vaginal mucus, feces and milk had estimated equal amounts of bacterial DNA (icd copies), and super spreaders were detected within the fecal samples. C. burnetii haplotypes had moderate to high diversity, were ubiquitous worldwide and similar to previously described in ruminants and ticks and humans.


Assuntos
Coxiella burnetii , DNA Bacteriano , Fezes , Leite , Filogenia , Período Pós-Parto , Febre Q , Doenças dos Ovinos , Vagina , Animais , Coxiella burnetii/genética , Coxiella burnetii/isolamento & purificação , Feminino , Febre Q/veterinária , Febre Q/microbiologia , Gravidez , Fezes/microbiologia , Ovinos/microbiologia , Doenças dos Ovinos/microbiologia , Vagina/microbiologia , DNA Bacteriano/genética , Leite/microbiologia , Derrame de Bactérias , Carga Bacteriana , RNA Ribossômico 16S/genética , Haplótipos
12.
Animals (Basel) ; 14(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731318

RESUMO

Coxiellosis or Q fever is an infectious zoonotic disease caused by the bacterium Coxiella burnetii. A systematic review using bibliographic research was carried out, and the focus was the relationship between C. burnetii infection and reproductive disorders in cattle [abortion/stillbirth/perinatal morality/weak calves (ASPW complex); retained foetal membranes (RFMs); metritis/endometritis; and infertility/sub-fertility]. The bibliographical search yielded 443 results from databases, but only 61 were deemed eligible. For each disorder, summary tables were prepared, and a scientific evidence score was calculated for each study based on four criteria to help assess the level of evidence for the impact of C. burnetii on the reproductive disorders assessed: type of publication (peer-reviewed or other); type of study (case-control/cohort or other); type of C. burnetii test (direct or indirect); and comparative statistical analysis (yes or no). In addition, summary tables also included information on the study population, country, authors and year of publication, key findings and an assessment of the evidence for an association. For the ASPW complex, RFMs, metritis/endometritis and infertility/sub-fertility, 43, 9, 8 and 19 studies provided data, respectively. On a scale of four, nearly 50% of all study citations had evidence scores of three or four. For ASPW, RFMs and infertility/sub-fertility, there is a significant body of evidence to support a deleterious role for Q fever. In contrast, for metritis/endometritis, the evidence is unclear. It is concluded that there is a substantial need for further research, particularly involving larger animal populations in more controlled settings. To provide more consistency, it is recommended that authors follow more precise definitions of reproductive parameters and more robust diagnostic methodologies.

13.
Animals (Basel) ; 14(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731379

RESUMO

It was the aim of this study to examine whether the usage of the vaccine COXEVAC® (Ceva Santé Animale) could reduce the consumption of antibiotics in Q-fever-positive dairy farms. Additionally, the effects of other herd-level factors on the consumption of antibiotics were investigated. A total of 36 farms with vaccination and 13 farms without vaccination participated in this longitudinal cohort study. In all herds, Coxiella burnetii had been directly or indirectly diagnosed. To compare the treatment frequency of antibiotics between the vaccinated group and the non-vaccinated group, the consumption of antibiotics for each farm was collected using the veterinary documents about the application and delivery of antibiotics. To gather detailed information about herd data, nutrition, milking management, housing, and animal health, the farmers were interviewed with the help of a questionnaire. The results thereof suggest that there might be an association between the vaccination against Q fever and a reduced consumption of antibiotics. Neither herd size nor milk yield level influenced the consumption of antibiotics in the study herds. Type of flooring and udder-cluster disinfection while milking were associated with a lower and higher therapy frequency, respectively. Further studies are necessary to elucidate the cause-effect relationship between vaccination and the consumption of antibiotics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38768316

RESUMO

BACKGROUND: Globally, India has a high zoonotic disease burden and lacks surveillance data in humans and animals. Rodents are known reservoirs for many zoonotic diseases and their synanthropic behavior poses a great public health threat. METHODS: In this study, trapped rodents/shrews from randomly selected villages within Puducherry, India, and their ectoparasites were screened for zoonotic pathogens, namely, Orientia tsutsugamushi, other pathogenic rickettsiae, Leptospira spp., Cryptosporidium spp., Coxiella burnetii and methicillin-resistant Staphylococcus aureus (MRSA) using conventional PCR. A total of 58 rodents/shrews were trapped from 11 villages. The species trapped were Suncus murinus (49/58, 84.48%), Rattus rattus (8/58, 13.79%) and Rattus norvegicus (1/58, 1.72%). All ectoparasites collected were identified as mites and its infestation rate was 46.55% (27/58). RESULTS: Real-time PCR targeting the 47 kDa gene of O. tsutsugamushi revealed positivity in one rodent and one shrew (3.45%) and two mite pools (7.41%). Conventional PCR targeting the 56 kDa gene revealed positivity in one shrew and two mite pools and the phylogenetic analysis of all three amplicons indicated the circulation of the Gilliam-related serotype. MRSA was detected in the alimentary tract of a shrew (1/32, 3.13%). Leptospira spp., Rickettsia, Cryptosporidium spp. and Co. burnetii tested negative. CONCLUSIONS: The detection of zoonotic pathogens within reservoir hosts and vectors poses a risk of transmission to humans. This study signifies the need for zoonotic pathogen surveillance in synanthropic rodents/shrews.

15.
Pathogens ; 13(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38787259

RESUMO

Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1ß, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1ß, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.

16.
Animals (Basel) ; 14(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791700

RESUMO

Q fever is a disease caused by Coxiella burnetii that affects many animal species and humans. In ruminants, the disease is responsible for several reproductive disorders (such as abortions, stillbirths, premature births, weak offspring, retained foetal membranes and infertility). An inactivated vaccine based on a phase I antigen of C. burnetii is available for cattle, goats and sheep. This review aims to summarise the scientific literature regarding the efficacy and safety of this vaccine to control the infection in these three domestic ruminant species. Forty-five publications and one experimental veterinary thesis reporting on experimental studies, case reports, mathematical modelling and intervention studies were selected according to the PRISMA guidelines. Although some studies lack control groups or statistical analyses, for all three species, published data show that vaccination often results in a reduction in abortions and an improvement in reproductive performance in comparison with absence of vaccination. There is also evidence, including in infected herds and animals, that vaccination is associated with a reduction in bacterial shedding, both in intensity and duration in comparison with absence of vaccination. For these reasons, in case of human outbreaks, vaccination is one of the pillars of control measures. Vaccination is generally well tolerated, despite the rare occurrence of mild, transient side-effects, such as hyperthermia and reduction in milk yield.

17.
Virulence ; 15(1): 2350893, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725096

RESUMO

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Lisossomos , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Vacúolos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Células HeLa , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Febre Q/microbiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Vacúolos/microbiologia , Vacúolos/metabolismo
18.
Vet World ; 17(4): 842-847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798290

RESUMO

Background and Aim: Query fever (Q fever) is an endemic zoonotic disease and ruminants are considered to be the primary source of infection in humans. It is caused by Coxiella burnetii which is an obligate intracellular bacterial pathogen with a worldwide distribution. This study estimated the prevalence of Q fever in livestock with a history of abortion in Makkah Province, Saudi Arabia. Material and Methods: Sera from 341 camels, 326 sheep, and 121 goats of either sex from various locations (Makkah, Jeddah, AL-Taif, AL-Qunfudah, AL-Laith, and AL-Kamil) were examined using a Q fever indirect enzyme-linked immunosorbent assay. Results: Among the 788 serum samples, 356 animals had anti-Coxiella burnetii immunoglobulin G antibodies with an overall seroprevalence of 45.4%. Significant differences were observed in seroprevalence between species and locations. Camels had the highest percentage of Q fever-positive sera, with a prevalence of 50.4%, followed by goats (44.6%) and sheep (36.8%), with a high significant difference between animals (p = 0.000). The prevalence was significantly higher in Makkah (65.4%) than in Jeddah (28.8%). Conclusion: C. burnetii infection is prevalent in agricultural animals, especially camels maintained at livestock farms in Makkah province. Therefore, these animals considered as the main source of Q fever infections in Saudi Arabia, which is also a reason for the abortion in these animals. Therefore, there is an urgent need for further studies on Q fever infection with interventional approaches for prevention and control.

19.
New Microbes New Infect ; 59: 101242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577384

RESUMO

The diagnosis of Q fever is challenging due to nonspecific symptoms and negative standard blood culture results. Serological testing through immunofluorescence assay (IFA) is the most commonly used method for diagnosing this disease. Polymerase chain reaction (PCR) tests can also be used to detect bacterial DNA if taken at an appropriate time. Once the presence of bacteria is confirmed in a sample, an enrichment step is required before characterizing it through sequencing. Cultivating C. burnetii is challenging as it can only be isolated by inoculation into cell culture, embryonated eggs, or animals. In this article, we describe the isolation of C. burnetii from a valve specimen in Vero cells. We conducted genome sequencing and taxonomy profiling of this isolate and were able to determine its taxonomic affiliation. Furthermore, Multispacer sequence typing (MST) analysis suggests that the infection originated from a local strain of C. burnetii found around northern Israel and Lebanon. This novel strain belongs to a previously described genotype MST6, harboring the QpRS plasmid, never reported in Israel.

20.
Front Cell Infect Microbiol ; 14: 1323054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567022

RESUMO

The patient, a 43-year-old male, was admitted to the hospital with gradually aggravated exertional palpitations and chest tightness over a 2-day period. Upon hospital admission, a cardiac ultrasound revealed aortic valve redundancy, however multiple blood culture investigations came back negative. Blood mNGS was perfected, revealing Coxiella burnetii, and the diagnosis of Q fever (query fever) was established. The temperature and inflammatory indices of the patient were all normal with the treatment of vancomycin before cardiac surgery. But for the potential liver damage of and the Coxiella burnetii was still positive in the anti-phase II IgG titer, the doxycycline and hydroxychloroquine instead of vancomycin were applied for the patient. Despite receiving standardized anti-infective therapy of doxycycline combined with hydroxychloroquine, this patient had fever and increased leukocytes following surgery. After the addition of vancomycin as an anti-infective treatment, the temperature and leukocytes improved quickly. During the treatment of vancomycin, a discovery of liver injury may have resulted. These findings provide new therapy options for future professionals.


Assuntos
Coxiella burnetii , Endocardite Bacteriana , Febre Q , Masculino , Humanos , Adulto , Febre Q/diagnóstico , Febre Q/tratamento farmacológico , Vancomicina/uso terapêutico , Doxiciclina/uso terapêutico , Hidroxicloroquina , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...