Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Genome Biol ; 25(1): 156, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872220

RESUMO

BACKGROUND: Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS: We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS: Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.


Assuntos
Ilhas de CpG , Elementos Facilitadores Genéticos , Evolução Molecular , Animais , Humanos , Camundongos , Especificidade da Espécie , Código das Histonas
2.
Epigenomes ; 8(2)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920624

RESUMO

The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.

3.
Epidemics ; 47: 100770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761432

RESUMO

In the context of infectious diseases, the dynamic interplay between ever-changing host populations and viral biology demands a more flexible modeling approach than common fixed correlations. Embracing random-effects regression models allows for a nuanced understanding of the intricate ecological and evolutionary dynamics underlying complex phenomena, offering valuable insights into disease progression and transmission patterns. In this article, we employed a random-effects regression to model an observed decreasing median plasma viral load (pVL) among individuals with HIV in Mexico City during 2019-2021. We identified how these functional slope changes (i.e. random slopes by year) improved predictions of the observed pVL median changes between 2019 and 2021, leading us to hypothesize underlying ecological and evolutionary factors. Our analysis involved a dataset of pVL values from 7325 ART-naïve individuals living with HIV, accompanied by their associated clinical and viral molecular predictors. A conventional fixed-effects linear model revealed significant correlations between pVL and predictors that evolved over time. However, this fixed-effects model could not fully explain the reduction in median pVL; thus, prompting us to adopt random-effects models. After applying a random effects regression model-with random slopes and intercepts by year-, we observed potential "functional changes" within the local HIV viral population, highlighting the importance of ecological and evolutionary considerations in HIV dynamics: A notably stronger negative correlation emerged between HIV pVL and the CpG content in the pol gene, suggesting a changing immune landscape influenced by CpG-induced innate immune responses that could impact viral load dynamics. Our study underscores the significance of random effects models in capturing dynamic correlations and the crucial role of molecular characteristics like CpG content. By enriching our understanding of changing host-virus interactions and HIV progression, our findings contribute to the broader relevance of such models in infectious disease research. They shed light on the changing interplay between host and pathogen, driving us closer to more effective strategies for managing infectious diseases. SIGNIFICANCE OF THE STUDY: This study highlights a decreasing trend in median plasma viral loads among ART-naïve individuals living with HIV in Mexico City between 2019 and 2021. It uncovers various predictors significantly correlated with pVL, shedding light on the complex interplay between host-virus interactions and disease progression. By employing a random-slopes model, the researchers move beyond traditional fixed-effects models to better capture dynamic correlations and evolutionary changes in HIV dynamics. The discovery of a stronger negative correlation between pVL and CpG content in HIV-pol sequences suggests potential changes in the immune landscape and innate immune responses, opening avenues for further research into adaptive changes and responses to environmental shifts in the context of HIV infection. The study's emphasis on molecular characteristics as predictors of pVL adds valuable insights to epidemiological and evolutionary studies of viruses, providing new avenues for understanding and managing HIV infection at the population level.


Assuntos
Infecções por HIV , Carga Viral , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , México/epidemiologia , Feminino , Masculino , HIV-1/fisiologia , HIV-1/imunologia , HIV-1/genética , Adulto , Ilhas de CpG/genética
4.
Genes (Basel) ; 15(3)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38540380

RESUMO

Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.


Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , MicroRNAs , Humanos , Síndrome de DiGeorge/genética , Epigênese Genética , Fenótipo , Cardiopatias Congênitas/genética
5.
Front Biosci (Schol Ed) ; 16(1): 2, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538343

RESUMO

BACKGROUND: The promoters of mammalian genes contain clusters of CG dinucleotides known as CpG islands. Most mammalian housekeeping genes predominantly contain CpG islands (CGIs), facilitating gene transcription. Numerous studies have explored the physiological implications of the relationship between CGIs and gene expression. However, the evolutionary implications of this relationship remain largely unexplored. Pseudogenes, in contrast, are genomic remnants that have lost their function over evolutionary time. METHODS: In our current research, we employed comparative genomic techniques to demonstrate a correlation between the absence of gene expression due to a lack of CGIs in the gene promoters and pseudogenization. RESULTS: We showed that there is a significant enrichment of tissue-specific genes in the functional orthologs of pseudogenes. We also found a significant correlation between the lack of CGIs and enriched tissue specificity in these functional orthologs of pseudogenes. CONCLUSIONS: We inferred that perhaps tissue-specific genes are more prone to the process of pseudogenization. In this way, because of their impact on gene expression, CGIs may affect the fate of a gene. To our knowledge, this is the first study to propose a connection between CGIs, gene expression, and the pseudogenization process and discuss the evolutionary implications of this potential trilogy.


Assuntos
Genoma , Genômica , Animais , Ilhas de CpG/genética , Mamíferos/genética , Expressão Gênica
6.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189096, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499079

RESUMO

Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Relevância Clínica
7.
Genome Biol Evol ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198800

RESUMO

Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.


Assuntos
Genômica , Aves Canoras , Animais , Aves Canoras/genética , Ilhas de CpG , Metilação de DNA , Recombinação Genética
8.
J Anim Sci Biotechnol ; 14(1): 138, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925454

RESUMO

As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.

9.
Front Genet ; 14: 1265808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953924

RESUMO

G-quadruplexes (G4s) are secondary structures in DNA that have been shown to be involved in gene regulation. They play a vital role in the cellular processes and several pathogens including bacteria, fungi, and viruses have also been shown to possess G4s that help them in their pathogenesis. Additionally, cross-talk among the CpG islands and G4s has been shown to influence biological processes. The virus-encoded G4s are affected by the mutational landscape leading to the formation/deletion of these G4s. Therefore, understanding and predicting these multivariate effects on traditional and non-traditional quadruplexes forms an important area of research, that is, yet to be investigated. We have designed a user-friendly webserver QUFIND (http://soodlab.com/qufinder/) that can predict traditional as well as non-traditional quadruplexes in a given sequence. QUFIND is connected with ENSEMBL and NCBI so that the sequences can be fetched in a real-time manner. The algorithm is designed in such a way that the user is provided with multiple options to customize the base (A, T, G, or C), size of the stem (2-5), loop length (1-30), number of bulges (1-5) as well as the number of mismatches (0-2) enabling the identification of any of the secondary structure as per their interest. QUFIND is designed to predict both CpG islands as well as G4s in a given sequence. Since G4s are very short as compared to the CpG islands, hence, QUFIND can also predict the overlapping G4s within CpG islands. Therefore, the user has the flexibility to identify either overlapping or non-overlapping G4s along with the CpG islands. Additionally, one section of QUFIND is dedicated to comparing the G4s in two viral sequences. The visualization is designed in such a manner that the user is able to see the unique quadruplexes in both the input sequences. The efficiency of QUFIND is calculated on G4s obtained from G4 high throughput sequencing data (n = 1000) or experimentally validated G4s (n = 329). Our results revealed that QUFIND is able to predict G4-quadruplexes obtained from G4-sequencing data with 90.06% prediction accuracy whereas experimentally validated quadruplexes were predicted with 97.26% prediction accuracy.

10.
Vet Res Forum ; 14(10): 531-539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901353

RESUMO

The jaagsiekte sheep retrovirus (JSRV), belonging to the betaretrovirus genus of the retroviridae family, includes both exogenous and endogenous jaagsiekte sheep retroviruses (exJSRV and enJSRV, respectively). At the proviral genome level, exJSRV and enJSRV strains have a high degree of similarity with their main variation regions being the LTR, gag, and env genes. In this study, for the first time, we investigated and compared the distribution of CpG islands between these enJSRV and exJSRV strains. Specifically, we analyzed a total of 42 full-length JSRV genomic sequences obtained from the GenBank® database to identify CpG islands in the exJSRV and enJSRV genomes using the MethPrimer software. Our results showed that the CpG islands in the two JSRV strains were mainly distributed in the LTR, gag, and env genes. In exJSRVs, 66.66% (6/9), 33.33% (3/9), and 100% (9/9) of the sequences presented at least one CpG island in LTR, gag, env genes, respectively, and for enJSRVs, 84.84% (28/33), 57.57% (19/33), and 96.96% (32/33) of the sequences presented at least one CpG island in the LTR, gag, and env genes. These findings suggested that the distribution, length, and genetic traits of CpG islands were different for the exJSRV and enJSRV strains. In future, it would be necessary to demonstrate the biological significance of CpG islands within these genes in exJSRV and enJSRV genomes. This will enhance understanding regarding the potential role of CpG islands in epigenetic regulation.

11.
Epigenomics ; 15(18): 891-893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37846515

RESUMO

Tweetable abstract DNA methylation alterations have been identified as promising biological markers for early-stage colorectal cancer detection. Here, the authors highlight some recent advances in DNA methylation and its role in the early diagnosis and overall disease course management of colorectal tumors. New insights into DNA methylation biomarkers for colorectal cancer early diagnosis and management are discussed.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Marcadores Genéticos
12.
Mol Biol (Mosk) ; 57(4): 647-664, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37528784

RESUMO

The status of DNA methylation in the human genome changes during the pathogenesis of common diseases and acts as a predictor of life expectancy. Therefore, it is of interest to investigate the methylation level of regulatory regions of genes responsible for general biological processes that are potentially significant for the development of age-associated diseases. Among them there are genes encoding proteins of DNA repair system, which are characterized by pleiotropic effects. Here, results of the targeted methylation analysis of two regions of the human genome (the promoter of the MLH1 gene and the enhancer near the ATM gene) in different tissues of patients with carotid atherosclerosis are present. Analysis of the methylation profiles of studied genes in various tissues of the same individuals demonstrated marked differences between leukocytes and tissues of the vascular wall. Differences in methylation levels between normal and atherosclerotic tissues of the carotid arteries were revealed only for two studied CpG sites (chr11:108089866 and chr11:108090020, GRCh37/hg19 assembly) in the ATM gene. Based on this, we can assume the involvement of ATM in the development of atherosclerosis. "Overload" of the studied regions with transcription factor binding sites (according to ReMapp2022 data) indicate that the tissue-specific nature of methylation of the regulatory regions of the MLH1 and ATM may be associated with expression levels of these genes in a particular tissue. It has been shown that inter-individual differences in the methylation levels of CpG sites are associated with sufficiently distant nucleotide substitutions.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Humanos , Ilhas de CpG/genética , Sequências Reguladoras de Ácido Nucleico/genética , Metilação de DNA , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças das Artérias Carótidas/genética , Reparo do DNA/genética
13.
Gene ; 875: 147487, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37211289

RESUMO

DNA methylation is one of the epigenetic modifications of the genome, the essence of which is the attachment of a methyl group to nitrogenous bases. In the eukaryote genome, cytosine is methylated in the vast majority of cases. About 98% of cytosines are methylated as part of CpG dinucleotides. They, in turn, form CpG islands, which are clusters of these dinucleotides. Islands located in the regulatory elements of genes are in particular interest. They are assumed to play an important role in the regulation of gene expression in humans. Besides that, cytosine methylation serves the functions of genomic imprinting, transposon suppression, epigenetic memory maintenance, X- chromosome inactivation, and embryonic development. Of particular interest are the enzymatic processes of methylation and demethylation. The methylation process always depends on the work of enzymatic complexes and is very precisely regulated. The methylation process largely depends on the functioning of three groups of enzymes: writers, readers and erasers. Writers include proteins of the DNMT family, readers are proteins containing the MBD, BTB/POZ or SET- and RING-associated domains and erasers are proteins of the TET family. Whereas demethylation can be performed not only by enzymatic complexes, but also passively during DNA replication. Hence, the maintenance of DNA methylation is important. Changes in methylation patterns are observed during embryonic development, aging, and cancers. In both aging and cancer, massive hypomethylation of the genome with local hypermethylation is observed. In this review, we will review the current understanding of the mechanisms of DNA methylation and demethylation in humans, the structure and distribution of CpG islands, the role of methylation in the regulation of gene expression, embryogenesis, aging, and cancer development.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Ilhas de CpG , Neoplasias/genética , Neoplasias/metabolismo , Fenômenos Fisiológicos , Regulação Neoplásica da Expressão Gênica , Transcrição Gênica
14.
BMC Biol ; 21(1): 80, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055747

RESUMO

BACKGROUND: Gene duplication is thought to be a central process in evolution to gain new functions. The factors that dictate gene retention following duplication as well paralog gene divergence in sequence, expression and function have been extensively studied. However, relatively little is known about the evolution of promoter regions of gene duplicates and how they influence gene duplicate divergence. Here, we focus on promoters of paralog genes, comparing their similarity in sequence, in the sets of transcription factors (TFs) that bind them, and in their overall promoter architecture. RESULTS: We observe that promoters of recent duplications display higher sequence similarity between them and that sequence similarity rapidly declines between promoters of more ancient paralogs. In contrast, similarity in cis-regulation, as measured by the set of TFs that bind promoters of both paralogs, does not simply decrease with time from duplication and is instead related to promoter architecture-paralogs with CpG Islands (CGIs) in their promoters share a greater fraction of TFs, while CGI-less paralogs are more divergent in their TF binding set. Focusing on recent duplication events and partitioning them by their duplication mechanism enables us to uncover promoter properties associated with gene retention, as well as to characterize the evolution of promoters of newly born genes: In recent retrotransposition-mediated duplications, we observe asymmetry in cis-regulation of paralog pairs: Retrocopy genes are lowly expressed and their promoters are bound by fewer TFs and are depleted of CGIs, in comparison with the original gene copy. Furthermore, looking at recent segmental duplication regions in primates enable us to compare successful retentions versus loss of duplicates, showing that duplicate retention is associated with fewer TFs and with CGI-less promoter architecture. CONCLUSIONS: In this work, we profiled promoters of gene duplicates and their inter-paralog divergence. We also studied how their characteristics are associated with duplication time and duplication mechanism, as well as with the fate of these duplicates. These results underline the importance of cis-regulatory mechanisms in shaping the evolution of new genes and their fate following duplication.


Assuntos
Evolução Molecular , Duplicação Gênica , Animais , Regiões Promotoras Genéticas , Fatores de Transcrição , Mamíferos/genética
15.
Methods Mol Biol ; 2576: 361-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152202

RESUMO

In this chapter, we will describe the bioinformatic tools that allow verifying the presence of CpG islands in a gene promoter region. We will also describe the tools needed to identify consensus motifs for specific transcription factors, focusing on the study of rat type-1 cannabinoid receptor gene (R_Cnr1) as a case study.


Assuntos
Metilação de DNA , Endocanabinoides , Animais , Biologia Computacional , Ilhas de CpG , Endocanabinoides/genética , Regiões Promotoras Genéticas , Ratos , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides , Fatores de Transcrição/genética
16.
Mol Biol (Mosk) ; 56(6): 1072-1082, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36475490

RESUMO

Methylation of the CpG islands of gene promoter regions is the most common epigenetic modification involved in the regulation of gene expression. A number of studies have shown that ionizing radiation can cause both hyper- and hypomethylation of DNA. Aberrant methylation affects cellular processes and can lead to the development of various pathological states. In the literature, there are few studies on the methylation status of human DNA a long time after radiation exposure. Here, the methylation level of CpG islands of the promoter regions of apoptosis genes (BCL2, ATM, MDM2, CDKN1A, STAT3, and NFKB1), and also its influence on apoptosis of peripheral blood lymphocytes in chronically exposed persons were studied. Residents of the South Ural region who were chronically exposed to radiation (after discharges of radioactive wastes into the Techa river by the "Mayak Production Association" in 1949-1956) were included in the study. It was established that the proportion of individuals with hypermethylated BCL2 gene promoter among the exposed people was statistically significantly higher than in the control group. The percentage of methylation of the ATM gene promoter weakly positively correlated with dose and age characteristics. Differences in the frequency of lymphocyte apoptosis in exposed individuals with a hypo- or hypermethylated ATM gene promoter were also established. The data indicate that, in the long-term, after chronic low intensity radiation exposure at low and medium doses, epigenetic modifications of the genome occur, which are manifested as changes in methylation of promoter regions of BCL2 and ATM genes.


Assuntos
Apoptose , Linfócitos , Humanos , Apoptose/genética , DNA , Proteínas Proto-Oncogênicas c-bcl-2/genética
17.
Expert Rev Mol Med ; 25: e11, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380484

RESUMO

Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Metilação de DNA , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/genética , DNA Circular/genética
18.
Cancer Cell Int ; 22(1): 310, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221112

RESUMO

BACKGROUND: Gene silence via methylation of the CpG islands is cancer's most common epigenetic modification. Given the highly significant role of NIS in thyroid cancer (TC) differentiation, this cross-sectional study aimed to investigate the DNA methylation pattern in seven CpG islands (CpG1-7 including +846, +918, +929, +947, +953, +955, and +963, respectively) of the NIS promoter in patients diagnosed with papillary (PTC), follicular (FTC), and multinodular goiter (MNG). Additionally, a systematic review of the literature was conducted to compare our results with studies concerning methylation of the NIS gene promoter. METHODS: Thyroid specimens from 64 patients met the eligibility criteria, consisting of 28 PTC, 9 FTC, and 27 benign MNG cases. The mRNA of NIS was tested by qRT-PCR. The bisulfite sequencing PCR (BSP) technique was performed to evaluate the promoter methylation pattern of the NIS gene. Sequencing results were received in chromatograph, FASTA, SEQ, and pdf formats and were analyzed using Chromas. The methylation percentage at each position and for each sample was calculated by mC/(mC+C) formula for all examined CpGs; following that, the methylation percentage was also calculated at each CpG site. Besides, a literature search was conducted without restricting publication dates. Nine studies met the eligibility criteria after removing duplicates, unrelated articles, and reviews. RESULTS: NIS mRNA levels decreased in tumoral tissues of PTC (P = 0.04) and FTC (P = 0.03) patients compared to their matched non-tumoral ones. The methylation of NIS promoter was not common in PTC samples, but it was frequent in FTC (P < 0.05). Significant differences were observed in the methylation levels in the 4th(+ 947), 6th(+ 955), and 7th(+ 963) CpGs sites in the forward strand of NIS promoter between FTC and MNG tissues (76.34 ± 3.12 vs 40.43 ± 8.42, P = 0.004, 69.63 ± 3.03 vs 23.29 ± 6.84, P = 0.001 and 50.33 ± 5.65 vs 24 ± 6.89, P = 0.030, respectively). There was no significant correlation between the expression and methylation status of NIS in PTC and FTC tissues. CONCLUSION: Perturbation in NIS promoter's methylation individually may have a potential utility in differentiating MNG and FTC tissues. The absence of a distinct methylation pattern implies the importance of other epigenetic processes, which may alter the production of NIS mRNA. In addition, according to the reversibility of DNA methylation, it is anticipated that the design of particular targeted demethylation medicines will lead to a novel cancer therapeutic strategy.

19.
Biology (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36290327

RESUMO

In this paper, we describe a method for the study of colocalization effects between stretch-stretch and stretch-point genome tracks based on a set of indices varying within the (-1, +1) interval. The indices combine the distances between the centers of neighboring stretches and their lengths. The extreme boundaries of the interval correspond to the complete colocalization of the genome tracks or its complete absence. We also obtained the relevant criteria of statistical significance for such indices using the complete permutation test. The method is robust with respect to strongly inhomogeneous positioning and length distribution of the genome tracks. On the basis of this approach, we created command-line software, the Genome Track Colocalization Analyzer. The software was tested, compared with other available packages, and applied to particular problems related to gene expression. The package, Genome Track Colocalization Analyzer (GTCA), is freely available to the users. GTCA complements our previous software, the Genome Track Analyzer, intended for the search for pairwise correlations between point-like genome tracks (also freely available). The corresponding details are provided in Data Availability Statement at the end of the text.

20.
Heliyon ; 8(10): e11119, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36299516

RESUMO

The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...