Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
ACS Nano ; 18(24): 15950-15957, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847327

RESUMO

Resilient ceramic aerogels with a unique combination of lightweight, good high-temperature stability, high specific area, and thermal insulation properties are known for their promising applications in various fields. However, the mechanical properties of traditional ceramic aerogels are often constrained by insufficient interlocking of the building blocks. Here, we report a strategy to largely increase the interlocking degree of the building blocks by depositing a pyrolytic carbon (PyC) coating onto Si3N4 nanowires. The results show that the mechanical performances of the Si3N4 nanowire aerogels are intricately linked to the microstructure of the PyC nodes. The compression resilience of the Si3N4@PyC nanowire aerogels increases with an increase of the interlayer cross-linking in PyC. Additionally, benefiting from the excellent high-temperature stability of PyC, the Si3N4@PyC nanowire aerogels demonstrate significantly superior in situ resilience up to 1400 °C. The integrated mechanical and high-temperature properties of the Si3N4@PyC nanowire aerogels make them highly appealing for applications in harsh conditions. The facile method of manipulating the microstructure of the nodes may offer a perspective for tailoring the mechanical properties of ceramic aerogels.

2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928210

RESUMO

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Assuntos
Encéfalo , Formaldeído , Análise de Sequência de RNA , Fixação de Tecidos , Formaldeído/química , Animais , Camundongos , Encéfalo/metabolismo , Fixação de Tecidos/métodos , Análise de Sequência de RNA/métodos , Doença de Alzheimer/genética , Polímeros/química , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética
3.
Int J Biol Macromol ; 273(Pt 1): 132802, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852721

RESUMO

Superior multifunctional hydrogel dressings are of considerable interest in wound healing. In clinical practice, it is useful to investigate hydrogel dressings that offer multifunctional benefits to expedite the process of wound healing. In this study, Catechol-grafted Chitosan, Gelatin, and Fe3+ as substrates to construct a hydrogel network. The network was dynamically cross-linked to form Ccg@Fe hydrogel substrate. Fe3O4 nanoparticles and baicalin, which possess antimicrobial and anti-inflammatory properties, were loaded onto the substrate to form a photothermal antibacterial composite hydrogel dressing (Ccg@Fe/Bai@Fe3O4 NPs). The Ccg@Fe hydrogel was characterised using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometry (UV-Vis). The morphological, mechanical, and adhesion properties of the hydrogel were determined using scanning electron microscopy (SEM) and a universal testing machine. The hydrogel's swelling, hemostasis, and self-healing properties were also evaluated. Additionally, the study determined the release rate of hydrogel-loaded antimicrobial and anti-inflammatory Baicalin (Ccg@Fe/Bai) and evaluated the photothermal antimicrobial properties of hydrogel-loaded Fe3O4 nanoparticles (Ccg@Fe/Bai@Fe3O4 NPs) through synergistic photothermal therapy (PTT). Histological staining of mice skin wound tissues using Masson and H&E revealed that the Ccg@Fe/Bai@Fe3O4 NPs hydrogel dressing demonstrated potential healing ability with the aid of PTT. The study suggests that this multifunctional hydrogel dressing has great potential for wound healing.


Assuntos
Bandagens , Catecóis , Quitosana , Flavonoides , Gelatina , Hidrogéis , Terapia Fototérmica , Cicatrização , Quitosana/química , Flavonoides/farmacologia , Flavonoides/química , Cicatrização/efeitos dos fármacos , Animais , Gelatina/química , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Terapia Fototérmica/métodos , Catecóis/química , Catecóis/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Masculino
4.
Anal Bioanal Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739158

RESUMO

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 µM, and the limit of detection is 17.5 µM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

5.
Food Res Int ; 187: 114329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763632

RESUMO

The utilization of non-animal-derived materials to imitate cartilage is critical for the advancement of plant-based simulated meat. In this study, gellan gum (GG), konjac glucomannan (KGM), and wheat fiber (WF) were used to construct hydrogel, and the mechanical strength, water properties, and microstructure were regulated by constructing Ca2+ cross-links and moisture control. The hardness, chewiness, resilience, shear force, and shear energy of the Ca2+ cross-linked samples were significantly improved. Extrusion dehydration further changes the related mechanical properties of the hydrogel and results in a tighter microstructure. The findings suggest that the establishment of Ca2+ cross-links and water regulation are efficacious techniques for modifying the texture of the GG/KGM/WF composite hydrogel. Correlation analysis and sensory evaluation showed that the test indexes and sensory scores of the samples with Ca2+ crosslinking and 80 % moisture content were similar to chicken breast cartilage, and the samples with Ca2+ crosslinking and 70 % moisture content were similar to pig crescent bone. This study presents a framework for designing edible cartilage simulators using polysaccharide hydrogels, with implications for enhancing the resemblance of plant-based meat products to real meat and expanding the range of vegetarian offerings available.


Assuntos
Hidrogéis , Mananas , Polissacarídeos Bacterianos , Triticum , Polissacarídeos Bacterianos/química , Mananas/química , Animais , Hidrogéis/química , Triticum/química , Cartilagem/química , Água/química , Reagentes de Ligações Cruzadas/química , Galinhas , Cálcio/análise , Cálcio/química , Fibras na Dieta/análise
6.
Chempluschem ; : e202400113, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471131

RESUMO

Ferroelectric polymers have emerged as crucial materials for the development of advanced organic electronic devices. Their recent high-end commercial applications as fingerprint sensors have only increased the amount of scientific interest around them. Despite an ever-larger body of studies focusing on optimizing the properties of ferroelectric polymers by physical means (e. g., annealing, stretching, blending or nano-structuring), post-polymerization chemical modification of such polymers has only recently become a field of active study with great promise in expanding the scope of those polymers. In this work, a solution-based post-polymerization modification method was developed for the safe and facile grafting of a plethora of functional groups to the backbone of commercially available Poly(vinylidene fluoride-co-trifluoroethylene P(VDF-co-TrFE) ferroelectric polymers. To showcase the versatility of this approach, photosensitive groups were grafted onto the polymeric backbone, enabling them to undergo photo-cross-linking. Finally, these modified polymers were used as functional negative photoresists in a photolithographic process, highlighting the potential of this method to integrate ferroelectric fluorinated electroactive polymers into standard electronic microfabrication production lines.

7.
ACS Biomater Sci Eng ; 10(4): 2068-2073, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38477551

RESUMO

Three-dimensional printing of cell constructs with high-cell density, shape fidelity, and heterogeneous cell populations is an important tool for investigating cell sociology in living tissues but remains challenging. Herein, we propose an artificial intercellular adhesion method using a photoresponsive chemical cue between a thiol-bearing polymer and a methacrylate-bearing cell membrane. This process provided cell fabrication containing 108 cells/mL, embedded multiple cell populations in one structure, and enabled millimeter-sized scaleup. Our approach allows for the artificial cell construction of complex structures and is a promising bioprinting strategy for engineering tissues that are structurally and physiologically relevant.


Assuntos
Bioimpressão , Compostos de Sulfidrila , Engenharia Tecidual/métodos , Hidrogéis/química , Impressão Tridimensional , Bioimpressão/métodos
8.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
9.
Reprod Sci ; 31(3): 645-660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907804

RESUMO

Collagen is an essential constituent of the uterine extracellular matrix that provides biomechanical strength, resilience, structural integrity, and the tensile properties necessary for the normal functioning of the uterus. Cross-linking is a fundamental step in collagen biosynthesis and is critical for its normal biophysical properties. This step occurs enzymatically via lysyl oxidase (LOX) or non-enzymatically with the production of advanced glycation end-products (AGEs). Cross-links found in uterine tissue include the reducible dehydro-dihydroxylysinonorleucine (deH-DHLNL), dehydro-hydroxylysinonorleucine (deH-HLNL), and histidinohydroxymerodesmosine (HHMD); and the non-reducible pyridinoline (PYD), deoxy-pyridinoline (DPD); and a trace of pentosidine (PEN). Collagen cross-links are instrumental for uterine tissue integrity and the continuation of a healthy pregnancy. Decreased cervical cross-link density is observed in preterm birth, whereas increased tissue stiffness caused by increased cross-link density is a pathogenic feature of uterine fibroids. AGEs disrupt embryo development, decidualization, implantation, and trophoblast invasion. Uterine collagen cross-linking regulators include steroid hormones, such as progesterone and estrogen, prostaglandins, proteoglycans, metalloproteinases, lysyl oxidases, nitric oxide, nicotine, and vitamin D. Thus, uterine collagen cross-linking presents an opportunity to design therapeutic targets and warrants further investigation in common uterine disorders, such as uterine fibroids, cervical insufficiency, preterm birth, dystocia, endometriosis, and adenomyosis.


Assuntos
Leiomioma , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Colágeno , Colo do Útero , Biologia
10.
Toxicol Sci ; 197(1): 16-26, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788135

RESUMO

Cornified envelopes (CEs) of human epidermis ordinarily consist of transglutaminase-mediated cross-linked proteins and are essential for skin barrier function. However, in addition to enzyme-mediated isopeptide bonding, protein cross-linking could also arise from oxidative damage. Our group recently demonstrated abnormal incorporation of cellular proteins into CEs by pro-oxidants in woodsmoke. In this study, we focused on 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), mesquite liquid smoke (MLS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to further understand the mechanisms through which environmental pro-oxidants induce CE formation and alter the CE proteome. CEs induced by the ionophore X537A were used for comparison. Similar to X537A, DMNQ- and MLS-induced CE formation was associated with membrane permeabilization. However, since DMNQ is non-adduct forming, its CEs were similar in protein profile to those from X537A. By contrast, MLS, rich in reactive carbonyls that can form protein adducts, caused a dramatic change in the CE proteome. TCDD-CEs were found to contain many CE precursors, such as small proline-rich proteins and late cornified envelope proteins, encoded by the epidermal differentiation complex. Since expression of these proteins is mediated by the aryl hydrocarbon receptor (AhR), and its well-known downstream protein, CYP1A1, was exclusively present in the TCDD group, we suggest that TCDD alters the CE proteome through persistent AhR activation. This study demonstrates the potential of environmental pro-oxidants to alter the epidermal CE proteome and indicates that the cellular redox state has an important role in CE formation.


Assuntos
Dibenzodioxinas Policloradas , Proteoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Lasalocida/metabolismo , Queratinócitos/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Methods Mol Biol ; 2710: 71-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688725

RESUMO

Chromatin immunoprecipitation (ChIP) allows a researcher to determine the genomic occupancy of nuclear proteins, providing insight into the roles of transcription factors, chromatin modifiers, histone modifications, and other factors bound to DNA. Protein-DNA interactions are first fixed in vivo by chemical cross-linking, and then a target protein is captured together with any associated DNA by an antibody mediated pull-down. The co-immunoprecipitated DNA can then be assayed by quantitative PCR or deep sequencing. Here, we demonstrate this technique using murine olfactory sensory neurons (OSNs) purified using fluorescence-activated cell sorting (FACS) and antibodies for the ubiquitous chromatin protein CTCF.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Imunoprecipitação da Cromatina , Formaldeído , Anticorpos , Cromatina/genética
12.
Bioorg Chem ; 140: 106769, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633128

RESUMO

Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.


Assuntos
Neoplasias , Pró-Fármacos , DNA , Dano ao DNA
13.
Proteins ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589191

RESUMO

Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.

14.
J Proteome Res ; 22(9): 2900-2908, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552582

RESUMO

Chemical cross-linking with mass spectrometry provides low-resolution structural information on proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells or young and old mice. A difference can originate from protein conformational changes that alter the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications of the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein with the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences in cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.


Assuntos
Peptídeos , Proteínas , Animais , Camundongos , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas/métodos , Conformação Proteica , Solventes , Reagentes de Ligações Cruzadas/química
15.
J Contemp Dent Pract ; 24(6): 364-371, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534502

RESUMO

AIM: To formulate and characterize the chemical structure of a new dental composite with photodimerized cinnamyl methacrylate (PD-CMA) photo-crosslinking comonomer and to evaluate the monomer-to-polymer conversion (MPC) and glass transition temperature (Tg) of the new composite copolymers. MATERIALS AND METHODS: CMA was PD by ultraviolet C-type (UVC) irradiation. The research groups were a control group C0 without PD-CMA and two trial groups: E10 (10 wt. % PD-CMA substituted in the base comonomers (B) and diluent (D) mixture); E20 (20 wt.% PD-CMA completely replacing the diluent (D) monomer). Infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies were employed for ascertaining copolymerization (CP). The surface features and composition of the copolymers were explained by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy, respectively. The MPC and Tg of the copolymers were assessed using FTIR and differential scanning calorimetry, respectively. Statistical tests were used to compare the groups. RESULTS: The configuration of the new copolymers P (BD-Co-CMA) and P(B-Co-CMA) was confirmed. The MPC% and T g of the copolymers were better than the control. PD-CMA at 20 wt. % in the P (B-Co-CMA) copolymer exhibited the highest MPC% and Tg. CONCLUSION: The incorporation of PD-CMA in the composite resin resulted in new P (BD-Co-CMA) and P (B-Co-CMA) copolymers with improved MPC% and Tg. CLINICAL SIGNIFICANCE: The substitution with PD-CMA offset the shortcomings of the conventional BD comonomers concerning the mechanical properties and biocompatibility of the restorative composite resin. This might ameliorate the restorations in vivo longevity and serviceability.


Assuntos
Resinas Compostas , Metacrilatos , Metacrilatos/química , Resinas Compostas/química , Polímeros , Temperatura , Polimerização , Teste de Materiais
16.
Curr Drug Metab ; 24(5): 327-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431900

RESUMO

Deoxyribonucleic acid (DNA), as a natural polymer material, carries almost all the genetic information and is recognized as one of the most intelligent natural polymers. In the past 20 years, there have been many exciting advances in the synthesis of hydrogels using DNA as the main backbone or cross-linking agent. Different methods, such as physical entanglement and chemical cross-linking, have been developed to perform the gelation of DNA hydrogels. The good designability, biocompatibility, designable responsiveness, biodegradability and mechanical strength provided by DNA building blocks facilitate the application of DNA hydrogels in cytoscaffolds, drug delivery systems, immunotherapeutic carriers, biosensors and nanozyme-protected scaffolds. This review provides an overview of the main classification and synthesis methods of DNA hydrogels and highlights the application of DNA hydrogel in biomedical fields. It aims to give readers a better understanding of DNA hydrogels and development trends.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Humanos , Polímeros , DNA
17.
Food Chem ; 428: 136775, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423111

RESUMO

To develop food packaging with good antibacterial activity and mechanical performance, four amino carboxymethyl chitosan (ACC)//dialdehyde starch (DAS) /polyvinyl alcohol (PVA) films were prepared by Schiff base and hydrogen bond interactions for efficient loading and release of ε-polylysine (ε-PL). The effects of the Schiff base reaction on the physicochemical properties of the films were explored based on the different aldehyde group contents in DAS. The ACC//DAS4/PVA film exhibited a tensile strength of 62.5 MPa, and the water vapor and oxygen permeability was 8.77 × 10-3·g·mm/m2·d·kPa and 0.15 × 103·cm3·mm/m2·d, respectively. By leveraging the Schiff base reaction, the film swelling properties were improved by adjusting the cross-link density, mesh size, and molecular mass between the cross-links. The ACC//DAS4/PVA film could efficiently load ε-PL with a value of 98.44% and long-term release in a food simulant of 10% ethanol at 25 °C for 120 min. Moreover, the ACC-ε-PL//DAS4/PVA film was successfully used for salmon preservation.


Assuntos
Quitosana , Quitosana/química , Polivinil , Álcool de Polivinil/química , Polilisina/química , Bases de Schiff , Antibacterianos/farmacologia , Embalagem de Alimentos
18.
Cell Rep ; 42(8): 112907, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515771

RESUMO

The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.


Assuntos
Proteínas , Rad51 Recombinase , Rad51 Recombinase/metabolismo , Proteínas/metabolismo , Proteína BRCA2/genética , Reparo do DNA , DNA/metabolismo , Dano ao DNA
19.
ACS Appl Mater Interfaces ; 15(21): 25909-25918, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191587

RESUMO

LiNi0.5Mn1.5O4 (LNMO) with a spinel structure is one of the most promising cathode materials choices for Li-ion batteries (LIBs). However, at a high operating voltages, the decomposition of organic electrolytes and the dissolution of transition metals, especially Mn(II) ions, cause unsatisfactory cycle stability. The initial application of a sodium alginate (SA)-xylan biopolymer as an aqueous binder aims to address the aforementioned problems. The SX28-LNMO electrode has a sizable discharge capacity, exceptional rate capability, and long-term cyclability with a capacity retention of 99.8% after 450 cycles at 1C and a remarkable rate capability of 121 mAh g-1 even at 10C. A more thorough investigation illustrated that SX28 binder provides a substantial adhesion property and generates a uniform (CEI) layer on the LNMO surface, suppressing electrolytes' oxidative decomposition upon cycling and improving LIB performances. This work highlights the potential of hemicellulose as an aqueous binder for 5.0 V high-voltage cathodes.

20.
Amino Acids ; 55(6): 807-819, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165293

RESUMO

Transglutaminases (TGs) are a protein family that catalyzes isopeptide bond formation between glutamine and lysine residues of various proteins. There are eight TG isozymes in humans, and each is involved in diverse biological phenomena due to their characteristic distribution. Abnormal activity of TG1 and TG2, which are major TG isozymes, is believed to cause various diseases, such as ichthyosis and celiac disease. To elucidate TGs' mechanisms of action and develop new therapeutic strategies, it is essential to develop bioprobes that can specifically examine the activity of each TG isozyme, which has not been sufficiently studied. We previously have identified several substrate peptide sequences containing Gln residues for each isozyme and developed a method to detect isozyme-specific activities by incorporating a labeled substrate peptide into lysine residues of proteins. We prepared the fluorescein isothiocyanate (FITC)-labeled Gln substrate peptide (FITC-K5 and FITC-T26) and Rhodamine B-labeled Lys substrate peptide (RhoB-Kpep). Each TG reaction specifically cross-linked these probe pairs, and the proximity of FITC and Rhodamine B significantly decreased the fluorescence intensity of FITC depending on the concentration and reaction time of each TG. In this study, we developed a peptide-based biosensor that quickly and easily measures TG isozyme-specific activity. This probe is expected to be helpful in elucidating TG's physiological and pathological functions and in developing compounds that modulate TG activity.


Assuntos
Isoenzimas , Transglutaminases , Humanos , Transglutaminases/metabolismo , Isoenzimas/metabolismo , Fluoresceína-5-Isotiocianato , Lisina , Peptídeos/metabolismo , Fluoresceína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...