Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.972
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 120-129, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39137561

RESUMO

Thermochromic dyes (TCDs) based on a three-component color change system suffer from solid rigidity and liquid leakage issues because of the intrinsic solid-liquid phase change performance, resulting in difficulty in temperature visualization applications for smart wearable fields. Despite considerable efforts in microencapsulation of thermochromic dyes, designing and fabricating essentially flexible thermochromic phase change films still need to be explored. Herein, a one-sided adhesive gradient-crosslinked thermochromic film is reported to address these issues to make a trade-off between stability and flexibility, excellent thermochromic performance, and temperature visualization. The thermochromic wearable films have been fabricated exploiting tea polyphenol thermochromic dyes, vinyl dimethylsiloxane, and hydrosilicone oil via the salt-template-assisted method and gradient crosslinking strategy, which have porous structures with an average pore size of 12.8 µm and a porosity of 28 %. Due to the spatial limiting threshold effect of the porosity structure, interconnected 3D polysiloxane porous networks can provide ample support for tea polyphenol thermochromic dyes and effectively prevent liquid leakage. Upon heating, the thermochromic film changes from blue to white with the K/S value decreasing from 7.69 to 0.78 and the ΔE* increasing from 2.7 to 16.1 at 610 nm, and the color-changing temperature is 42 °C. Gradient crosslinked thermochromic films exhibit excellent temperature-responsive color change properties, desirable one-side adhesion, and thermal energy storage, enabling multicolor temperature displays and temperature-controlled multilevel information transfer.

2.
Food Chem ; 462: 140992, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208723

RESUMO

The development and manufacture of high-quality starch are a new research focus in food science. Here, transglutaminase was used in the wet processing of glutinous rice flour to prepare customized sweet dumplings. Transglutaminase (0.2 %) lowered protein loss in wet processing and reduced the crystallinity and viscosity of glutinous rice flour. Moreover, it lowered the cracking and cooking loss of sweet dumplings after freeze-thaw cycles, and produced sweet dumplings with reduced hardness and viscosity, making them more suitable for people with swallowing difficulties. Additionally, in sweet dumplings with 0.2 % transglutaminase, the encapsulation of starch granules by the protein slowed down the digestion and reduced the final hydrolysis rate, which are beneficial for people with weight and glycemic control issues. In conclusion, this study contributes to the production of tasty, customized sweet dumplings.


Assuntos
Digestão , Farinha , Oryza , Amido , Transglutaminases , Oryza/química , Oryza/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Farinha/análise , Amido/química , Amido/metabolismo , Manipulação de Alimentos , Humanos , Viscosidade , Culinária , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biocatálise
3.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1568852

RESUMO

ABSTRACT Purpose: This study aimed to analyze variations in intraoperative corneal thickness during corneal cross-linking in patients with keratoconus and to investigate its possible correlation with presurgical maximal keratometry (Kmax) and pachymetry. Methods: This was a prospective case series. We used a method similar to the Dresden protocol, with the application of hydroxypropyl methylcellulose 0.1% hypo-osmolar riboflavin in corneas between 330 and 400 µm after epithelium removal. Corneal thickness was measured using portable calipers before and immediately after epithelium removal, and 30 and 60 min after the procedure. Results: The 30 patients in this study were followed up for one year. A statistically significant difference was observed in pachymetry values during the intraoperative period (p<0.0001) and an increase of 3.05 µm (95%C1: 0.56-5.54) for each diopter was seen after epithelium removal (p0.019). We found an average Kmax difference of —2.12 D between men and women (p0.013). One year after treatment, there was a statistically significant reduction in pachymetry (p<0.0001) and Kmax (p0.0170) values. Conclusions: A significant increase in pachymetry measurements was seen during the procedure, and most patients showed a regression in Kmax and pachymetry values one year after surgery.

4.
Sci Rep ; 14(1): 23135, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367075

RESUMO

STUDY ON STATIC IN-SITU CURING CHARACTERISTICS OF CFRP BASED ON NEAR INFRARED LASER: The quick curing method of carbon fibre reinforced plastics (CFRP) is one of the hotspots in current research. A static in-situ curing method for CFRP prepreg based on near-infrared laser was put forward in this study. The in-situ curing structural characteristics and the mechanism of CFRP were investigated through real-time surface temperature measurement, COMSOL temperature field simulation, 3D measurement of curing morphology and resin curing degree test. The thermal conductivity of the CFRP along the fiber direction is considerably higher than that along the perpendicular fiber direction. As a result, the temperature profile in the plane takes on an elliptical shape. During the transfer, the temperature field gradually decreases, resulting in an ellipsoidal 3D high-temperature distribution. The different shrinkage phenomena in the different curing regions between the layers lead to an irregular ellipsoidal solidification morphology of the unidirectional CFRP. The temperature in the center of the heat affected zone increases as a power exponential function with time. The area and depth of the heat-affected zone increases with the laser power, and the curing area is positively correlated with the degree of curing. As a result, curing temperature governing equations based on laser power and layer thickness have been proposed, while relationship equations based on laser power, curing depth and curing morphology have been developed. In addition, prediction equations based on curing morphology have been developed for curing degree, in order to achieve precise curing of CFRP.

5.
Proc Natl Acad Sci U S A ; 121(41): e2409097121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39365813

RESUMO

The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hydra , Animais , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Sequência de Aminoácidos , Sítios de Ligação , FMRFamida/metabolismo , Hydra/metabolismo , Hydra/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/química , Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Xenopus
6.
ACS Nano ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383314

RESUMO

Hierarchical structures are abundant in nature, such as in the superhydrophobic surfaces of lotus leaves and the structural coloration of butterfly wings. They consist of ordered features across multiple size scales, and their advantageous properties have attracted enormous interest in wide-ranging fields including energy storage, nanofluidics, and nanophotonics. Femtosecond lasers, which are capable of inducing various material modifications, have shown promise for manufacturing tailored hierarchical structures. However, existing methods, such as multiphoton lithography and three-dimensional (3D) printing using nanoparticle-filled inks, typically involve polymers and suffer from high process complexity. Here, we demonstrate the 3D printing of hierarchical structures in inorganic silicon-rich glass featuring self-forming nanogratings. This approach takes advantage of our finding that femtosecond laser pulses can induce simultaneous multiphoton cross-linking and self-formation of nanogratings in hydrogen silsesquioxane. The 3D printing process combines the 3D patterning capability of multiphoton lithography and the efficient generation of periodic structures by the self-formation of nanogratings. We 3D-printed micro-supercapacitors with large surface areas and a high areal capacitance of 1 mF/cm2 at an ultrahigh scan rate of 50 V/s, thereby demonstrating the utility of our 3D printing approach for device applications in emerging fields such as energy storage.

7.
Proc Natl Acad Sci U S A ; 121(42): e2409672121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39378083

RESUMO

The assembly of ß-barrel proteins into membranes is mediated by the evolutionarily conserved ß-barrel assembly machine (BAM) complex. In Escherichia coli, BAM folds numerous substrates which vary considerably in size and shape. How BAM is able to efficiently fold such a diverse array of ß-barrel substrates is not clear. Here, we develop a disulfide crosslinking method to trap native substrates in vivo as they fold on BAM. By placing a cysteine within the luminal wall of the BamA barrel as well as in the substrate ß-strands, we can compare the residence time of each substrate strand within the BamA lumen. We validated this method using two defective, slow-folding substrates. We used this method to characterize stable intermediates which occur during folding of two structurally different native substrates. Strikingly, these intermediates occur during identical stages of folding for both substrates: soon after folding has begun and just before folding is completed. We suggest that these intermediates arise due to barriers to folding that are common between ß-barrel substrates, and that the BAM catalyst is able to fold so many different substrates because it addresses these common challenges.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Dobramento de Proteína , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Modelos Moleculares , Dissulfetos/química , Dissulfetos/metabolismo , Especificidade por Substrato , Cisteína/química , Cisteína/metabolismo
8.
Adv Mater ; : e2411082, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380411

RESUMO

High-dielectric-constant elastomers have broad applications in wearable electronics, which can be achieved by the elastification of relaxor ferroelectric polymers. However, the introduction of soft long chains, with their high mobility under strong electric fields, leads to high dielectric loss. Given the relatively low modulus of relaxor ferroelectric polymers, elastification can be realized by introducing short-chain crosslinkers. In this work, a molecular engineering design is employed, utilizing a rigid short-chain crosslinker to create crosslinks with relaxor ferroelectric polymer, resulting in intrinsic elastomers characterized by a high dielectric constant but low dielectric loss. The obtained intrinsic ferroelectric elastomer possesses a high dielectric constant (35 at 1 kHz and 25 °C) and a low dielectric loss (0.09). Furthermore, this elastomer exhibits stable ferroelectric response and relaxor characteristics even under strains up to 80%. The study supplies a simple but effective method to reduce the dielectric loss of high-dielectric-constant intrinsic elastomers, thereby expanding their application fields in wearable electronics.

9.
J Mech Behav Biomed Mater ; 160: 106759, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39366082

RESUMO

Both high-cycle fatigue life and fatigue crack propagation resistance of human cortical bone allograft are radiation dose-dependent between 0 and 25 kGy such that higher doses exhibit progressively shorter lifetimes. Recently, we have shown that collagen chain fragmentation and stable crosslink accumulation may contribute to the radiation dose-dependent loss in fatigue crack propagation resistance of human cortical bone. To our knowledge, the influence of these mechanisms on high-cycle fatigue life of cortical bone have not been established. Sequential irradiation has also been shown to mitigate the loss of fatigue life of tendons, however, whether this mitigates losses in fatigue life of cortical bone has not been explored. Our objectives were to evaluate the influence of radiation-induced collagen chain fragmentation and crosslinking on the high-cycle fatigue life of cortical bone in the dose range of 0-15 kGy, and to evaluate the capability of sequential irradiation at 15 kGy to mitigate the loss of high-cycle fatigue life and radiation-induced collagen damage. High-cycle fatigue life specimens from four male donor femoral pairs were divided into 5 treatment groups (0 kGy, 5 kGy, 10 kGy, 15 kGy, and 15 kGy sequentially irradiated) and subjected to high-cycle fatigue life testing with a custom rotating-bending apparatus at a cyclic stress of 35 MPa. Following fatigue testing, collagen was isolated from fatigue specimens, and collagen chain fragmentation and crosslink accumulation were quantified using SDS-PAGE and a fluorometric assay, respectively. Both collagen chain fragmentation (p = 0.006) and non-enzymatic crosslinking (p < 0.001) influenced high-cycle fatigue life, which decreased with increasing radiation dose from 0 to 15 kGy (p = 0.016). Sequential irradiation at 15 kGy did not offer any mitigation in high-cycle fatigue life (p = 0.93), collagen chain fragmentation (p = 0.99), or non-enzymatic crosslinking (p ≥ 0.10) compared to a single radiation dose of 15 kGy. Taken together with our previous findings on the influence of collagen damage on fatigue crack propagation resistance, collagen chain fragmentation and crosslink accumulation both contribute to radiation-induced losses in notched and unnotched fatigue life of cortical bone. To maximize the functional lifetime of radiation sterilized structural cortical bone allografts, pathways other than sequential radiation should be explored to mitigate collagen matrix damage.

10.
Int J Biol Macromol ; 280(Pt 4): 136144, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353527

RESUMO

Gelatin-based biomaterials are widely acknowledged as a promising choice for wound dressings, given their similarity to the extracellular matrix and biocompatibility. However, the challenge of cross-linking gelatin while preserving its biocompatibility and cost-effectiveness persists. This study aimed to enhance the properties of gelatin by incorporating the oxidized lignosulfonate (OLS) biopolymer as an inexpensive and biocompatible natural material. The polyphenolic structure of OLS acts as both a cross-linking agent and an antibacterial component. The OLS/gelatin films were prepared using a casting method with varying weight ratios (0.1, 0.2, 0.3, 0.4, and 0.5 w/w). FTIR analysis confirmed the formation of Schiff-base and hydrogen bonds between gelatin and OLS. The resulting films exhibited enhanced mechanical properties (Young's modulus ∼40 MPa), no cytotoxicity, and excellent cell adhesion and morphology. Antimicrobial tests showed significant activity against Escherichia coli and Staphylococcus aureus, with higher activity against S. aureus (17 mm inhibition zone and 99 % bactericidal rate). In vivo studies in a mouse model demonstrated that the gelatin/0.2OLS dressing significantly improved wound healing, including re-epithelialization, collagen formation, inflammation reduction, and blood vessel density, compared to untreated wounds. These findings suggest that the synthesized novel gelatin/OLS wound dressing has promising healing and antibacterial properties.

11.
Nanotechnology ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353465

RESUMO

Many studies have been conducted on the use of ultra-small iron oxide nanoparticles (USIONs) (d < 3 nm) as potential positive magnetic resonance imaging (MRI)-contrast agents (CAs); however, there is dearth of research on clustered USIONs. In this study, nearly monodispersed clustered USIONs were synthesized using a simple two-step one-pot polyol method. First, USIONs (d = 2.7 nm) were synthesized, and clustered USIONs (d = 27.9 nm) were subsequently synthesized through multiple cross-linking of USIONs with poly(acrylic acid-co-maleic acid) (PAAMA) polymers with many -COOH groups. The clustered PAAMA-USIONs exhibited very weak ferromagnetism owing to the magnetic interaction between superparamagnetic USIONs; this was evidenced by their appreciable r1= 3.9 s‒1mM‒1and high r2/r1ratio of 14.6. Their ability to function as a dual-modal T1/T2MRI-CA in T1-weighted MRI was demonstrated when they simultaneously exhibited positive and negative contrasts in T1-weighted MRI of tumor model mice after intravenous injection. They displayed positive contrasts at the kidneys, bladder, heart, and aorta and negative contrasts at the liver and tumor. .

12.
Front Bioeng Biotechnol ; 12: 1447340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355275

RESUMO

Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.

13.
J Biol Chem ; : 107845, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357827

RESUMO

Genetically-encoded photoactive proteins are integral tools in modern biochemical and molecular biological research. Within this tool box, truncated variants of the phototropin 2 light-oxygen-voltage (LOV) flavoprotein have been developed to photochemically generate singlet oxygen (1O2) in vitro and in vivo, yet the effect of 1O2 on these genetically encoded photosensitizers remains underexplored. In this study, we demonstrate that the "improved" LOV (iLOV) flavoprotein is capable of photochemical 1O2 generation. Once generated, 1O2 induces protein oligomerization via covalent cross-linking. The molecular targets of protein oligomerization by cross-linking are not endogenous tryptophans or tyrosines, but rather primarily histidines. Substitution of surface-exposed histidines for serine or glycine residues effectively eliminates protein cross-linking. When used in biochemical applications, such protein-protein cross-links may interfere with native biological responses to 1O2, which can be ameliorated by substitution of the surface exposed histidines of iLOV or other 1O2-generating flavoproteins.

14.
J Proteins Proteom ; 15(3): 545-559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39380887

RESUMO

Understanding protein-protein interactions (PPIs) is pivotal for deciphering the intricacies of biological processes. Dysregulation of PPIs underlies a spectrum of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions, highlighting the imperative of investigating these interactions for therapeutic advancements. This review delves into the realm of mass spectrometry-based techniques for elucidating PPIs and their profound implications in biological research. Mass spectrometry in the PPI research field not only facilitates the evaluation of protein-protein interaction modulators but also discovers unclear molecular mechanisms and sheds light on both on- and off-target effects, thus aiding in drug development. Our discussion navigates through six pivotal techniques: affinity purification mass spectrometry (AP-MS), proximity labeling mass spectrometry (PL-MS), cross-linking mass spectrometry (XL-MS), size exclusion chromatography coupled with mass spectrometry (SEC-MS), limited proteolysis-coupled mass spectrometry (LiP-MS), and thermal proteome profiling (TPP).

15.
Biomed Pharmacother ; 180: 117495, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326100

RESUMO

Postoperative adhesion is a common clinical disease caused by surgical trauma, accompanying serious subsequent complications. Current non-surgical drug therapy and biomaterial barrier administration have limited therapeutic effects due to their inherent deficiencies. Therefore, developing a simple, effective, and feasible method to effectively prevent postoperative adhesions after surgical procedures remains a challenge. An injectable chondroitin sulfate complex hydrogel was prepared based on aldehyde-modified chondroitin sulfate (ChS-CHO) and hydrazine-modified chondroitin sulfate (ChS-ADH). The hydrogel showed enhanced strength and good self-healing ability. By using the Schiff base reaction principle that aldehyde group reacts with hydrazide to form hydrazone bond, C-A hydrogel physical barrier is formed at the wound site to reduce the occurrence of postoperative adhesion. There is no use of chemical crosslinkers in the whole reaction system to prepare C-A hydrogel, which has excellent biocompatibility and is safe and non-toxic. The results showed that C-A hydrogel showed excellent mechanical properties, good self-healing, and biocompatibility. The cecal-abdominal wall adhesion model and hepatic adhesion model of rats were constructed respectively to evaluate its preventive effect on postoperative adhesion. The results showed that C-A hydrogel had a more significant preventive effect on postoperative adhesion, and appears to be a promising candidate for postoperative adhesion.

16.
ACS Appl Bio Mater ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300902

RESUMO

Biological scaffolds are plagued by poor biomechanical properties and untimely degradation. These limitations have yet to be addressed without compromising their biocompatibility. It is desirable to avoid inflammation and have degradation with concomitant host collagen deposition or even site-appropriate in situ regeneration for the successful outcome of an implanted biological scaffold. This work aims to achieve this by utilizing a biocompatible method to modify acellular scaffolds by impregnating alkaline-catalyzed citric acid (CA) cross-linking between the extracellular matrix proteins and silk fibroin (SF)/SF-gelatin (SFG) blends. Combinatorial detergent decellularization was employed to prepare a decellularized porcine liver scaffold (DPL). After proving the decellularization efficiency, the scaffold underwent modification by vacuum impregnation with CA containing SF (SF100DPL) and SFG blends (SFG5050DPL and SFG3070DPL) following pre-cross-linking, drying, and post-cross-linking. The subsequent strength augmentation was demonstrated by significant improvement in tensile strength from 2.4 ± 0.4 MPa (DPL) to, 3.8 ± 0.7 MPa (SF100DPL), 3.4 ± 0.7 MPa (SFG5050DPL), and 3.5 ± 0.2 MPa (SFG3070DPL); Young's modulus from 8.7 ± 1.8 MPa (DPL) to 20 ± 1.9 MPa (SF100DPL), 13.3 ± 2.6 MPa (SFG5050DPL), and 16 ± 1.2 MPa (SFG3070DPL); and suture retention strength from 0.9 ± 0.08 MPa (DPL) to 2.3 ± 0.2 MPa (SF100DPL), 2.8 ± 1.2 MPa (SFG5050DPL), and 2.6 ± 0.9 MPa (SFG3070DPL). The degradation resistance of the modified scaffolds was also markedly improved. Being cytocompatible, its ability to incite tolerable inflammatory and immune responses was confirmed by rat subcutaneous implantation for 14, 30, and 90 days, in terms of inflammatory cell infiltration, neoangiogenesis, and in vitro cytokine release to assess B-cell and T-cell activation. Such ECM composite scaffolds with appropriate strength and biocompatibility offer great promise in soft tissue repair applications such as skin grafting.

17.
Biopolymers ; : e23628, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301862

RESUMO

Bone tissue engineering is a promising technology being studied globally to become an effective and sustainable method to treat the problems of damaged or diseased bones. In this work, we developed an in situ cross-linking hydrogel system that combined N-succinyl chitosan (NSC) and oxidized alginate (OA) at varying mixing ratios through Schiff base cross-linking. The hydrogel system also contains biphasic calcium phosphate (BCP) and ascorbic acid (AA), which could enhance biological characteristics and accelerate bone repair. The hydrogels' properties were examined through physicochemical tests such as scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), pore size and porosity measurement, swelling ratio, degradation rate, AA release study, as well as cytocompatibility, including live/dead and cytotoxicity assays. The results revealed that the supplementation of AA and BCP components can affect the physico-mechanical properties of the hydrogel system. However, they exhibited noncytotoxic properties. Overall, the results demonstrated that the hydrogel composed of 3% (w/v) NSC and 3% (w/v) OA (NSC: OA volume ratio is 8:2) loaded with 40% (w/w) BCP and 0.3 mg/mL AA has the potential for bone regeneration.

18.
Nanomaterials (Basel) ; 14(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39269126

RESUMO

Carbon nanotubes (CNTs) are often regarded as semi-rigid, all-carbon polymers. However, unlike conventional polymers that can form 3D networks such as hydrogels or elastomers through crosslinking in solution, CNTs have long been considered non-crosslinkable under mild conditions. This perception changed with our recent discovery of UV-defluorination-driven direct crosslinking of CNTs in solution. In this study, we further investigate the thermal stability of UV-defluorination-driven crosslinked CNTs, revealing that they are metastable and decompose more readily than either pristine or fluorinated CNTs under Raman laser irradiation. Using Raman spectroscopy under controlled laser power, we examined both single-walled and multi-walled fluorinated CNTs. The results demonstrate that UV-defluorinated CNTs exhibit reduced thermal stability compared to their pristine or untreated fluorinated counterparts. This instability is attributed to the strain on the intertube crosslinking bonds resulting from the curved carbon lattice of the linked CNTs. The metallic CNTs in the crosslinked CNT networks decompose and revert to their pristine state more readily than the semiconducting ones. The inherent instability of crosslinked CNTs leads to combustion at temperatures approximately 100 °C lower than those required for non-crosslinked fluorinated CNTs. This property positions crosslinked CNTs as promising candidates for applications where mechanically robust, lightweight materials are needed, along with feasible post-use removal options.

19.
Polymers (Basel) ; 16(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274053

RESUMO

Molecular dynamics simulation (MD) technology can be used to simulate and study the physicochemical properties of polymer materials on the basis of material data obtained in traditional experiments. In this study, we use MD to construct models of crosslinked carbon nanotubes/epichlorohydrin rubber composites with different carbon nanotube diameters and study the effect of CNT tube diameter on crosslinked ECO. The results show that with the increase in CNT tube diameter, the contact area between the CNTs and rubber matrix increases, the interaction force is enhanced, the free volume fraction of rubber matrix decreases by 21.36%, the glass transition temperature increases by 6.5%, the mean square displacement decreases, the radius of gyration decreases by 3.18 Å, and the radial distribution function of the C-atom group and the H-atom group in the system gradually decreases. The binding energy between the two is elevated, which in turn verifies the enhancement of the interaction force.

20.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274086

RESUMO

Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions. Various DHT exposure times of up to 72 h were applied to examine the time dependance of the DHT process. The DHT crosslinked collagen was subsequently chemically crosslinked using carbodiimides. The material crosslinked in this way evinced elevated Young's modulus values and ultimate tensile strength values, a lower swelling rate and lower shrinkage ratio during crosslinking, and a higher degree of resistance to degradation than the material crosslinked solely with DHT or carbodiimides. It was shown that the crosslinking mechanism using DHT occupies different binding sites than those using chemical crosslinking. Access to air for 12 h or less did not exert a significant impact on the material properties compared to DHT under vacuum conditions. However, concerning longer exposure times, it was determined that access to air results in the deterioration of the properties of the material and that reactions take place that occupy the free bonding sites, which subsequently reduces the effectiveness of chemical crosslinking using carbodiimides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA