Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172258, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583618

RESUMO

Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.


Assuntos
Técnicas Biossensoriais , DNA Ambiental , Monitoramento Ambiental , Estrelas-do-Mar , Técnicas Biossensoriais/métodos , Animais , Monitoramento Ambiental/métodos , Recifes de Corais , China
2.
Mar Environ Res ; 197: 106454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552455

RESUMO

Over the years, coral reefs in the South China Sea have degraded and faced severe threats from rapid development, coral bleaching, and Crown-of-Thorns Starfish (COTS) outbreak. There is limited knowledge relating to the effects of anthropogenic disturbances and natural events on the coral reefs of Pulau Layang-Layang. This study aims to assess reef cover changes by utilizing Landsat satellite images spanning from 1989 to 2022. Using the object-based image analysis method, this study classified the reef cover into three categories: coral, rock and rubble, and sand. The supervised classification had an overall accuracy of 86.41-87.38 % and Tau's coefficients of 0.80-0.81. The results showed island development and construction of artificial bird sanctuary have led to an increase in coral cover. Furthermore, it was illustrated that the impact of COTS outbreaks in 2010 and 2020 differed significantly, with the latter showing no signs of recovery. Our study underscores the importance of timely intervention to mitigate the spread of COTS. This study provides insights into the resilience and vulnerability of these ecosystems in the face of various stressors.


Assuntos
Antozoários , Ecossistema , Animais , Malásia , Recifes de Corais , Estrelas-do-Mar
3.
Wilderness Environ Med ; 35(1): 57-66, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38379485

RESUMO

Okinawa prefecture is a popular tourist destination due to its beaches and reefs. The reefs host a large variety of animals, including a number of venomous species. Because of the popularity of the reefs and marine activities, people are frequently in close contact with dangerous venomous species and, thus, are exposed to potential envenomation. Commonly encountered venomous animals throughout Okinawa include the invertebrate cone snail, sea urchin, crown-of-thorns starfish, blue-ringed octopus, box jellyfish, and fire coral. The vertebrates include the stonefish, lionfish, sea snake, and moray eel. Treatment for marine envenomation can involve first aid, hot water immersion, antivenom, supportive care, regional anesthesia, and pharmaceutical administration. Information on venomous animals, their toxins, and treatment should be well understood by prehospital care providers and physicians practicing in the prefecture.


Assuntos
Antozoários , Cubomedusas , Hydrophiidae , Animais , Antivenenos , Primeiros Socorros
4.
PeerJ ; 11: e15689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637177

RESUMO

Background: The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods: Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results: We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.


Assuntos
Artemia , Proteômica , Animais , Artralgia , Bioensaio , Transporte Biológico
5.
Ecol Appl ; 33(8): e2913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615222

RESUMO

Integrated pest management (IPM) leverages our understanding of ecological interactions to mitigate the impact of pest species on economically and/or ecologically important assets. It has primarily been applied in terrestrial settings (e.g., agriculture), but has rarely been attempted for marine ecosystems. The crown-of-thorns starfish (CoTS), Acanthaster spp., is a voracious coral predator throughout the Indo-Pacific where it undergoes large population increases (irruptions), termed outbreaks. During outbreaks CoTS act as a pest species and can result in substantial coral loss. Contemporary management of CoTS on the Great Barrier Reef (GBR) adopts facets of the IPM paradigm to manage these outbreaks through strategic use of direct manual control (culling) of individuals in response to ecologically based target thresholds. There has, however, been limited quantitative analysis of how to optimize the implementation of such thresholds. Here we use a multispecies modeling approach to assess the performance of alternative CoTS management scenarios for improving coral cover trajectories. The scenarios examined varied in terms of their ecological threshold target, the sensitivity of the threshold, and the level of management resourcing. Our approach illustrates how to quantify multidimensional trade-offs in resourcing constraints, concurrent CoTS and coral population dynamics, the stringency of target thresholds, and the geographical scale of management outcomes (number of sites). We found strategies with low target density thresholds for CoTS (≤0.03 CoTS min-1 ) could act as "Effort Sinks" and limit the number of sites that could be effectively controlled, particularly under CoTS population outbreaks. This was because a handful of sites took longer to control, which meant other sites were not controlled. Higher density thresholds (e.g., 0.04-0.08 CoTS min-1 ), tuned to levels of coral cover, diluted resources among sites but were more robust to resourcing constraints and pest population dynamics. Our study highlights trade-off decisions when using an IPM framework and informs the implementation of threshold-based strategies on the GBR.


Assuntos
Antozoários , Humanos , Animais , Recifes de Corais , Ecossistema , Estrelas-do-Mar/fisiologia , Controle de Pragas
6.
Environ Res ; 235: 116568, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422114

RESUMO

The "larval starvation hypothesis" proposed that the growing frequency of Crown-of-Thorns Starfish (CoTS) outbreaks could be attributed to increased availability of phytoplankton. However, comprehensive field investigation on the living environment of CoTS larvae and the availability of phytoplankton are still lacking. A cruise was conducted in June 2022 in Xisha Islands, South China Sea, to study the interaction between environmental conditions and phytoplankton communities during CoTS outbreak period. The average concentrations of dissolved inorganic phosphorus (0.05 ± 0.01 µmol L-1), dissolved inorganic nitrogen (0.66 ± 0.8 µmol L-1) and chlorophyll a (0.05 ± 0.05 µg L-1) suggested that phytoplankton may be limited for CoTS larvae in Xisha Islands. Microscopic observation and high-throughput sequencing were used to study the composition and structure of the phytoplankton communities. Bacillariophyta predominated in phytoplankton communities with the highest abundance and species richness. 29 dominant species, including 4 species with size-range preferred by CoTS larvae, were identified in Xisha Islands. The diversity index of all stations indicated a species-rich and structure-stable phytoplankton community in Xisha Islands during the period of CoTS outbreak, which may contribute to CoTS outbreak. These findings revealed the structure of phytoplankton community and environmental factors in the study area during CoTS outbreak, providing the groundwork for future research into the causes and processes of CoTS outbreak.


Assuntos
Fitoplâncton , Estrelas-do-Mar , Animais , Clorofila A , Ilhas , Surtos de Doenças , China/epidemiologia
7.
Mol Ecol ; 32(13): 3541-3556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009965

RESUMO

Marine animals in the wild are often difficult to access, so they are studied in captivity. However, the implicit assumption that physiological processes of animals in artificial environments are not different from those in the wild has rarely been tested. Here, we investigate the extent to which an animal is impacted by captivity by comparing global gene expression in wild and captive crown-of-thorns starfish (COTS). In a preliminary analysis, we compared transcriptomes of three external tissues obtained from multiple wild COTS with a single captive COTS maintained in aquaria for at least 1 week. On average, an astonishingly large 24% of the coding sequences in the genome were differentially expressed. This led us to conduct a replicated experiment to test more comprehensively the impact of captivity on gene expression. Specifically, a comparison of 13 wild with 8 captive COTS coelomocyte transcriptomes revealed significant differences in the expression of 20% of coding sequences. Coelomocyte transcriptomes in captive COTS remain different from those in wild COTS for more than 30 days and show no indication of reverting back to a wild state (i.e. no evidence of acclimation). Genes upregulated in captivity include those involved in oxidative stress and energy metabolism, whereas genes downregulated are involved in cell signalling. These changes in gene expression indicate that being translocated and maintained in captivity has a marked impact on the physiology and health of these echinoderms. This study suggests that caution should be exercised when extrapolating results from captive aquatic invertebrates to their wild counterparts.


Assuntos
Genômica , Estrelas-do-Mar , Animais , Estrelas-do-Mar/genética , Genoma , Transcriptoma/genética
8.
Biosens Bioelectron ; 230: 115265, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996547

RESUMO

The coral reef crisis has significantly intensified over the last decades, mainly due to severe outbreaks of crown-of-thorns starfish (COTS). Current ecological monitoring has failed to detect COTS densities at the pre-outbreak stage, thus preventing early intervention. In this work, we developed an effective electrochemical biosensor modified by a MoO2/C nanomaterial, as well as a specific DNA probe that could detect trace COTS environmental DNA (eDNA) at a lower detection limit (LOD = 0.147 ng/µL) with excellent specificity. The reliability and accuracy of the biosensor were validated against the standard methods by an ultramicro spectrophotometer and droplet digital PCR (p > 0.05). The biosensor was then utilized for the on-site analysis of seawater samples from SYM-LD and SY sites in the South China Sea. For the SYM-LD site suffering an outbreak, the COTS eDNA concentrations were 0.33 ng/µL (1 m, depth) and 0.26 ng/µL (10 m, depth), respectively. According to the ecological survey, the COTS density was 500 ind/hm2 at the SYM-LD site, verifying the accuracy of our measurements. At the SY site, COTS eDNA was also detected at 0.19 ng/µL, but COTS was not found by the traditional survey. Hence, larvae were possibly present in this region. Therefore, this electrochemical biosensor could be used to monitor COTS populations at the pre-outbreak stages, and potentially serve as a revolutionary early warning method. We will continue to improve this method for picomolar or even femtomolar detection of COTS eDNA.


Assuntos
Antozoários , Técnicas Biossensoriais , DNA Ambiental , Animais , Reprodutibilidade dos Testes , Estrelas-do-Mar/genética , Surtos de Doenças
9.
BMC Biol ; 20(1): 288, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528687

RESUMO

BACKGROUND: Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef.  RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS: Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.


Assuntos
Neuropeptídeos , Estrelas-do-Mar , Animais , Feminino , Masculino , Estrelas-do-Mar/genética , Ecossistema , Feromônios , Recifes de Corais
10.
Gen Comp Endocrinol ; 328: 114107, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973586

RESUMO

In starfish, a relaxin-like gonad-stimulating peptide (RGP) is the gonadotropin responsible for final gamete maturation. RGP comprises two different peptides, A- and B-chains with two interchain and one intrachain disulfide bonds. The existence of two isomers of RGP in the crown-of-thorns starfish, Acanthaster planci, has been reported previously, but it was recently shown that A. planci represents a species complex with four different species. Here we elucidated the authentic sequence of the Pacific species, Acanthaster cf. solaris, RGP (Aso-RGP). The Aso-RGP precursor encoded by a 354 base pair open reading frame was composed of 117 amino acids (aa). The amino acid identity of Aso-RGP to Patiria pectinifera RGP (Ppe-RGP) and Asterias amurensis RGP (Aam-RGP) was 74% and 60%, respectively. Synthetic Aso-RGP induced spawning of ovarian fragments from A. cf. solaris. Ppe-RGP and Aam-RGP also induced spawning by A. cf. solaris ovaries. In contrast, Ppe-RGP and Aso-RGP induced spawning by P. pectinifera ovaries, but Aam-RGP was inactive. Notably, anti-Ppe-RGP antibodies recognized Aso-RGP as well as Ppe-RGP. Localization of Aso-RGP was observed immunohistochemically using anti-Ppe-RGP antibodies, showing that Aso-RGP was mainly present in the radial nerve cords of A. cf. solaris. Aso-RGP was distributed not only in the epithelium of the ectoneural region but also in the neuropile of the ectoneural region. These results suggest that Aso-RGP is synthesized in the epithelium of the ectoneural region, then transferred to fibers in the neuropile of the ectoneural region in radial nerve cords.


Assuntos
Relaxina , Aminoácidos , Animais , Dissulfetos/metabolismo , Gonadotropinas/metabolismo , Gônadas/metabolismo , Relaxina/metabolismo , Estrelas-do-Mar/metabolismo
11.
Microorganisms ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208662

RESUMO

Coral ingestion by crown-of-thorns starfish (COTS) is an important cause of coral reef degradation, although the impacts of COTS feeding on coral-associated microbial communities are not well understood. Therefore, in this study, we analyzed the coral tissue-weight, Symbiodiniaceae density (SD), bacterial community composition, and the predicted functions of bacterial genes associated with Pocillopora corals in healthy portions and feeding scars, following COTS feeding. Coral tissue-weight loss rate in the feeding scars was 71.3-94.95%. The SDs were significantly lower in the feeding scars, and the SD-loss rate was 92.05% ± 2.12%. The relative abundances of bacterial communities associated with Pocillopora corals after COTS feeding changed significantly and were almost completely reorganized at the phylum and genus levels. Analysis of the microbial metagenomic-functional capacities showed that numerous physiological functions of the coral-bacterial holobionts in the feeding scars were different, including amino acid metabolism, xenobiotic biodegradation and metabolism, lipid metabolism, membrane transport, signal transduction, and cell motility, and all these capacities could be corroborated based on metagenomic, transcriptomic or proteomic technologies. Overall, our research suggests that coral holobionts may be destroyed by COTS, and our findings imply that bacterial communities in feeding scars could affect the health of Pocillopora corals.

12.
Mar Biotechnol (NY) ; 23(3): 501-515, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34191212

RESUMO

Gastropod molluscs are among the most abundant species that inhabit coral reef ecosystems. Many are specialist predators, along with the giant triton snail Charonia tritonis (Linnaeus, 1758) whose diet consists of Acanthaster planci (crown-of-thorns starfish), a corallivore known to consume enormous quantities of reef-building coral. C. tritonis are considered vulnerable due to overexploitation, and a decline in their populations is believed to have contributed to recurring A. planci population outbreaks. Aquaculture is considered one approach that could help restore natural populations of C. tritonis and mitigate coral loss; however, numerous questions remain unanswered regarding their life cycle, including the molecular factors that regulate their reproduction and development. In this study, we have established a reference C. tritonis transcriptome derived from developmental stages (embryo and veliger) and adult tissues. This was used to identify genes associated with cell signalling, such as neuropeptides and G protein-coupled receptors (GPCRs), involved in endocrine and olfactory signalling. A comparison of developmental stages showed that several neuropeptide precursors are exclusively expressed in post-hatch veligers and functional analysis found that FFamide stimulated a significant (20.3%) increase in larval heart rate. GPCRs unique to veligers, and a diversity of rhodopsin-like GPCRs located within adult cephalic tentacles, all represent candidate olfactory receptors. In addition, the cytochrome P450 superfamily, which participates in the biosynthesis and degradation of steroid hormones and lipids, was also found to be expanded with at least 91 genes annotated, mostly in gill tissue. These findings further progress our understanding of C. tritonis with possible application in developing aquaculture methods.


Assuntos
Caramujos/genética , Caramujos/metabolismo , Transcriptoma , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Larva/genética , Larva/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Caramujos/crescimento & desenvolvimento
13.
Rev. biol. trop ; 69(supl. 1)mar. 2021.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1507773

RESUMO

Introducción: Es poco lo que se conoce sobre aspectos biológicos y poblacionales de Acanthaster planci en México. Su tamaño se ha relacionado con la cantidad de alimento que consume, por lo que es relevante conocer esta variable. Objetivo: Describir la variabilidad en el diámetro del disco de la especie y de su alimentación en cuatro sitios al sur del Golfo de California. Métodos: De febrero 2008 a marzo 2009 se visitaron mensualmente los sitios. Se registró el diámetro del disco de un total de 389 individuos observados. El diámetro del disco se midió con una cinta métrica flexible colocada de lado a lado, en el borde donde comienzan los brazos. Para facilitar la descripción, el diámetro del disco se clasificó en tres grupos: pequeños ( 26 cm). Del total, 298 organismos se encontraron alimentándose. Se clasificaron los tipos de organismos consumidos en corales duros, otros invertebrados y algas. Para calcular la probabilidad de que individuos del mismo tamaño se alimenten de diferente variedad de organismos, se aplicó el índice de Diversidad de Simpson. Con el fin de detectar diferencias del diámetro del disco entre los meses de estudio y los sitios de muestreo, se aplicó un análisis permutacional de varianza. Resultados: Acanthaster planci tuvo un promedio de diámetro del disco de 18.23 ± 0.21 cm, con un mínimo de 7 cm y un máximo de 36 cm. La estructura de tallas fue unimodal y se caracterizó por la predominancia de individuos medianos, seguida por los pequeños y en baja proporción por los grandes. El diámetro del disco fue estadísticamente más grande en febrero y más pequeño en los últimos meses del año. En San Rafaelito se encontraron los ejemplares más grandes y en Ensenada de Muertos los más pequeños. Los individuos de tamaño mediano fueron más frecuentes a lo largo del año y en todos los sitios. Los individuos pequeños se alimentaron significativamente más de Porites panamensis, seguido de algas coralinas y tapetes. Los más grandes tuvieron los valores de diversidad más bajos, más del 90 % de los individuos en este grupo se alimentaron de Pocillopora spp. y algunos de macroalgas. Los medianos presentaron los valores más altos de diversidad y consumieron todos los tipos de alimento encontrados, sin embargo, como era de esperarse, muchos fueron selectivos hacia Pocillopora spp. Conclusiones: Acanthaster planci se considera un individuo de tamaño mediano en el área de estudio. Se detectó una evidente relación entre el diámetro del disco y la diversidad del tipo de alimento. Los tres grupos de tallas fueron positivamente selectivos hacia corales duros; los más pequeños se alimentaron preferentemente de Porites panamensis y en conjunto con los grandes, presentaron valores bajos de diversidad en el tipo de alimento, mientras que los medianos fueron los que consumieron una mayor diversidad de presas.


Introduction: Little is known about the biology and population dynamics of Acanthaster planci in Mexico. Its size is considered relevant because it is related to consumption rate. Objective: To describe the variability of the disk diameter and food type of the species in four sampling sites in the southern Gulf of California. Methods: Each site was visited on a monthly basis from February 2008 to March 2009. Disk diameter was registered from a total of 389 observed specimens. Measurements included only the main disk from side to side where the arms begin. A flexible tape was used to measure disk diameter. Three size groups were created for easier explanations: small ( 26 cm). From the total, only 298 asteroids were feeding. Preyed organisms were classified in hard corals, other invertebrates, and algae. The Simpson's Diversity Index was used to calculate the probability that any specimen would be feeding on different types of organisms. A permutational analysis of variance was used to detect differences of disk diameter amongst months and study sites. Results: This population of Acanthaster planci had an average disk diameter = 18.23 ± 0.21 cm, with a minimum of 7 cm and maximum of 36 cm. Size structure was unimodal and largely dominated by medium sized specimens, followed by small ones. The larger were less frequent. Disk diameter was statistically higher in February and lower in the last months of the year. San Rafaelito was the site with the largest and Ensenada de Muertos with the smallest organisms. Medium sized individuals were dominant throughout the year and sampling sites. The small sized fed significantly more on Porites panamensis and coralline algae and turf. Larger specimens had the lowest diversity values, more than 90 % of this size group fed on Pocillopora spp. and very few on macroalgae. Medium sized specimens showed the highest diversity, feeding on all the food types, although as expected, many of them were selective to Pocillopora spp. Conclusions: Acanthaster planci can be considered a medium sized species in the study area. There is an evident food selectivity regarding disk diameter size. The three size groups were positively selective to hard corals, but only the small favored Porites panamensis; and together with large individuals, they had the lowest diversity on food types, whereas medium sized asteroids fed on a high diversity of prey.


Assuntos
Animais , Estrelas-do-Mar/crescimento & desenvolvimento , Equinodermos/crescimento & desenvolvimento , México
14.
Adv Mar Biol ; 87(1): 223-258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293012

RESUMO

Outbreaks of the coral eating crown-of-thorns starfish (COTS; Acanthasts cf. solaris) occur in cyclical waves along the Great Barrier Reef (GBR), contributing significantly to the decline in hard coral cover over the past 30 years. One main difficulty faced by scientists and managers alike, is understanding the relative importance of contributing factors to COTS outbreaks such as increased nutrients and water quality, larval connectivity, fishing pressure, and abiotic conditions. We analysed COTS abundances from the most recent outbreak (2010-2018) using both boosted regression trees and generalised additive models to identify key predictors of COTS outbreaks. We used this approach to predict the suitability of each reef on the GBR for COTS outbreaks at three different levels: (1) reefs with COTS present intermittently (Presence); (2) reefs with COTS widespread and present in most samples and (Prevalence) (3) reefs experiencing outbreak levels of COTS (Outbreak). We also compared the utility of two auto-covariates accounting for spatial autocorrelation among observations, built using weighted inverse distance and weighted larval connectivity to reefs supporting COTS populations, respectively. Boosted regression trees (BRT) and generalised additive mixed models (GAMM) were combined in an ensemble model to reduce the effect of model uncertainty on predictions of COTS presence, prevalence and outbreaks. Our results from best performing models indicate that temperature (Degree Heating Week exposure: relative importance=13.1%) and flood plume exposure (13.0%) are the best predictors of COTS presence, variability in chlorophyll concentration (12.6%) and flood plume exposure (8.2%) best predicted COTS prevalence and larval connectivity potential (22.7%) and minimum sea surface temperature (8.0%) are the best predictors of COTS outbreaks. Whether the reef was open or closed to fishing, however, had no significant effect on either COTS presence, prevalence or outbreaks in BRT results (<0.5%). We identified major hotspots of COTS activity primarily on the mid shelf central GBR and on the southern Swains reefs. This study provides the first empirical comparison of the major hypotheses of COTS outbreaks and the first validated predictions of COTS outbreak potential at the GBR scale incorporating connectivity, nutrients, biophysical and spatial variables, providing a useful aid to management of this pest species on the GBR.


Assuntos
Antozoários , Recifes de Corais , Estrelas-do-Mar , Animais , Surtos de Doenças , Larva , Qualidade da Água
15.
Adv Mar Biol ; 87(1): 259-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293013

RESUMO

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the intensity and frequency of bleaching and cyclonic disturbances increasing, effectively managing these outbreaks may allow reefs an opportunity to recover from these cumulative impacts. Significant research effort has been directed toward developing regional scale models for COTS outbreaks, but these have yet to be fit explicitly to long term time series at the scale of the entire GBR, nor do previous research efforts incorporate explicit estimates of cumulative disturbance history. We developed a stage-based metapopulation model for COTS at a 1×1km resolution using long-term time series and modelled estimates of COTS larval connectivity, nutrient concentrations and important vital rates estimated from the literature. We coupled this metapopulation model to an existing spatially explicit model of coral cover growth, disturbance and recovery across the GBR from 1996 to 2017 to create a metacommunity model. Our results were validated against a spatially and temporally extensive dataset of COTS and coral cover across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and accurately recreating coral cover trajectories (mean prediction error=7.1%) and COTS outbreak classification (accuracy=80%). Sensitivity analyses revealed that overall model accuracy was most sensitive to larval predation (boosted regression tree; relative importance=46.7%) and two parameters defining juvenile density dependent mortality (21.5% and 17.5%). The COTS model underestimated peak COTS densities particularly in the Swains and Townsville sectors of the reef, while overestimating COTS density during non-outbreak years. A better understanding of inter-annual variability in larval connectivity, and regionally variable density dependence for adult COTS life stages may improve model fit during these extreme outbreak events. Our model provides a platform to develop upon, and with improvements to estimates of larval connectivity and larval predation could be used to simulate the effects of implementing varying combinations of COTS interventions. This research highlights the importance of the early life history stages of COTS as drivers of outbreak dynamics, emphasizing the need for further empirical research to estimate these parameters.


Assuntos
Antozoários , Recifes de Corais , Estrelas-do-Mar , Animais , Comportamento Predatório
16.
Mar Environ Res ; 162: 105164, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33099079

RESUMO

Outbreaks of the coral-eating crown-of-thorns starfish Acanthaster spp. (COTS) have become to be amongst the most severe threats to coral reefs worldwide. Although most research has focused on COTS early development, it remains unclear how COTS populations will keep pace with changing ocean conditions. Since reproduction is a key process contributing to outbreaks, we investigated the reproductive success of adult COTS acclimated for 3-4 months to different treatment combinations of ambient conditions, ocean warming (+2 °C) and acidification (-0.35 pH). Our results suggest that the optimal breeding season in New Caledonia is concentrated around the end of the calendar year, when water temperature reaches >26 °C. We found negative effects of temperature on egg metrics, fertilisation success, and GSI, conflicting with previously documented effects of temperature on echinoderm reproductive outputs. Fertilisation success dropped drastically (more than threefold) with elevated temperature during the late breeding season. In contrast, we detected no effects of near-future acidification conditions on fertilisation success nor GSI. This is the first time that COTS reproduction is compared among individuals acclimated to different conditions of warming and acidification. Our results highlight the importance of accounting for adult exposure to better understand how COTS reproduction may be impacted in the face of global change.


Assuntos
Antozoários , Animais , Recifes de Corais , Humanos , Concentração de Íons de Hidrogênio , Nova Caledônia , Oceanos e Mares , Estrelas-do-Mar , Temperatura
17.
Microbiome ; 8(1): 123, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831146

RESUMO

BACKGROUND: Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS: A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS: We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS: COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.


Assuntos
Antozoários , Bactérias/isolamento & purificação , Comportamento Predatório , Estrelas-do-Mar/microbiologia , Estrelas-do-Mar/fisiologia , Simbiose , Animais , Bactérias/genética , Recifes de Corais , Oceano Índico , Masculino , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Estrelas-do-Mar/genética
18.
Biol Lett ; 16(4): 20190849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264781

RESUMO

Crown-of-thorns seastar (COTS) outbreaks are a major threat to coral reefs. Although the herbivorous juveniles and their switch to corallivory are key to seeding outbreaks, they remain a black box in our understanding of COTS. We investigated the impact of a delay in diet transition due to coral scarcity in cohorts reared on crustose coralline algae for 10 months and 6.5 years before being offered coral. Both cohorts achieved an asymptotic size (16-18 mm diameter) on algae and had similar exponential growth on coral. After 6.5 years of herbivory, COTS were competent coral predators. This trophic and growth plasticity results in a marked age-size disconnect adding unappreciated complexity to COTS boom-bust dynamics. The potential that herbivorous juveniles accumulate in the reef infrastructure to seed outbreaks when favourable conditions arise has implications for management of COTS populations.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Recifes de Corais , Dieta , Herbivoria
19.
Ecology ; 100(2): e02574, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30645776

RESUMO

This data compilation synthesizes 36 static environmental and spatial variables, and temporally explicit modeled estimates of three major disturbances to coral cover on the Great Barrier Reef (GBR): (1) coral bleaching, (2) tropical cyclones, and (3) outbreaks of the coral-eating crown-of-thorns starfish Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° × 0.01° ~ 1 × 1 km) for reef locations along the GBR, containing 15,928 pixels and excluding the northernmost sections (<12° S) where empirical data were sparse. This compilation provides a consistent and high-resolution characterization of the abiotic environment and disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development of complex ecosystem models. Static estimates of environmental variables (e.g., depth, bed shear stress, average temperature, temperature variation) originally developed by the Commonwealth of Australia's Environment Research Facility (CERF) Marine Biodiversity Hub were provided by Geoscience Australia. Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf. solaris), predicted from proxy indicators (e.g., degree heating weeks [DHW] as a proxy for bleaching severity), or explicitly modeled (e.g., wave height model for each cyclone). This data set synthesizes some of the most recent advances in remote sensing and modeling of environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that should be expanded through future research. The characterization of abiotic and disturbance regimes presented here represent an essential tool for the development of complex regional scale models of the GBR; preventing redundancy between working groups and promoting collaboration, innovation, and consistency. When using the data set, we kindly request that you cite this article and/or the articles cited in the reference section, recognizing the work that went into compiling the data together and the original authors' willingness to make it publicly available.

20.
Wilderness Environ Med ; 29(3): 343-356, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954662

RESUMO

INTRODUCTION: Recent analyses of data show a warming trend in global average air and sea surface ocean temperatures. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, the sea level has risen, and the concentrations of greenhouse gases have increased. This article will focus on climate change and projected effects on venomous marine and amphibious creatures with the potential impact on human health. METHODS: Retrospective analysis of environmental, ecological, and medical literature with a focus on climate change, toxinology, and future modeling specific to venomous aquatic and amphibious creatures. Species included venomous jellyfish, poisonous fish, crown-of-thorns starfish, sea snakes, and toxic frogs. RESULTS: In several projected scenarios, rising temperatures, weather extremes, and shifts in seasons will increase poisonous population numbers, particularly with certain marine creatures like jellyfish and crown-of-thorns starfish. Habitat expansions by lionfish and sea snakes are projected to occur. These phenomena, along with increases in human populations and coastal development will likely increase human-animal encounters. Other species, particularly amphibious toxic frogs, are declining rapidly due to their sensitivity to any temperature change or subtle alterations in the stability of their environment. If temperatures continue to rise to record levels over the next decades, it is predicted that the populations of these once plentiful and critically important animals to the aquatic ecosystem will decline and their geographic distributions will shrink. CONCLUSION: Review of the literature investigating the effect and forecasts of climate change on venomous marine and amphibious creatures has demonstrated that temperature extremes and changes to climatic norms will likely have a dramatic effect on these toxicological organisms. The effects of climate change on these species through temperature alteration and rising coastal waters will influence each species differently and in turn potentially affect commercial industries, travel, tourism, and human health.


Assuntos
Anfíbios , Mudança Climática , Peixes Venenosos , Hydrophiidae , Venenos de Anfíbios , Anfíbios/fisiologia , Animais , Cnidários/fisiologia , Ecologia , Venenos Elapídicos , Meio Ambiente , Peixes Venenosos/fisiologia , Humanos , Hydrophiidae/fisiologia , Peçonhas , Meio Selvagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...