Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(8): e11096, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135331

RESUMO

Biofilm development in gram negative bacterial contaminants in water supply systems is linked to persistence as well as antibiotic resistance, which threatens water quality and hence the public health. This study aimed to investigate phenotypic and genetic capacity of biofilm formation by Escherichia coli isolated from supply water with their antibiotic susceptibility pattern. Altogether fifty water samples collected from a city supply water distribution scheme in Kathmandu were analyzed to assess the physicochemical and microbiological quality. Comparing Nepal's national drinking water quality standards 2022, conductivity (4%), turbidity (18%), iron (28%), and residual chlorine (8%) were found exceeding the values above the standards. Among total, 40% of water samples were contaminated with total coliform bacteria. E. coli and Citrobacter species were dominant and isolated from 20 (64.52%) and 11 (35.48%) water samples, respectively. Antibiotic susceptibility testing revealed that E. coli isolates were resistant to ampicillin (20%), nitrofurantoin (10%), and cefotaxime (10%). Citrobacter spp. (54.54%) were found multidrug resistant (MDR) while none of the isolates of E. coli were MDR. Of total, 45% of the isolates developed biofilm while testing with the Microtiter plate method. Biofilm-forming genes bcsA and csgD in E. coli isolates were detected with polymerase chain reaction (PCR) employing specific primers. bcsA and csgD genes were detected in 55% and 45% of the isolates, respectively. This study confirms the occurrences of biofilm forming and antibiotic resistant bacteria like E. coli in the drinking water supply system in Kathmandu alarming its environmental circulation and possible public health threat. Although further study is warranted, this study suggests public health and drinking water treatment interventions to mitigate the biofilm forming antibiotic resistant potential pathogens from supply water in Kathmandu, Nepal. PRACTITIONER POINTS: Forty percent of tested drinking water samples in Kathmandu were contaminated with total coliform bacteria. E. coli and half of Citrobacter spp. isolates were resistant to multiple antibiotics. bcsA and csgD genes were detected in biofilm producing E.coli isolates.


Assuntos
Biofilmes , Água Potável , Escherichia coli , Abastecimento de Água , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Escherichia coli/isolamento & purificação , Nepal , Água Potável/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia da Água
2.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065026

RESUMO

Pathogenic Salmonella strains causing gastroenteritis typically can colonize and proliferate in the intestines of multiple host species. They retain the ability to form red dry and rough (rdar) biofilms, as seen in Salmonella enterica serovar Typhimurium. Conversely, Salmonella serovar like Typhi, which can cause systemic infections and exhibit host restriction, are rdar-negative. In this study, duck-derived strains and swine-derived strains of S. Typhimurium locate on independent phylogenetic clades and display relative genomic specificity. The duck isolates appear more closely related to human blood isolates and invasive non-typhoidal Salmonella (iNTS), whereas the swine isolates were more distinct. Phenotypically, compared to duck isolates, swine isolates exhibited enhanced biofilm formation that was unaffected by the temperature. The transcriptomic analysis revealed the upregulation of csgDEFG transcription as the direct cause. This upregulation may be mainly attributed to the enhanced promoter activity caused by the G-to-T substitution at position -44 of the csgD promoter. Swine isolates have created biofilm polymorphisms by altering a conserved base present in Salmonella Typhi, iNTS, and most Salmonella Typhimurium (such as duck isolates). This provides a genomic characteristics perspective for understanding Salmonella transmission cycles and evolution.

3.
Gut Microbes ; 16(1): 2356642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769708

RESUMO

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Assuntos
Aderência Bacteriana , Biofilmes , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Macrófagos , Macrófagos/microbiologia , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Virulência , Colite/microbiologia , Doença de Crohn/microbiologia , Modelos Animais de Doenças , Transdução de Sinais , Ácidos/metabolismo
4.
Bioresour Technol ; 399: 130604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499206

RESUMO

The biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.35 % compared to that of the wild type strains (p < 0.05). In addition, the hydrophilicity of polyurethane fibres modified with potassium dichromate increased significantly, and biofilm adhesion increased by 105.80 %. Finally, the isoquercitrin yield in the catalytic reaction of the biofilm reinforced by the csgD overexpression strain and the modified carrier was 247.85 % higher than that of the untreated group. Overall, this study has developed engineered strains biofilm with special functions, providing possibilities for catalytic applications.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes , Escherichia coli/genética , Proteínas de Bactérias/metabolismo
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761984

RESUMO

The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes , Proteínas da Membrana Bacteriana Externa/genética
6.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36792064

RESUMO

The major biofilm pathway in Salmonella enterica serovar Typhimurium involves specific growth conditions that induce the csgA gene whose product forms surface curli fibers that mediate biofilm formation. We have found that the previously uncharacterized STM1266 gene in S. Typhimurium plays a role in regulating biofilm formation via the curli pathway. S. Typhimurium ΔSTM1266 strains display a biofilm defect, and overexpression of STM1266 results in enhanced biofilm formation. STM1266 deletion resulted in lowered csgA expression using promoter-reporter ß-galactosidase assays, and csgA and csgD deletions abrogate the effects of STM1266 overexpression on biofilm formation while deletion of bcsA (encoding an essential enzyme for cellulose formation) has no effect. In a mouse infection model, the ΔSTM1266 strain displayed results similar to those seen for previously reported ΔcsgA strains. The STM1266 gene is predicted to encode a DNA-binding transcriptional regulator of the MerR family and is homologous to the Escherichia coli BluR regulator protein. We respectfully propose to ascribe the name brfS (biofilm regulator for Salmonella Typhimurium) to the STM1266 gene.


Assuntos
Proteínas de Bactérias , Biofilmes , Salmonella typhimurium , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Microbiol Insights ; 15: 11786361221135224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420183

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most prevalent cause of urinary tract infections (UTIs). Biofilm formation and antibiotic resistance could be high among the causative agent. The purpose of this study was to determine antibiotic resistance, biofilm production, and biofilm-associated genes, bcsA and csgD, and sub-inhibitory hydrogen peroxide (H2O2) stimulation in UPEC for biofilm formation. A total of 71 UPEC were collected from a tertiary care hospital in Kathmandu and subjected to identify antibiotic susceptibility using Kirby-Bauer disk diffusion. The biofilm formation was assessed using microtiter culture plate method while pellicle formation was tested by a tube method. In representative 15 isolates based on biofilm-forming ability, bcsA and csgD were screened by conventional polymerase chain reaction, and treated with sub-lethal H2O2. The UPEC were found the most susceptible to meropenem (90.2%), and the least to ampicillin (11.3%) in vitro and 90.1% of them were multi-drug resistant (MDR). Most UPEC harbored biofilm-producing ability (97.2%), and could form pellicle at 37°C. Among representative 15 isolates, csgD was detected only among 10 isolates (66.67%) while bcsA gene was present in 13 isolates (86.67%). This study revealed that level of biofilm production elevated after sub-lethal H2O2 treatment (P = .041). These findings suggested that the pathogens are emerging as MDR. The biofilm production is high and the majority of selected strains contained bcsA and csgD genes. Pellicle formation test was suggestive to be an alternative qualitative method to screen biofilm production in UPEC. The sub-inhibitory concentration of H2O2 may contribute in increasing biofilm formation in UPEC.

8.
Microorganisms ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36296197

RESUMO

Rdar biofilm formation of Salmonella typhimurium and Escherichia coli is a common ancient multicellular behavior relevant in cell-cell and inter-organism interactions equally, as in interaction with biotic and abiotic surfaces. With the expression of the characteristic extracellular matrix components amyloid curli fimbriae and the exopolysaccharide cellulose, the central hub for the delicate regulation of rdar morphotype expression is the orphan transcriptional regulator CsgD. Gre factors are ubiquitously interacting with RNA polymerase to selectively overcome transcriptional pausing. In this work, we found that GreA/GreB are required for expression of the csgD operon and consequently the rdar morphotype. The ability of the Gre factors to suppress transcriptional pausing and the 147 bp 5'-UTR of csgD are required for the stimulatory effect of the Gre factors on csgD expression. These novel mechanism(s) of regulation for the csgD operon might be relevant under specific stress conditions.

9.
Front Nutr ; 9: 938989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978963

RESUMO

Background: Biofilm formation is a complex phenomenon, and it is the causative agent of several human infections. Bacterial amyloids are involved in biofilm formation leading to infection persistence. Due to antibiotic resistance, their treatment is a great challenge for physicians. Probiotics, especially E. coli Nissle 1917 (EcN), are used to treat human intestinal disorders and ulcerative colitis. It also expresses virulence factors associated with biofilm and amyloid formation. EcN produces biofilm equivalent to the pathogenic UPEC strains. Methods: CRISPRi was used to create the knockdown mutants of the csgD gene (csgD-KD). The qRT-PCR was performed to assess the expression of the csgD gene in csgD-KD cells. The csgD-KD cells were also evaluated for the expression of csgA, csgB, fimA, fimH, ompR, luxS, and bolA genes. The gene expression data obtained was further confirmed by spectroscopic, microscopic, and other assays to validate our study. Results: CRISPRi-mediated knockdown of csgD gene shows reduction in curli amyloid formation, biofilm formation, and suppression of genes (csgA, csgB, fimA, fimH, ompR, bolA, and luxS) involved in virulence factors production. Conclusion: Curli amyloid fibers and fimbriae fibers play a critical role in biofilm formation leading to pathogenicity. CsgD protein is the master regulator of curli synthesis in E. coli. Hence, curli amyloid inhibition through the csgD gene may be used to improve the EcN and different probiotic strains by suppressing virulence factors.

10.
Mol Microbiol ; 116(4): 1022-1032, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342063

RESUMO

Biosynthesis and secretion of a complex extracellular matrix (EM) is a hallmark of Salmonella biofilm formation, impacting on its relationship with both the environment and the host. Cellulose is a major component of Salmonella EM. It is considered an anti-virulence factor because it interferes with Salmonella proliferation inside macrophages and virulence in mice. Its synthesis is stimulated by CsgD, the master regulator of biofilm formation in enterobacteria, which in turn is under the control of MlrA, a MerR-like transcription factor. In this work, we identified a SPI-2-encoded Salmonella-specific transcription factor homolog to MlrA, MlrB, that represses transcription of its downstream gene, orf319, and of csgD inside host cells. MlrB is induced in laboratory media mimicking intracellular conditions and inside macrophages, and it is required for intramacrophage proliferation. An increased csgD expression is observed in the absence of MlrB inside host cells. Interestingly, inactivation of the CsgD-controlled cellulose synthase-coding gene restored intramacrophage proliferation to rates comparable to wild-type bacteria in the absence of MlrB. These data indicate that MlrB represses CsgD expression inside host cells and suggest that this repression lowers the activation of the cellulose synthase. Our findings provide a novel link between biofilm formation and Salmonella virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Células RAW 264.7 , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Transativadores/genética , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
11.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468583

RESUMO

Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.


Assuntos
Proteínas de Bactérias/genética , Aptidão Genética , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Infecções por Salmonella/microbiologia , Salmonella/genética , Animais , Proteínas de Bactérias/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Salmonella/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência/genética
12.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32839186

RESUMO

Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection toward various forms of environmental stresses to individual cells. Thus, bacterial cells within biofilms become tolerant against antimicrobials and the immune system. In the present study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry, and rough) biofilm formation of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium ATCC 14028 (Nalr) at a 1.56 µM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 µM in a microaerophilic environment, suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be concomitantly downregulated. Although fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifted the cells toward an apparent oxygen- and energy-depleted status, whereby the metabolism that channels into oxidative phosphorylation was downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and l-arginine catabolism, potentially also to prevent cytosolic acidification, was upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Claritromicina/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
13.
Microorganisms ; 8(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32604994

RESUMO

Among human food-borne pathogens, gastroenteritis-causing Salmonella strains have the most real-world impact. Like all pathogens, their success relies on efficient transmission. Biofilm formation, a specialized physiology characterized by multicellular aggregation and persistence, is proposed to play an important role in the Salmonella transmission cycle. In this manuscript, we used luciferase reporters to examine the expression of csgD, which encodes the master biofilm regulator. We observed that the CsgD-regulated biofilm system responds differently to regulatory inputs once it is activated. Notably, the CsgD system became unresponsive to repression by Cpx and H-NS in high osmolarity conditions and less responsive to the addition of amino acids. Temperature-mediated regulation of csgD on agar was altered by intracellular levels of RpoS and cyclic-di-GMP. In contrast, the addition of glucose repressed CsgD biofilms seemingly independent of other signals. Understanding the fine-tuned regulation of csgD can help us to piece together how regulation occurs in natural environments, knowing that all Salmonella strains face strong selection pressures both within and outside their hosts. Ultimately, we can use this information to better control Salmonella and develop strategies to break the transmission cycle.

14.
Microbiology (Reading) ; 166(9): 880-890, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649279

RESUMO

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study 'promoter-specific transcription-factor' (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regiões Promotoras Genéticas , Transativadores/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Transativadores/metabolismo , Fatores de Transcrição/genética
15.
Arch Microbiol ; 201(9): 1233-1248, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31197408

RESUMO

This study aims to describe the content of polymeric matrix components under different incubation temperatures and pH levels. Optimal biofilm production of 15 S. Virchow isolates occurred following the incubation in LB-NaCl for 72 h, at pH 6.6 and 20 °C. The expression of csgA, csgD, adrA and bcsA genes at 20 °C, 25 °C and 30 °C in S. Virchow DMC18 was analyzed, and it was discovered that the maximum production of cellulose and curli fimbriae occurred at 20 °C. The physical characteristics of pellicle structure of S. Virchow DMC18 was determined as rigid at 20 °C, while becoming fragile at higher temperatures. FTIR analyses confirmed the obtained molecular findings. The intensities of the 16 different peaks originating from carbohydrate, protein, and nucleic acid in the spectra of biofilm samples significantly diminished (p < 0.05) with the increasing temperature. The highest intensities of lipids and carbohydrates were observed at 20 °C indicating the changes in cell surface properties.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Carboidratos , Celulose/metabolismo , Fímbrias Bacterianas/metabolismo , Lipídeos de Membrana/metabolismo , Ácidos Nucleicos/metabolismo , Sorogrupo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Proc Natl Acad Sci U S A ; 116(25): 12462-12467, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160462

RESUMO

The adaptive in vivo mechanisms underlying the switch in Salmonella enterica lifestyles from the infectious form to a dormant form remain unknown. We employed Caenorhabditis elegans as a heterologous host to understand the temporal dynamics of Salmonella pathogenesis and to identify its lifestyle form in vivo. We discovered that Salmonella exists as sessile aggregates, or in vivo biofilms, in the persistently infected C. elegans gut. In the absence of in vivo biofilms, Salmonella killed the host more rapidly by actively inhibiting innate immune pathways. Regulatory cross-talk between two major Salmonella pathogenicity islands, SPI-1 and SPI-2, was responsible for biofilm-induced changes in host physiology during persistent infection. Thus, biofilm formation is a survival strategy in long-term infections, as prolonging host survival is beneficial for the parasitic lifestyle.


Assuntos
Biofilmes , Caenorhabditis elegans/microbiologia , Imunidade Inata/fisiologia , Salmonella/fisiologia , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Intestinos/parasitologia , Larva/microbiologia , Salmonella/metabolismo , Salmonella/patogenicidade , Virulência
17.
J Mol Biol ; 431(23): 4775-4793, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30954572

RESUMO

The extracellular matrix in macrocolony biofilms of Escherichia coli is arranged in a complex large-scale architecture, with homogenic matrix production close to the surface, whereas zones further below display pronounced local heterogeneity of matrix production, which results in distinct three-dimensional architectural structures. Combining genetics, cryosectioning and fluorescence microscopy of macrocolony biofilms, we demonstrate here in situ that this local matrix heterogeneity is generated by a c-di-GMP-dependent molecular switch characterized by several nested positive and negative feedback loops. In this switch, the trigger phosphodiesterase PdeR is the key component for establishing local heterogeneity in the activation of the transcription factor MlrA, which in turn activates expression of the major matrix regulator CsgD. Upon its release of direct inhibition by PdeR, the second switch component, the diguanylate cyclase DgcM, activates MlrA by direct interaction. Antagonistically acting PdeH and DgcE provide for a PdeR-sensed c-di-GMP input into this switch and-via their spatially differentially controlled expression-generate the long-range vertical asymmetry of the matrix architecture. Using flow cytometry, we show heterogeneity of CsgD expression to also occur in spatially unstructured planktonic cultures, where it is controlled by the same c-di-GMP circuitry as in macrocolony biofilms. Quantification by flow cytometry also showed CsgDON subpopulations with distinct CsgD expression levels and revealed an additional fine-tuning feedback within the PdeR/DgcM-mediated switch that depends on c-di-GMP synthesis by DgcM. Finally, local heterogeneity of matrix production was found to be crucial for the tissue-like elasticity that allows for large-scale wrinkling and folding of macrocolony biofilms.


Assuntos
Biofilmes , Variação Biológica da População , GMP Cíclico/análogos & derivados , Infecções por Escherichia coli/microbiologia , Escherichia coli/fisiologia , Matriz Extracelular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/ultraestrutura , Imunofluorescência , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Mutação , Fenótipo , Transdução de Sinais
18.
mBio ; 10(2)2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837338

RESUMO

Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3'3'-cGAMP. In vivo, only the 3'3'-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.IMPORTANCE The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo , Meios de Cultura , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Locomoção , Nucleotidiltransferases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Vibrio cholerae/enzimologia , Vibrio cholerae/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-31921700

RESUMO

Gram-positive and Gram-negative pathogens exist as planktonic cells only at limited times during their life cycle. In response to environmental signals such as temperature, pH, osmolality, and nutrient availability, pathogenic bacteria can adopt varied cellular fates, which involves the activation of virulence gene programs and/or the induction of a sessile lifestyle to form multicellular surface-attached communities. In Salmonella, SsrB is the response regulator which governs the lifestyle switch from an intracellular virulent state to form dormant biofilms in chronically infected hosts. Using the Salmonella lifestyle switch as a paradigm, we herein compare how other pathogens alter their lifestyles to enable survival, colonization and persistence in response to different environmental cues. It is evident that lifestyle switching often involves transcriptional regulators and their modification as highlighted here. Phenotypic heterogeneity resulting from stochastic cellular processes can also drive lifestyle variation among members of a population, although this subject is not considered in the present review.


Assuntos
Adaptação Biológica , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Animais , Biofilmes , Humanos , Estilo de Vida , Transdução de Sinais , Esporos Bacterianos
20.
Parasitol Res ; 117(7): 2283-2289, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29797083

RESUMO

Pathogenic bacteria share their natural habitat with many other organisms such as animals, plants, insects, parasites and amoeba. Interactions between these organisms influence not only the life style of the host organisms, but also modulate bacterial physiology. Adaptation can include biofilm formation, capsule formation, and production of virulence factors. Although biofilm formation is a dominant mode of bacterial life in environmental settings, its role in host-pathogen interactions is not extensively studied. In this work, we investigated the role of molecular pathways involved in rdar biofilm formation in the interaction of Salmonella typhimurium with the Acanthamoeba castellanii genotype T4. Genes coding for the rdar biofilm activator CsgD, the cellulose synthase BcsA, and curli fimbriae subunits CsgBA were deleted from the genome of S. typhimurium. Assessment of interactions of wild-type and mutant strains of S. typhimurium with A. castellanii revealed that deletion of the cellulose synthase BcsA promoted association and uptake by A. castellanii, whereas the interactions with csgD and csgBA mutants were not changed. Our findings suggest that cellulose synthase BcsA inhibits the capabilities of S. typhimurium to associate with and invade into A. castellanii.


Assuntos
Acanthamoeba castellanii/genética , Acanthamoeba castellanii/microbiologia , Biofilmes/crescimento & desenvolvimento , Glucosiltransferases/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Celulose , Regulação Bacteriana da Expressão Gênica , Genótipo , Interações Microbianas/genética , Interações Microbianas/fisiologia , Salmonella typhimurium/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA