Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.958
Filtrar
1.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963544

RESUMO

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Assuntos
Cobre , Doxorrubicina , Glucose Oxidase , Ácido Hialurônico , Estruturas Metalorgânicas , Microambiente Tumoral , Zeolitas , Cobre/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Microambiente Tumoral/efeitos dos fármacos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Zeolitas/química , Animais , Estruturas Metalorgânicas/química , Ácido Hialurônico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Imidazóis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124766, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968902

RESUMO

In this work, we developed a fast and straightforward colorimetric and photoluminescent chemosensor probe (P1), featuring bis-thiophene-thiosemicarbazide moieties as its signaling and binding unit. This probe exhibited rapid sensitivity to Hg2+ and Cu2+ ions in a semi-aqueous medium, resulting in distinct colorimetric and photoluminescent changes. In the presence of Cu2+, P1 displayed an impressive 50-fold increase in photoluminescence (PL) at 450 nm (with excitation at 365 nm). The probe P1 formed a 1:1 complex with Hg2+ and Cu2+ ions, featuring association constant values of 4.04 × 104 M-1 and 1.25 × 103 M-1, respectively. P1 has demonstrated its efficacy in the analysis of real samples, yielding promising results. Additionally, the probe successfully visualized copper ions on a mouse fibroblast cell line (NIH3T3), highlighting its potential as an intracellular probe for copper ion detection.

3.
Anal Chim Acta ; 1316: 342828, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969425

RESUMO

BACKGROUD: The global prevalence of diabetes mellitus, a serious chronic disease with fatal consequences for millions annually, is of utmost concern. The development of efficient and simple devices for monitoring glucose levels is of utmost significance in managing diabetes. The advancement of nanotechnology has resulted in the indispensable utilization of advanced nanomaterials in high-performance glucose sensors. Modulating the morphology and intricate composition of transition metals represents a viable approach to exploit their structure/function correlation, thereby achieving optimal electrocatalytic performance of the synthesized catalysts. RESULTS: Herein, a sensitive and rapid Cu-encapsulated Cu2S@nitrogen-doped carbon (Cu@Cu2S@N-C) hollow nanocubes-functionalized microfluidic paper-based analytical device (µ-PAD) was fabricated. Through a delicate sacrificial template/interface technique and thermal decomposition, inter-connected hollow networks were formed to boost the active sites, and the carbon shell was coated to protect Cu from being oxidation. For application, the constructed µ-PAD is used for glucose sensing utilizing an origami automated sample pretreatment system enabled by a simple application of strong alkaline solution on wax paper. Under optimal circumstances, the Cu@Cu2S@N-C electrochemical biosensor exhibits broad detection range of 2-7500 µM (R2 = 0.996) with low detection limit of 0.16 µM (S/N = 3) and high sensitivity of 1996 µA mM-1 cm-2. Additionally, the constructed µ-PAD also exhibited excellent selectivity, stability, and reproducibility. SIGNIFICANCE: By rationally designing the double-shell hollow nanostructure and introducing Cu-encapsulated inner layer, the synthesized Cu@Cu2S@N-C hollow nanocubes show large specific surface area, short diffusion channels, and high stability. The proposed origami µ-PAD has been successfully applied to serum samples without any additional sample preparation steps for glucose determination, offering a new perspective for early nonenzymatic glucose diagnosis.

4.
BMC Chem ; 18(1): 124, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956730

RESUMO

One of the biggest issues affecting the entire world currently is water contamination caused by textile industries' incapacity to properly dispose their wastewater. The presence of toxic textile dyes in the aquatic environment has attracted significant research interest due to their high environmental stability and their negative effects on human health and ecosystems. Therefore, it is crucial to convert the hazardous dyes such as methyl orange (MO) azo dye into environmentally safe products. In this context, we describe the use of Copper Nitroprusside Chitosan (Cu/SNP/Cts) nanocomposite as a nanocatalyst for the chemical reduction of azodyes by sodium borohydride (NaBH4). The Cu/SNP/Cts was readily obtained by chemical coprecipitation in a stoichiometric manner. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy were applied to investigate chemical, phase, composition, and molecular interactions. Additionally, Scanning electron microscope (SEM) was used to examine the nanomaterial's microstructure. UV-vis spectroscopy was utilized for studying the Cu Nitroprusside Chitosan's catalytic activity for the reduction of azodye. The Cu/SNP/Cts nanocomposite demonstrated outstanding performance with total reduction time 160 s and pseudo-first order constant of 0.0188 s-1. Additionally, the stability and reusability study demonstrated exceptional reusability up to 5 cycles with minimal activity loss. The developed Cu/SNP/Cts nanocomposite act as efficient nanocatalysts for the reduction of harmful Methyl orange azodye.

5.
Anal Biochem ; : 115599, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964699

RESUMO

A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7% as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 µM concentration range, respectively, with a 1.3 nM and 0.14 µM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.

6.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961578

RESUMO

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Assuntos
Antibacterianos , Parede Celular , Cobre , Cicatrização , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Humanos , Nanopartículas/química , Testes de Sensibilidade Microbiana
7.
Artigo em Inglês | MEDLINE | ID: mdl-38963227

RESUMO

The electrochemical reduction of nitrate (NO3-) ions to ammonia (NH3) provides an alternative method to eliminate harmful NO3- pollutants in water as well as to produce highly valuable NH3 chemicals. The NH3 yield rate however is still limited to the µmol h-1 cm-2 range when dealing with dilute NO3- concentrations found in waste streams. Copper (Cu) has attracted much attention because of its unique ability to effectively convert NO3- to NH3. We have reported a simple and scalable electrochemical method to produce a Cu foil having its surface covered with a porous Cu nanostructure enriched with (100) facets, which efficiently catalyzes NO3- to NH3. The Cu(100)-rich electrocatalyst showed a very high NH3 production rate of 1.1 mmol h-1 cm-2 in NO3- concentration as low as 14 mM NO3-, which is 4-5 times higher than the best-reported values. Increasing the NO3- concentration (140 mM) resulted in an NH3 production yield rate of 3.34 mmol h-1 cm-2. The durability test conducted for this catalyst foil in a flow cell system showed greater than 100 h stability with a Faradaic efficiency greater than 98%, demonstrating its potential to be used on an industrially relevant scale. Further, density functional theory (DFT) calculations have been performed to understand the better catalytic activity of Cu(100) compared to Cu(111) facets toward NO3-RR.

8.
Magn Reson Chem ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946056

RESUMO

The defect models of the orthorhombical and tetragonal Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are attributed to Cu2+ ions occupying the sixfold coordinated octahedral Ti4+ site with and without charge compensation, respectively. The electron paramagnetic resonance (EPR) g factors gi (i = x, y, z) of the Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are theoretically studied by using the perturbation formulas of a 3d9 ion under orthorhombically and tetragonally elongated octahedra. Based on the calculation, the impurity off-center displacements are about 0.253 and 0.162 Å for the orthorhombical and tetragonal Cu2+ centers, respectively. Meanwhile, the planar Cu2+-O2- bonds are found to experience the relative variation ΔR (≈0.102 Å) along the a- and b-axes for the orthorhombical Cu2+ center due to the Jahn-Teller (JT) effect. The theoretical EPR g factors based on the above local structures agree well with the observed values.

9.
Angew Chem Int Ed Engl ; : e202409563, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949085

RESUMO

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9% at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

10.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976597

RESUMO

Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.

11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1059-1069, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977335

RESUMO

OBJECTIVE: To investigate the cell membrane-penetrating capacity of human cell-penetrating peptide hPP10 carrying human antioxidant protein Cu-Zn superoxide dismutase (Cu, Zn-SOD) and assess the antioxidant and anti-inflammatory activity of these fusion proteins. METHODS: The fusion protein hPP10-Cu, Zn-SOD was obtained by genetic engineering and identified by Western blotting. The membrane-penetrating ability of the fusion protein was evaluated by immunofluorescence assay, fluorescence colocalization assay and Western blotting, its SOD enzyme activity was detected using a commercial kit, and its effect on cell viability was assessed with MTT assay. In a HEK293 cell model of H2O2-induced oxidative stress, the effect of hPP10-Cu, Zn-SOD on cell apoptosis was analyzed with flow cytometry and RT-qPCR, and its antioxidant effect was assessed using reactive oxygen species (ROS) assay; its anti-inflammatory effect was evaluated in mouse model of TPA-induced ear inflammation by detecting expression of the inflammatory factors using RT-qPCR, Western blotting and immunohistochemistry. RESULTS: The fusion protein hPP10-Cu, Zn-SOD was successfully obtained. Immunofluorescence assay confirmed obvious membrane penetration of this fusion protein in HEK293 cells, localized both in the cell membrane and the cell nuclei after cell entry. hPP10-Cu, Zn-SOD at the concentration of 5 µmol/L exhibited strong antioxidant activity with minimal impact on cell viability at the concentration up to 10 µmol/L. The fusion protein obviously inhibited apoptosis and decreased intracellular ROS level in the oxidative stress cell model and significantly reduced mRNA and protein expression of the inflammatory factors in the mouse model of ear inflammation. CONCLUSION: The fusion protein hPP10-Cu, Zn-SOD capable of penetrating the cell membrane possesses strong antioxidant and anti-inflammatory activities with only minimal cytotoxicity, demonstrating the value of hPP10 as an efficient drug delivery vector and the potential of hPP10-Cu, Zn-SOD in the development of skincare products.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Peptídeos Penetradores de Células , Estresse Oxidativo , Superóxido Dismutase , Humanos , Camundongos , Antioxidantes/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Apoptose/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Inflamação/metabolismo , Peróxido de Hidrogênio
12.
ChemSusChem ; : e202401173, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982867

RESUMO

Electrochemical CO2 reduction reaction (eCO2RR) to value-added multicarbon (C2+) products offers a promising approach for achieving carbon neutrality and storing intermittent renewable energy. Copper (Cu)-based electrocatalysts generally play the predominant role in this process. Yet recently, more and more non-Cu materials have demonstrated the capability to convert CO2 into C2+, which provides impressive production efficiency even exceeding those on Cu, and a wider variety of C2+ compounds not achievable with Cu counterparts. This motivates us to organize the present review to make a timely and tutorial summary of recent progresses on developing non-Cu based catalysts for CO2-to-C2+. We begin by elucidating the reaction pathways for C2+ formation, with an emphasis on the unique C-C coupling mechanisms in non-Cu electrocatalysts. Subsequently, we summarize the typical C2+-involved non-Cu catalysts, including ds-, d- and p-block metals, as well as metal-free materials, presenting the state-of-the-art design strategies to enhance C2+ efficiency. The system upgrading to promote C2+ productivity on non-Cu electrodes covering microbial electrosynthesis, electrolyte engineering, regulation of operational conditions, and synergistic co-electrolysis, is highlighted as well. Our review concludes with an exploration of the challenges and future opportunities in this rapidly evolving field.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124706, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38972095

RESUMO

Two novel fluorescent probes for Cu2+ detection have been developed based on thiazoline-quinoline conjugates bearing a 4-ethynyl-N,N-dimethylaniline unit (QT1 and QT2). QT2 exhibits instantaneous fluorescence quenching of Cu2+ with an emissive change from bright orange to arctic blue under UV light irradiation (365 nm). The plots of I0/I against Cu2+ concentrations show a good linear relationship that ranges from 0 to 50 µM with a coefficient of determination (R2) = 0.9906 and a limit of detection (LOD) of 76 nM, which is considered low (4.84 ppb). A 1:1 complexation between QT2 and Cu2+ was confirmed by UV-Vis titration, ESI-MS, and SC-XRD. The QT2·Cu2+ complex was dissociated by the addition of EDTA. The fluorescence quenching mechanism involves the ligand-to-metal charge transfer (LMCT) of a paramagnetic Cu2+ complex. The QT2 probe on a paper-based strip was used to determine the amount of Cu2+ in water and food samples (shiitake mushrooms and oysters).

14.
Artigo em Inglês | MEDLINE | ID: mdl-38973617

RESUMO

The rational design of cost-effective and highly active electrocatalysts becomes the crucial energy storage technology to boost the kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), which hinders the large-scale application of metal-air batteries under the situation of increasingly pressing energy anxiety. Herein, the Co-based ZIF introduced the moderate amount of Cu2+-derived Cu/Co metal nanoparticles (NPs) embedded in carbon frameworks after high-temperature calcination. The Co-O bond on the surface of Co nanoparticles is modulated by adjacent Cu nanoparticles with the surface Cu-O bonds. The resulted increase of the Co2+/Co3+ ratio in 0.1CuCo-NC enhances the ORR/OER bifunctional catalytic kinetics along with the ΔE of 0.639 V. In situ Raman spectra of the catalyst on the three-electrode system as well as in the driven zinc-air battery (ZAB) show that the Co-O active sites regulated by Cu nanoparticles with Cu-O bonds maintain a periodic lattice expansion and compression during discharging and charging. The zinc-air battery based on 0.1CuCo-NC has a peak power density of up to 198.3 mW cm-2, a mass-specific capacity of 798.2 mAh g-1, and a cycling stability of 923 h at room temperature. This work makes up the research gap of a Co-based metal-organic framework (MOF)-derived catalyst regulated by a transition metal.

15.
Nano Lett ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990555

RESUMO

In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-ß structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.

16.
Macromol Rapid Commun ; : e2400363, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38950314

RESUMO

Herein, fluorescent conducting tautomeric polymers (FCTPs) are developed by polymerizing 2-methylprop-2-enoic acid (MPEA), methyl-2-methylpropenoate (MMP), N-(propan-2-yl)prop-2-enamide (PPE), and in situ-anchored 3-(N-(propan-2-yl)prop-2-enamido)-2-methylpropanoic acid (PPEMPA). Among as-synthesized FCTPs, the most promising characteristics in FCTP3 are confirmed by NMR and Fourier transform infrared (FTIR) spectroscopies, luminescence enhancements, and computational studies. In FCTP3, ─C(═O)NH─, -C(═O)N<, ─C(═O)OH, and ─C(═O)OCH3 subluminophores are identified by theoretical calculations and experimental analyses. These subluminophores facilitate redox characteristics, solid state emissions, aggregation-enhanced emissions (AEEs), excited-state intramolecular proton transfer (ESIPT), and conductivities in FCTP3. The ESIPT-associated dual emission/AEEs of FCTP3 are elucidated by time correlated single photon counting (TCSPC) investigation, solvent polarity effects, concentration-dependent emissions, dynamic light scattering (DLS) measurements, field emission scanning electron microscopy images, and computational calculations. The cyclic voltammetry measurements of FCTP3 indicate cumulative redox efficacy of ─C(═O)OH, ─C(═O)NH─/-C(═O)N<, ─C(─O─)═NH+─/─C(─O─)═N+, and ─C(═N)OH functionalities. In FCTP3, ESIPT-associated dual-emission enable in the selective detection of Cr(III)/Cu(II) at λem1/λem2 with the limit of detection of 0.0343/0.079 ppb. The preferential interaction of Cr(III)/Cu(II) with FCTP3 (amide)/FCTP3 (imidol) and oxidation/reduction of Cr(III)/Cu(II) to Cr(VI)/Cu(I) are further supported by NMR-titration; FTIR and X-ray photoelectron spectroscopy analyses; TCSPC/electrochemical/DLS measurement; alongside theoretical calculations. The proton conductivity of FCTP3 is explored by electrochemical impedance spectroscopy and I-V measurements.

17.
J Agric Food Chem ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965774

RESUMO

Copper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity. Here, we observed that Cu exposure resulted in Cu accumulation and pathological injury in chicken livers. Moreover, we found that Cu exposure caused mitochondrial-dependent ferroptosis in chicken hepatocytes, which were prominent on the increased mitochondrial Fe2+ and mitochondrial lipid peroxidation, inhibited levels of CISD1, GPX4, DHODH, and IDH2, and also enhanced level of PTGS2. Notably, we identified that inhibition of mitomiR-2954 level effectively mitigated Cu-exposure-resulted mitochondrial Fe2+ accumulation and mitochondrial lipid peroxidation and prevented the development of mitochondrial-dependent ferroptosis. However, increasing the mitomiR-12294-5p expression considerably aggravated the influence of Cu on these indicators. Meanwhile, the overexpression of CISD1 effectively alleviated Cu-caused mitochondrial-dependent ferroptosis, while silent CISD1 eliminated the therapeutic role of mitomiR-12294-5p inhibitor. Overall, our findings indicated that mitomiR-12294-5p/CISD1 axis played a critical function in Cu-caused hepatotoxicity in chickens by regulating mitochondrial-dependent ferroptosis.

18.
J Agric Food Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986054

RESUMO

As an efficient alternative copper (Cu) source, copper nanoparticles (nano-Cu) have been widely supplemented into animal-producing food. Therefore, it is necessary to assess the effect of nano-Cu exposure on the biological health risk. Recently, the toxic effects of nano-Cu have been confirmed but the underlying mechanism remains unclear. This study reveals the impact of nano-Cu on endoplasmic reticulum autophagy (ER-phagy) in chicken hepatocytes and further identifies Drp1 and its downstream gene FAM134B as crucial regulators of nano-Cu-induced hepatotoxicity. Nano-Cu exposure can induce Cu ion overaccumulation and pathological injury in the liver, trigger excessive mitochondrial fission and mitochondria-associated membrane (MAM) integrity damage, and activate ER-phagy in vivo and in vitro. Interestingly, the knockdown of Drp1 markedly decreases the expression of FAM134B induced by nano-Cu. Furthermore, the expression levels of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I induced by nano-Cu exposure are decreased by inhibiting the expression of Drp1. Simultaneously, the inhibition of FAM134B effectively alleviates nano-Cu-induced ER-phagy by downregulating the expression of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I. Overall, these results suggest that Drp1-mediated impairment of MAM integrity leads to ER-phagy as a novel molecular mechanism involved in the regulation of nano-Cu-induced hepatotoxicity. These findings provide new ideas for future research on the mechanism of nano-Cu-induced hepatotoxicity.

19.
J Colloid Interface Sci ; 675: 496-504, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38986323

RESUMO

The coordination environment of Cu (the coordination number and arrangement of surface atoms) plays an important role in CO2 hydrogenation to CH3OH. Compared with the extensive studies of the effects of coordination number, the comprehensive effects of coordination number and arrangement of surface atoms were seldom explored in literature. To unravel the effects of surface Cu coordination environment on CO2 hydrogenation to CH3OH, the adsorption and reaction behaviors of H2 and CO2 on Cu(111), (100), (110) and (211) with different coordination numbers and arrangement of surface Cu were systematically calculated by density functional theory (DFT) and kinetic Monte Carlo (kMC) simulation. It was found that the adsorption energies of intermediates in CO2 hydrogenation on Cu surfaces increase with the decrease of coordination number. When the Cu coordination numbers are similar, the charge density on the open surface derived from the different atom arrangement becomes larger and leads to stronger interaction with intermediates than that on the compact one. DFT calculation and kMC simulation indicate that methanol formation pathway follows CO2*→HCOO*→HCOOH*→H2COOH*→H2CO*→CH3O*→CH3OH* on four Cu facets; CO formation is via CO2 direct dissociation on Cu(111), (100) and (110) but COOH* dissociation on (211). The low-coordinated surface Cu with more openness on Cu(211) is the highly active site for CO2 hydrogenation to CH3OH with high turnover of frequency (3.71 × 10-4 s-1) and high selectivity (87.17 %) at 600 K, PCO2 = 7.5 atm and PH2 = 22.5 atm, which is much higher than those on Cu(111), (100) and (110). This work unravels the effects of coordination environment on CO2 hydrogenation at the molecular level and provides an important insight into the design and development of catalysts with high performance in CO2 hydrogenation to CH3OH.

20.
Chem Asian J ; : e202400413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822713

RESUMO

Reaction of a P/N/S hybrid ligand dpppyatc (N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide) with Au(tht)Cl (tht = tetrahydrothiophene) and [Cu(MeCN)4]BF4 afforded cluster complex [Au2Cu(dpppyatc)2](BF4)2Cl (1). Upon excitation at 480 nm, 1 emitted orange phosphorescence at 646 nm, which was red-shifted to ~698 nm selectively in the presence of ammonia or amine vapor. This chromic photoluminescent response toward ammonia was sensitive and reversible. Complex1 could detect ammonia in aqueous solution down to concentrations of 2 ppm (w/w).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...