Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Chemosphere ; 361: 142527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838866

RESUMO

Peri-urban environments are significant reservoirs of wastewater, and releasing this untreated wastewater from these resources poses severe environmental and ecological threats. Wastewater mitigation through sustainable approaches is an emerging area of interest. Algae offers a promising strategy for carbon-neutral valorization and recycling of urban wastewater. Aiming to provide a proof-of-concept for complete valorization and recycling of urban wastewater in a peri-urban environment in a closed loop system, a newly isolated biocrust-forming cyanobacterium Desertifilum tharense BERC-3 was evaluated. Here, the highest growth and lipids productivity were achieved in urban wastewater compared to BG11 and synthetic wastewater. D. tharense BERC-3 showed 60-95% resource recovery efficiency and decreased total dissolved solids, chemical oxygen demand, biological oxygen demand, nitrate nitrogen, ammonia nitrogen and total phosphorus contents of the water by 60.37%, 81.11%, 82.75%, 87.91%, 85.13%, 85.41%, 95.87%, respectively, making it fit for agriculture as per WHO's safety limits. Soil supplementation with 2% wastewater-cultivated algae as a soil amender, along with its irrigation with post-treated wastewater, improved the nitrogen content and microbial activity of the soil by 0.3-2.0-fold and 0.5-fold, respectively. Besides, the availability of phosphorus was also improved by 1.66-fold. The complete bioprocessing pipeline offered a complete biomass utilization. This study demonstrated the first proof-of-concept of integrating resource recovery and resource recycling using cyanobacteria to develop a peri-urban algae farming system. This can lead to establishing wastewater-driven algae cultivation systems as novel enterprises for rural migrants moving to urban areas.


Assuntos
Cianobactérias , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Cianobactérias/crescimento & desenvolvimento , Nitrogênio/análise , Reciclagem , Agricultura/métodos , Análise da Demanda Biológica de Oxigênio , Solo/química
2.
Gels ; 10(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786237

RESUMO

Sacran is a supergiant cyanobacterial polysaccharide that forms mesogenic supercoil rods that exhibit liquid crystalline (LC) gels at deficient concentrations of around 0.5 wt%, and has several bioactive stimuli-responsive functions. Here, we attempted to form oriented microfibers of sacran by electrospinning, following structural analyses of the sacran rods. A heterogeneous acid-hydrolysis method using a protonated cation-exchange resin was adopted to examine the short-time exposition of concentrated acid to sacran rods. From the supernatant, the oligomeric fraction that was soluble in water and methanol was isolated. The oligomeric fraction had a main sugar ratio of α-Glc:ß-Glc:α-Xyl:ß-Xyl:α-Rha of 2:5:1.5:1.5:4 (Glc:Xyl:Rha = 7 (=4 + 3):3:4), and it was speculated that the sacran structure includes rhamnoglucan and xyloglucan (4:3), which are generally rigid enough to exhibit LC. To make oriented microfibers of LC sacran, solubility testing was performed on sacran to find good new solvents of polyhydroxy alcohols such as ethylene glycol, 1,2-propanediol, and glycerol. The oriented film was prepared from a sacran aqueous solution where calcium compound particles deposited on the film are different from polyhydroxy alcohol solutions. Although sacran could not form microfibers by itself, polymer composite microfibers of sacran with poly(vinyl alcohol) were prepared by electrospinning. Cross-polarizing microscopy revealed the molecular orientation of the microfibers.

3.
Mol Phylogenet Evol ; 197: 108094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723792

RESUMO

Thermophilic unicellular cyanobacteria of the family Thermosynechococcaceae are essential primary producers and integral components of many microbial mats found in hot springs of Asia and North America. Historically, based on their simple morphology, these organisms, along with members of taxonomically unrelated thermophilic Thermostichaceae have been described with a generic term, "Synechococcus", used for elongated unicellular cyanobacteria. This has created significant misperception in the scientific literature regarding the taxonomic status of these essential thermophilic primary producers and their relationship with Synechococcus sensu stricto. In this manuscript, we attempted a genome-driven taxonomic reevaluation of the family Thermosynechococcaceae. Application of genomic analyses such as GTDB classification, ANI/AAI and phylogenomics support the delineation of eight species within genus Thermosynechococcus. Two subspecies were further identified within T. taiwanensis by dDDH and phylogenomics. Moreover, the results also suggest the presence of two putative new genera phylogenetically alongside genus Thermosynechococcus, a thermophilic genus Parathermosynechococcus represented by PCC 6715 and a non-thermophilic genus represented by PCC 6312. The proposed genospecies and new genera were further integrated with morphological and/or ecological information. Interestingly, the phylogeny of 16S-23S ITS achieved a better taxonomic relationship than that of 16S rRNA and supported the genome-based classification of Thermosynechococcus spp. Finally, the pan-genome analysis indicated a conserved pattern of genomic core among known members of Thermosynechococcus.


Assuntos
Filogenia , Fenótipo , Thermosynechococcus/genética , Thermosynechococcus/classificação , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Genômica , Cianobactérias/genética , Cianobactérias/classificação
4.
Heliyon ; 10(8): e29131, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644834

RESUMO

Cyanobacteria, a group of microalgae are the potent organism having the ability to survive in the copper rich environment and recently gained too much attention for their profuse proliferation in such water bodies. Amongst the members of cyanobacteria, the current study was conducted on Leptolyngbya sp. GUEco1015, collected from hydrocarbon rich water bodies of Assam, India. Morphological images of treated samples showed a remarkable damage in the cell surface as well as the organelles over the control. Biochemical results revealed a significant increase of enzymatic and non-enzymatic antioxidants during oxidative damage of Cu2+. But, ascorbate in 1.2 ppm (p < 0.01), 1.5 ppm (p < 0.001) and catalase content 1.5 ppm (p < 0.05) showed a significant reduction after a certain level. The cells were optimized to evaluate the maximum Cu2+ removal potential by the cells related to growth. Initial metal concentration 0.1 ppm, pH 7.5, temperature 25 °C and shaking rate 100 rpm are the optimized abiotic parameters which showed maximum 83% of Cu2+ removal. FTIR spectroscopy and EDX data has identified a number of notable functional groups that were involved in Cu2+ binding mechanism and revealed a distinctive peak of Cu with 0.41 wt % which makes the species as one of the competent copper adsorbents.

5.
Beilstein J Org Chem ; 20: 645-652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533471

RESUMO

Polycavernoside E (1), a new polycavernoside analog, was isolated from a marine Okeania sp. cyanobacterium. The relative configuration was elucidated primarily by analyzing the two dimensional nuclear magnetism resonance (2D NMR) data. The absolute configuration was clarified by comparing the electronic circular dichroism (ECD) data of 1 with those of known analogs. Polycavernoside E (1) exhibited moderate antitrypanosomal activity against Trypanosoma brucei rhodesiense. Furthermore, the isolation of polycavernoside E (1) from marine cyanobacteria provides additional evidence that marine cyanobacteria, and not red algae, are responsible for the biosynthesis of polycavernosides.

6.
Sci Rep ; 14(1): 6857, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514668

RESUMO

Concerns over environmental issues exists and desire to decrease of their extent, have directed efforts toward green energy production. Growth behavior of Anabaena vaginicola was determined in a photobioreator which illuminated internally (IIPBR) using LED bar light. Excessive heat generated in the IIPBR was taken care of by applying a novel air-cooled system. Further note in experimentation was to find favorable cultivation conditions in the IIPBR for A. vaginicola growth and its lipids production capacity. The following results are expressed: 80 µmol photons m-2 s-1 as light intensity, 0.5 g/l as NaNO3, and 120 ml/min as CO2 amount being expressed in terms of aeration rate. The findings were interpreted in terms of a two-component system where the genes encoded to the relevant proteins are present in cyanobacteria and their expressiveness depends on environmental stress. By determining growth rate constant as 0.11 d-1, the productivity in terms of biomass formation was calculated as 202.6 mg L-1 d-1. While rate of lipids production by the test cyanobacterium is 15.65 mg L-1 d-1. Based on total energy used for IIPBR performance, biomass productivity per unit power input equals to 0.74 g W-1 d-1 and this is in favorable position compared with other photobioreactors.


Assuntos
Cianobactérias , Microalgas , Fotobiorreatores , Luz , Biomassa , Lipídeos , Microalgas/metabolismo
7.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
8.
Mar Drugs ; 22(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38248661

RESUMO

Phycosphere niches host rich microbial consortia that harbor dynamic algae-bacteria interactions with fundamental significance in varied natural ecosystems. Hence, culturing the uncultured microbial majority of the phycosphere microbiota is vital for deep understanding of the intricate mechanisms governing the dynamic interactions, and also to provide novel and rich microbial resources, and to discover new natural bioactive metabolites. Synechococcus elongatus PCC 7942 is a robust model cyanobacterium widely used in environment, synthesis biology, and biotechnology research. To expand the number of novel phycosphere species that were brought into culture and to discover the natural bioactivities, we presented a new yellow-pigmented bacterium named ABI-127-1, which was recovered from the phycosphere of PCC 7942, using an optimized bacterial isolation procedure. Combined polyphasic taxonomic and phylogenomic characterization was performed to confidently identify the new isolate as a potential novel species belonging to the genus Qipengyuania. The observed bioactivity of strain ABI-127-1 with promoting potential towards the growth and CO2 fixation efficiency of the host microalgae was measured. Additionally, the bacterial production of active bioflocculant exopolysaccharides was evaluated after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth-promoting bacterium isolated from the phycosphere microenvironment.


Assuntos
Microalgas , Microbiota , Synechococcus , Filogenia , Synechococcus/genética , Biotecnologia
9.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255848

RESUMO

The cyanobacterial strain Cyanobacterium sp. IPPAS B-1200 isolated from Lake Balkhash is characterized by high relative amounts of myristic (30%) and myristoleic (10%) acids. The remaining fatty acids (FAs) are represented mainly by palmitic (20%) and palmitoleic (40%) acids. We expressed the genes for lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) and Δ9 fatty acid desaturase (FAD; EC 1.14.19.1) from Cyanobacterium sp. IPPAS B-1200 in Synechococcus elongatus PCC 7942, which synthesizes myristic and myristoleic acids at the level of 0.5-1% and produces mainly palmitic (~60%) and palmitoleic (35%) acids. S. elongatus cells that expressed foreign LPAAT synthesized myristic acid at 26%, but did not produce myristoleic acid, suggesting that Δ9-FAD of S. elongatus cannot desaturate FAs with chain lengths less than C16. Synechococcus cells that co-expressed LPAAT and Δ9-FAD of Cyanobacterium synthesized up to 45% palmitoleic and 9% myristoleic acid, suggesting that Δ9-FAD of Cyanobacterium is capable of desaturating saturated acyl chains of any length.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Monoinsaturados , Estearoil-CoA Dessaturase , Aciltransferases/genética , Ácidos Graxos
10.
BMC Genomics ; 25(1): 44, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195395

RESUMO

BACKGROUND: The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS: The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION: The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.


Assuntos
Cianobactérias , Fatores de Transcrição , Fatores de Transcrição/genética , Cianobactérias/genética , Genômica , Evolução Biológica , Engenharia Genética
11.
Photochem Photobiol Sci ; 23(2): 285-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143251

RESUMO

Environmental variation has a significant impact on how organisms, including cyanobacteria, respond physiologically and biochemically. Salinity and ultraviolet radiation (UVR)-induced variations in the photopigments of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21 and its photosynthetic performance was studied. We observed that excessive energy dissipation after UVR is mostly caused by Non-Photochemical Quenching (NPQ), whereas photochemical quenching is important for preventing photoinhibition. These findings suggest that ROS production may play an important role in the UVR-induced injury. To reduce ROS-induced oxidative stress, Nostochopsis lobatus HKAR-21 induces the effective antioxidant systems, which includes different antioxidant compounds like carotenoids and enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). The study indicates that Nostochopsis lobatus HKAR-21 exposed to photosynthetically active radiation + UV-A + UV-B (PAB) and PAB + NaCl (PABN) had significantly reduced photosynthetic efficiency. Furthermore, maximum ROS was detected in PAB exposed cyanobacterial cells. The induction of lipid peroxidation (LPO) has been investigated to evaluate the impact of UVR on the cyanobacterial membrane in addition to enzymatic defensive systems. The maximal LPO level was found in PABN treated cells. Based on the findings of this research, it was concluded that salinity and UVR had collegial effects on the major macromolecular components of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21.


Assuntos
Cianobactérias , Oryza , Raios Ultravioleta , Antioxidantes/farmacologia , Oryza/efeitos da radiação , Cloreto de Sódio/farmacologia , Espécies Reativas de Oxigênio , Cianobactérias/metabolismo , Fotossíntese/efeitos da radiação , Superóxido Dismutase/metabolismo
12.
Environ Monit Assess ; 196(1): 43, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102340

RESUMO

The northern part of James Ross Island is the largest deglaciated area in the Antarctic Peninsula region with a unique ecosystem created during the Late Glacial. This research aims to evaluate the degree of contamination of the locality with toxic metals (As, Hg, Cd, and Pb) through bioindicators in the aquatic environment-colonies of cyanobacteria and algae. For this purpose, bottom lake sediments of Big Lachman Lake were studied for contents of Fe, As, Hg, Cd, Pb, Cr, Co, Ni, Cu, and Zn, as well as samples of cyanobacterial mat, in which Fe, As, Hg, Cd, and Pb were determined. Metal contents were determined by means of inductively coupled plasma optical emission spectrometry and atomic absorption spectrometry. The contents of metals in sediments did not differ from the usual values in the area of the Antarctic Peninsula. The bioaccumulation of metals in cyanobacterial mat was evaluated by calculating enrichment factors (the calculation to Fe as a reference element). According to this method, moderate pollution of Big Lachman Lake was confirmed for Hg and Cd.


Assuntos
Cianobactérias , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Lagos/química , Regiões Antárticas , Ecossistema , Cádmio/análise , Chumbo/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes Químicos da Água/análise , Medição de Risco
13.
FEBS Lett ; 597(23): 2853-2878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827572

RESUMO

Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Microalgas/metabolismo , Carbono/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Dióxido de Carbono/metabolismo
14.
BMC Biotechnol ; 23(1): 41, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759248

RESUMO

Metal nanoparticles exhibit excellent antifungal abilities and are seen as a good substitute for controlling different kinds of fungi. Of all known taxa, cyanobacteria have received significant consideration as nanobiofactories, as a result of the cellular assimilation of heavy metals from the environment. The cellular bioactive enzymes, polysaccharides and pigments can be used as reducers and coatings during biosynthesis. The probability of the antifungal activity of selenium nanoparticles (SeNPs) to prevent plant fungi that can affect humans was evaluated and a toxic Iranian cyanobacterial strain of Desmonostoc alborizicum was used to study the biotechnology of SeNP synthesis for the first time. Characterization of nanoparticles with a UV-Vis spectrophotometer showed the formation of SeNPs in the range of 271-275 nm with the appearance of an orange color. Morphological examination of nanoparticles with Transmission Electron Microscopy (TEM), revealed the spherical shape of nanoparticles. The results of X-Ray Diffraction (XRD) showed 7 peaks and a hexagonal structure of average crystal size equal to 58.8 nm. The dispersion index of SeNPs was reported as 0.635, which indicated the homogeneity of the nanoparticle droplet size. The zeta potential of the nanoparticles was + 22.7. Fourier-transform infrared spectroscopy (FTIR) analysis exhibited a sharp and intense peak located at the wave number of 404 cm- 1, related to the SeNPs synthesized in this research. The results of the antifungal activity of SeNPs showed among the investigated fungi, Pythium ultimum had the highest resistance to SeNPs (14.66 ± 0.52 µg/ml), while Alternaria alternata showed the highest sensitivity (9.66 ± 0.51 µg/ml) (p < 0.05). To the best of our knowledge this is the first report concerning the characterization and antifungal screening of SeNPs biosynthesized by Iranian cyanobacteria, which could be used as effective candidates in medical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Antifúngicos/farmacologia , Irã (Geográfico) , Microcistinas , Nanopartículas/química , Nanopartículas Metálicas/química
15.
Front Microbiol ; 14: 1176500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564287

RESUMO

Thermophilic cyanobacteria play a crucial role as primary producers in hot spring ecosystems, yet their microbiological, taxonomic, and ecological characteristics are not extensively studied. This study aimed to characterize a novel strain of thermophilic cyanobacteria, PKUAC-SCTA174 (A174), using a combination of traditional polyphasic methods and modern genomic-based approaches. The study included 16S rRNA-based phylogeny, ITS secondary structure prediction, morphological and habitat analyses, as well as high-quality genome sequencing with corresponding phylogenomic analyses. The results of the 16S rRNA, 16S-23S ITS secondary structure, morphology, and habitat analyses supported the classification of the strain as a member of a novel genus within the family Oculatellaceae, closely related to Albertania and Trichotorquatus. Genomic analysis revealed the presence of a sophisticated carbon-concentrating mechanism (CCM) in the strain, involving two CO2 uptake systems NDH-I3, and NDH-I4, three types of bicarbonate transporters (BCT1, bicA, sbtA,) and two distinct putative carboxysomal carbonic anhydrases (ccaA1 and ccaA2). The expression of CCM genes was investigated with a CO2 shift experiment, indicating varying transcript abundance among different carbon uptake systems. Based on the comprehensive characterization, the strain was delineated as Thermocoleostomius sinensis, based on the botanical code. The study of the complete genome of strain A174 contributes valuable insights into the genetic characteristics of the genus Thermocoleostomius and related organisms and provides a systematic understanding of thermophilic cyanobacteria. The findings presented here offer valuable data that can be utilized for future research in taxogenomics, ecogenomics, and geogenomics.

16.
Plant J ; 116(3): 706-716, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493543

RESUMO

Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo Citocromos b6f/metabolismo , Citocromos b , Transporte de Elétrons , Ferredoxinas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo
17.
J Biotechnol ; 373: 1-11, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37330059

RESUMO

Recently, concern on several environmental issues including the pollutant discharge and high concentration of CO2 have gained high interest due to its impact on ecosystem and global warming effect, respectively. Implementation of photosynthetic microorganism carries out numerous advantages including high efficiency of CO2 fixation, the great endurance under extreme conditions and generation of valuable bioproducts. Thermosynechococcus sp. CL-1 (TCL-1), a cyanobacterium, has the ability to perform CO2 fixation and accumulation of various byproducts under extreme conditions like high temperature and alkalinity, presence of estrogen, or even using swine wastewater. This study aimed to assess TCL-1 performance under various endocrine disruptor compounds (bisphenol-A, 17-ß-estradiol/E2, and 17-α-ethynilestradiol/EE2), concentrations (0-10 mg/L), light intensities (500-2000 µE/m2/s), and dissolved inorganic carbon/DIC levels (0-113.2 mM). Addition of E2 content even until 10 mg/L carried out insignificant biomass growth interruption along with the improvement in CO2 fixation rate (79.8 ± 0.1 mg/L/h). Besides the influence of E2, application of higher DIC level and light intensity also enhanced the CO2 fixation rate and biomass growth. The highest biodegradation of E2 at 71% was achieved by TCL-1 in the end of 12 h cultivation period. TCL-1 dominantly produced protein (46.7% ± 0.2%), however, production of lipid and carbohydrate (39.5 ± 1.5 and 23.3 ± 0.9%, respectively) also could be considered as the potential source for biofuel production. Thus, this study can provide an efficient strategy in simultaneously dealing with environmental issues with side advantage in production of macromolecules.


Assuntos
Cianobactérias , Disruptores Endócrinos , Microalgas , Animais , Suínos , Thermosynechococcus/metabolismo , Disruptores Endócrinos/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Cianobactérias/metabolismo , Biomassa , Microalgas/metabolismo
18.
Arch Microbiol ; 205(7): 266, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328623

RESUMO

Recently, we reported a circular cell culture (CCC) system using microalgae and animal muscle cells for sustainable culture food production. However, lactate accumulation excreted by animal cells in the system characterized by medium reuse was a huge problem. To solve the problem, as an advanced CCC, we used a lactate-assimilating cyanobacterium Synechococcus sp. PCC 7002, using gene-recombination technology that synthesises pyruvate from lactate. We found that the cyanobacteria and animal cells mutually exchanged substances via their waste media: (i) cyanobacteria used lactate and ammonia excreted by animal muscle cells, and (ii) the animal cells used pyruvate and some amino acids excreted by the cyanobacteria. Because of this, animal muscle C2C12 cells were amplified efficiently without animal serum in cyanobacterial culture waste medium in two cycles (first cycle: 3.6-fold; second cycle: 3.9-fold/three days-cultivation) using the same reuse medium. We believe that this advanced CCC system will solve the problem of lactate accumulation in cell culture and lead to efficient cultured food production.


Assuntos
Aminoácidos , Synechococcus , Animais , Aminoácidos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Técnicas de Cultura de Células , Synechococcus/genética
19.
Chemosphere ; 335: 139141, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285984

RESUMO

The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.


Assuntos
Cianobactérias , Herbicidas , Ecossistema , Herbicidas/farmacologia , Tibet , Raios Ultravioleta , Cianobactérias/metabolismo , Fotossíntese , Antioxidantes/metabolismo , Clorofila/metabolismo , Glifosato
20.
Biochem Biophys Rep ; 34: 101469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125074

RESUMO

The one-dimensional multicellular cyanobacterium, Anabaena sp. PCC 7120, exhibits a simple topology consisting of two types of cells under the nitrogen-depleted conditions. Although the differentiated (heterocyst) and undifferentiated cells (vegetative cells) were distinguished by their cellular shapes, we found that their internal states, that is, microbial pigment compositions, were distinguished by using a Raman microscope. Almost of Raman bands of the cellular components were assigned to vibrations of the pigments; chlorophyll a, ß-carotene, phycocyanin, and allophycocyanin. We found that the Raman spectral measurement can detect the decomposition of both phycocyanin and allophycocyanin, which are components of the light-harvesting phycobilisome complex in the photosystem II. We observed that the Raman bands of phycocyanin and allophycocyanin exhibited more remarkable decrease in the heterocysts when compared to those of chlorophyll a and ß-carotene. This result indicated the prior decomposition of phycobilisome in the heterocysts. We show that the Raman measurement is useful to detect the change of pigment composition in the cell differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...