Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.567
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990950

RESUMO

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Assuntos
Regiões 3' não Traduzidas , Estágios do Ciclo de Vida , Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estágios do Ciclo de Vida/genética , Regiões 3' não Traduzidas/genética , Animais , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Poli A/genética , Poliadenilação
2.
Biomed Pharmacother ; 177: 117072, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991301

RESUMO

The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.

3.
J Environ Manage ; 366: 121791, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991354

RESUMO

To clarify the impacts of tidal hydrological process shifts caused by sea level rise on the blue carbon cycle, a typical coastal wetland in Jiaozhou Bay was selected for this study. The soils of Suaeda salsa (SS) and Phragmites australis (PA) wetlands were collected to simulate the effects of three types of tidal hydrological processes (Neap tide group, NT; Middle tide group, MT; Spring tide group, ST) on the soil-water dissolved inorganic carbon (DIC) dynamic. The results showed that the concentration of water dissolved inorganic carbon (WDIC) increased rapidly (115% higher) at early stage (days 0-4) under the influence of the tidal hydrological processes. Significant differences were found in WDIC concentration during different tidal hydrological processes (P < 0.05), which were expressed as MT (52.7 ± 13.3 mg L-1) > ST (52.5 ± 12.9 mg L-1) > NT (48.4 ± 10.1 mg L-1). After experiencing the tidal hydrological processes, the soil DIC content showed a net accumulation (55.1 ± 1.29 mg L-1vs. 46.7 ± 1.76 mg L-1, P < 0.001), whereas the soil inorganic carbon (SIC) decreased (2.73 ± 1.64 mg L-1vs. 4.61 ± 1.71 mg L-1), which may be attributed to the dissolution of SIC caused by the uptake of CO2 to form DIC. The accumulation of soil DIC was directly related to the SIC (λ = 1.03, P < 0.01), and indirectly related to soil nutrients (SOC substrate, λ = -0.003) and microbes (microbial biomass, λ = -0.10), and was mainly dominated by abiotic processes (abiotic: 58.1 ± 1.8% to 82.7 ± 2.46% vs. biotic: 17.4 ± 2.46% to 41.9 ± 1.76%). The increase of tidal frequency generally inhibited the accumulation of soil DIC content and promoted the output of WDIC. However, the response of soil DIC in different wetland types to tidal frequency was divergent, which was mainly regulated by the trade-off between soil nutrients and SIC content. Taken together, tidal hydrological processes and their frequency changes reshaped DIC dynamics, promoted the dissolution of SIC and the potential uptake of CO2. These findings enhance the comprehension of the inorganic carbon cycle within coastal wetlands, particularly amidst the backdrop of climate change and the rising sea levels.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38992255

RESUMO

RATIONALE: Preclinical studies report that drug use and social contact mutually influence the reinforcing effects of one another. Most of these studies have used same-sex dyads exclusively, and the role of factors related to biological sex and hormonal fluctuations are not well understood. OBJECTIVES: The purpose of this study was to examine the reinforcing effects of cocaine and social contact with an opposite-sex partner in male and female rats, and how these effects are modulated by ovarian hormones. METHODS: Male and female rats were trained in a nonexclusive choice procedure in which cocaine and social contact with an opposite-sex partner were simultaneously available on concurrent progressive ratio schedules of reinforcement. To examine the effects of ovarian hormones related to estrous cycling, Experiment 1 used naturally cycling, gonadally intact females, whereas Experiment 2 used ovariectomized females, and estrus was artificially induced with exogenous hormones. RESULTS: In both experiments, cocaine and social contact functioned as robust reinforcers, and there were no significant effects of biological sex or estrus status of the females. The positive reinforcing effects of both cocaine and social contact increased as a function of cocaine dose, indicating that contingent cocaine administration increases the reinforcing effects of social contact. CONCLUSIONS: These data suggest that cocaine use among opposite-sex partners may enhance factors that contribute to social bonding.

5.
Sci Total Environ ; : 174693, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992364

RESUMO

Rewilding abandoned farmlands provides a nature-based climate solution via carbon (C) offsetting; however, the C-cycle-climate feedback in such restored ecosystems is poorly understood. Therefore, we conducted a 2-year field experiment in Loess Plateau, China, to determine the impacts of warming (~1.4 °C) and altered precipitation (±25 %, ±50 %, and ambient), alone or in concert on soil C pools and associated C fluxes. Experimental warming significantly enhanced soil respiration without affecting the ecosystem net C uptake and soil C storage; these variables tended to increase along the manipulated precipitation gradient. Their interactions increased ecosystem net C uptake (synergism) but decreased soil respiration and soil C accumulation (antagonism) compared with a single warming or altered precipitation. Additionally, most variables related to the C cycle tended to be more responsive to increased precipitation, but the ecosystem net C uptake responded intensely to warming and decreased precipitation. Overall, ecosystem net C uptake and soil C storage increased by 94.4 % and 8.2 %, respectively, under the warmer-wetter scenario; however, phosphorus deficiency restricted soil C accumulation under these climatic conditions. By contrast, ecosystem net C uptake and soil C storage decreased by 56.6 % and 13.6 %, respectively, when exposed to the warmer-drier climate, intensifying its tendency toward a C source. Therefore, the C sink function of semiarid abandoned farmland was unsustainable. Our findings emphasize the need for management of post-abandonment regeneration to sustain ecosystem C sequestration in the context of climate change, aiding policymakers in the development of C-neutral routes in abandoned regions.

6.
J Biol Chem ; : 107548, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992437

RESUMO

Fanconi Anemia (FA) is an inherited disorder of DNA-repair due to mutation in one of 20+ interrelated genes that repair intra-strand DNA crosslinks and rescue collapsed or stalled replication forks. The most common hematologic abnormality in FA is anemia, but progression to bone marrow failure (BMF), clonal hematopoiesis, or acute myeloid leukemia (AML) may also occur. In prior studies, we found that Fanconi DNA-repair is required for successful emergency granulopoiesis; the process for rapid neutrophil production during the innate immune response. Specifically, Fancc-/- mice did not develop neutrophilia in response to emergency granulopoiesis stimuli, but instead exhibited apoptosis of bone marrow hematopoietic stem cells (HSCs) and differentiating neutrophils. Repeated emergency granulopoiesis challenges induced BMF in most Fancc-/- mice, with AML in survivors. In contrast, we found equivalent neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice and wild type (WT) mice, without BMF. Since termination of emergency granulopoiesis is triggered by accumulation of bone marrow neutrophils, we hypothesize neutrophilia protects Fancc-/-Tp53+/- bone marrow from the stress of a sustained inflammation that is experienced by Fancc-/- mice. In the current work, we found that blocking neutrophil accumulation during emergency granulopoiesis led to BMF in Fancc-/-Tp53+/- mice, consistent with this hypothesis. Blocking neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice (but not WT) impaired cell cycle checkpoint activity, also found in Fancc-/- mice. Mechanisms for loss of cell cycle checkpoints during infections challenges may define molecular markers of FA progression, or suggest therapeutic targets for bone marrow protection in this disorder.

8.
Crit Rev Oncol Hematol ; : 104446, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992849

RESUMO

Hematological and neurological expressed 1 (HN1), also known as Jupiter microtubule associated homolog 1 (JPT1), is a highly conserved protein with widespread expression in various tissues. Ectopic elevation of HN1 has been observed in multiple cancers, highlighting its role in tumorigenesis and progression. Both proteomics and transcriptomics reveal that HN1 is closely associated with severe disease progression, poor prognostic and shorter overall survival. HN1's involvement in cancer cell proliferation and metastasis has been extensively investigated. Overexpression of HN1 is associated with increased tumor growth and disease progression, while its depletion leads to cell cycle arrest and apoptosis. The pivotal role of HN1 in cancer progression, particularly in proliferation, migration, and invasion, underscores its significance in cancer metastasis. Validation of the efficacy and safety of HN1 inhibition, along with the development of diagnostic methods to determine HN1 expression levels in patients, is essential for the translation of HN1-targeted therapies into clinical practice. Overall, HN1 emerges as a valuable prognostic marker and therapeutic target in cancer, and further investigations hold the potential to improve patient outcomes by impeding metastasis and enhancing treatment strategies.

9.
ACS Infect Dis ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992989

RESUMO

The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.

10.
Plant Sci ; 347: 112183, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972549

RESUMO

The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18 S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.

11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1117-1125, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977341

RESUMO

OBJECTIVE: To investigate the mechanism by which CDHR2 overexpression inhibits breast cancer cell growth and cell cycle pragression via the PI3K/Akt signaling pathway. METHODS: Bioinformatic analysis was performed to investigate CDHR2 expression in breast cancer and its correlation with survival outcomes of the patients. Immunohistochemistry was used to examine CDHR2 expressions in surgical specimens of tumor and adjacent tissues from 10 patients with breast cancer. CDHR2 expression levels were also detected in 5 breast cancer cell lines and a normal human mammary epithelial cell line using qRT-PCR and Western blotting. Breast cancer cell lines MDA-MB-231 and MCF7 with low CDHR2 expression were transfected with a CDHR2-overexpressing plasmid, and the changes in cell proliferation and cell cycle were evaluated using CCK-8 assay, EdU assay, and cell cycle assay; the changes in expressions of PI3K/Akt signaling pathway and cell cycle pathway proteins were detected with Western blotting. RESULTS: Bioinformatic analysis showed low CDHR2 expression level in both breast cancer and adjacent tissues without significant difference between them (P > 0.05), but breast cancer patients with a high expression of CDHR2 had a more favorable prognosis. Immunohistochemistry, qRT-PCR and Western blotting showed that the expression of CDHR2 was significantly down-regulated in breast cancer tissues and breast cancer cells (P < 0.01), and its overexpression strongly inhibited cell proliferation, caused cell cycle arrest, and significantly inhibited PI3K and Akt phosphorylation and the expression of cyclin D1. CONCLUSION: Overexpression of CDHR2 inhibits proliferation and causes cell cycle arrest in breast cancer cells possibly by inhibiting the PI3K/Akt signaling pathway.


Assuntos
Neoplasias da Mama , Proliferação de Células , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Células MCF-7
12.
Planta ; 260(2): 48, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980389

RESUMO

MAIN CONCLUSION: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Citocininas , Flores , Regulação da Expressão Gênica de Plantas , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclina D3/metabolismo , Ciclina D3/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Ciclinas
13.
Dig Dis Sci ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987443

RESUMO

OBJECTIVE: To investigate the role and function of eIF6 in gastric cancer (GC). METHODS: The expression level of eIF6 in GC tissues and normal tissues was detected in different high-throughput sequencing cohorts. Survival analysis, gene differential analysis, and enrichment analysis were performed in the TCGA cohort. Biological networks centered on eIF6 were constructed through two different databases. Immunohistochemistry (IHC) and Western blot were used to detect protein expression of eIF6, and qRT-PCR was used to detect eIF6 mRNA expression. The correlation between the expression of eIF6 in GC tissues and clinicopathological parameters of GC was analyzed. siRNA knockout of eIF6 was used to study the proliferation, migration, and invasion. The effects of eIF6 on cell cycle and Cyclin B1 were detected by flow cytometry and Western blot. RESULTS: eIF6 was significantly overexpressed in GC tissues and predicted poor prognosis. In addition, 113 differentially expressed genes were detected in cancer-related biological pathways and functions by differential analysis. Biological networks revealed interactions of genes and proteins with eIF6. The expression intensity of eIF6 in cancer tissues was higher than that in adjacent tissues (P = 0.0001), confirming the up-regulation of eIF6 expression in GC tissues. The expression level of eIF6 was statistically significant with pTNM stage (P = 0.006). siRNA knockout of eIF6 significantly reduced the proliferation, colony formation, migration, and invasion ability of GC cells. Silencing of eIF6 also inhibited the cell cycle of GC cells in G2/M phase and decreased the expression level of CyclinB1. CONCLUSION: Our study suggests that eIF6 is up-regulated in GC and may promote the proliferation, migration, and invasion of GC by regulating cell cycle.

14.
J Gene Med ; 26(7): e3713, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949075

RESUMO

BACKGROUND: The present study aimed to identify dysregulated genes, molecular pathways, and regulatory mechanisms in human papillomavirus (HPV)-associated cervical cancers. We have investigated the disease-associated genes along with the Gene Ontology, survival prognosis, transcription factors and the microRNA (miRNA) that are involved in cervical carcinogenesis, enabling a deeper comprehension of cervical cancer linked to HPV. METHODS: We used 10 publicly accessible Gene Expression Omnibus (GEO) datasets to examine the patterns of gene expression in cervical cancer. Differentially expressed genes (DEGs), which showed a clear distinction between cervical cancer and healthy tissue samples, were analyzed using the GEO2R tool. Additional bioinformatic techniques were used to carry out pathway analysis and functional enrichment, as well as to analyze the connection between altered gene expression and HPV infection. RESULTS: In total, 48 DEGs were identified to be differentially expressed in cervical cancer tissues in comparison to healthy tissues. Among DEGs, CCND1, CCNA2 and SPP1 were the key dysregulated genes involved in HPV-associated cervical cancer. The five common miRNAs that were identified against these genes are miR-7-5p, miR-16-5p, miR-124-3p, miR-10b-5p and miR-27a-3p. The hub-DEGs targeted by miRNA hsa-miR-27a-3p are controlled by the common transcription factor SP1. CONCLUSIONS: The present study has identified DEGs involved in HPV-associated cervical cancer progression and the various molecular pathways and transcription factors regulating them. These findings have led to a better understanding of cervical cancer resulting in the development and identification of possible therapeutic and intervention targets, respectively.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Humanos , MicroRNAs/genética , Feminino , Biologia Computacional/métodos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Ontologia Genética , Biomarcadores Tumorais/genética , Prognóstico , Bases de Dados Genéticas , Transdução de Sinais/genética
15.
JPEN J Parenter Enteral Nutr ; 48(5): 562-570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949827

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) are at increased risk of thrombosis. They often need parenteral nutrition (PN) requiring intravenous access for prolonged periods. We assessed the risk of deep vein thrombosis (DVT) associated with peripherally inserted central catheters (PICCs) and tunneled catheters for patients with IBD receiving home PN (HPN). METHODS: Using the Cleveland Clinic HPN Registry, we retrospectively studied a cohort of adults with IBD who received HPN between June 30, 2019 and January 1, 2023. We collected demographics, catheter type, and catheter-associated DVT (CADVT) data. We performed descriptive statistics and Poisson tests to compare CADVT rates among parameters of interest. We generated Kaplan-Meier graphs to illustrate longevity of CADVT-free survival and a Cox proportional hazard model to calculate the hazard ratio associated with CADVT. RESULTS: We collected data on 407 patients, of which, 276 (68%) received tunneled catheters and 131 (32%) received PICCs as their initial catheter. There were 17 CADVTs with an overall rate of 0.08 per 1000 catheter days, whereas individual rates of DVT for PICCs and tunneled catheters were 0.16 and 0.05 per 1000 catheter days, respectively (P = 0.03). After adjusting for age, sex, and comorbidity, CADVT risk was significantly higher for PICCs compared with tunneled catheters, with an adjusted hazard ratio of 2.962 (95% CI=1.140-7.698; P = 0.025) and adjusted incidence rate ratio of 3.66 (95% CI=2.637-4.696; P = 0.013). CONCLUSION: Our study shows that CADVT risk is nearly three times higher with PICCs compared with tunneled catheters. We recommend tunneled catheter placement for patients with IBD who require HPN infusion greater than 30 days.


Assuntos
Cateterismo Venoso Central , Doenças Inflamatórias Intestinais , Nutrição Parenteral no Domicílio , Trombose Venosa , Humanos , Estudos Retrospectivos , Masculino , Feminino , Trombose Venosa/etiologia , Trombose Venosa/epidemiologia , Doenças Inflamatórias Intestinais/complicações , Adulto , Nutrição Parenteral no Domicílio/efeitos adversos , Nutrição Parenteral no Domicílio/métodos , Pessoa de Meia-Idade , Cateterismo Venoso Central/efeitos adversos , Cateterismo Venoso Central/métodos , Fatores de Risco , Cateterismo Periférico/efeitos adversos , Cateteres Venosos Centrais/efeitos adversos , Modelos de Riscos Proporcionais , Estudos de Coortes , Sistema de Registros , Idoso
16.
Front Microbiol ; 15: 1407760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946896

RESUMO

Introduction: Salinization damages soil system health and influences microbial communities structure and function. The response of microbial functions involved in the nutrient cycle to soil salinization is a valuable scientific question. However, our knowledge of the microbial metabolism functions in salinized soil and their response to salinity in arid desert environments is inadequate. Methods: Here, we applied metagenomics technology to investigate the response of microbial carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling and the key genes to salinity, and discuss the effects of edaphic variables on microbial functions. Results: We found that carbon fixation dominated the carbon cycle. Nitrogen fixation, denitrification, assimilatory nitrate reduction (ANRA), and nitrogen degradation were commonly identified as the most abundant processes in the nitrogen cycle. Organic phosphorus dissolution and phosphorus absorption/transport were the most enriched P metabolic functions, while sulfur metabolism was dominated by assimilatory sulfate reduction (ASR), organic sulfur transformation, and linkages between inorganic and organic sulfur transformation. Increasing salinity inhibited carbon degradation, nitrogen fixation, nitrogen degradation, anammox, ANRA, phosphorus absorption and transport, and the majority of processes in sulfur metabolism. However, some of the metabolic pathway and key genes showed a positive response to salinization, such as carbon fixation (facA, pccA, korAB), denitrification (narG, nirK, norBC, nosZ), ANRA (nasA, nirA), and organic phosphorus dissolution processes (pstABCS, phnCD, ugpAB). High salinity reduced the network complexity in the soil communities. Even so, the saline microbial community presented highly cooperative interactions. The soil water content had significantly correlations with C metabolic genes. The SOC, N, and P contents were significantly correlated with C, N, P, and S network complexity and functional genes. AP, NH4+, and NO3- directly promote carbon fixation, denitrification, nitrogen degradation, organic P solubilization and mineralization, P uptake and transport, ASR, and organic sulfur transformation processes. Conclusion: Soil salinity in arid region inhibited multiple metabolic functions, but prompted the function of carbon fixation, denitrification, ANRA, and organic phosphorus dissolution. Soil salinity was the most important factor driving microbial functions, and nutrient availability also played important roles in regulating nutrient cycling.

17.
J Cancer ; 15(13): 4232-4243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947387

RESUMO

Although fangchinoline has been widely used as an adjunct therapy for a variety of inflammatory and cancerous diseases, its mechanism of action on tumor cells remains unclear. Fangchinoline derivative LYY-35 reduced the number of A549 cells, deformed cell morphology and increased cell debris. Cell viability was significantly reduced, while the same concentration of LYY-35 had little effect on BEAS-2B viability of normal lung epithelial cells. In addition, LYY-35 can also reduce the migration, proliferation and invasion ability of A549 cells. Levels of ß-catenin, ZO-1 and ZEB-1 proteins, biomarkers of cell adhesion and epithelial mesenchymal transformation, were significantly reduced. The levels of superoxide dismutase and lactate dehydrogenase decreased gradually, while the levels of glutathione, malondialdehyde and intracellular and extracellular ROS increased significantly. At the same time, LYY-35 induced increased apoptosis, increased expression of Bax, cleaved caspase3, cleaved PARP1, and decreased expression of Bcl-xl, which blocked the cell cycle to G0/G1 phase. The expressions of cell cycle checkpoint proteins Cyclin B1, Cyclin E1, CDK6, PCNA and PICH were significantly decreased. With the increase of LYY-35 concentration, the trailing phenomenon was more obvious in single cell gel electrophoresis. DNA damage repair proteins: BLM, BRCA-1 and PARP-1 expression decreased gradually.LYY-35 can inhibit the proliferation of non-small cell lung cancer A549 cells, block cell cycle, promote apoptosis, increase ROS production, cause DNA damage and interfere with DNA replication. LYY-35 is promising for the treatment of non-small cell lung cancer in the future.

18.
Heliyon ; 10(11): e31836, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947471

RESUMO

Electric truck platooning offers a promising solution to extend the range of electric vehicles during long-haul operations. However, optimizing the platoon speed to ensure efficient energy utilization remains a critical challenge. The existing research on implementing data-driven solutions for truck platooning remains limited and implementing first principles solution is still a challenge. However, recognizing the resemblance of truck platoon data to a time series serves as a compelling motivation to explore suitable analytical techniques to address the problem. This paper presents a novel deep learning approach using a sequence-to-sequence encoder-decoder model to obtain the speed profile to be followed by an autonomous electric truck platoon considering various constraints such as the available state of charge (SOC) in the batteries along with other vehicles and road conditions while ensuring that the platoon is string stable. To ensure that the framework is suitable for long-haul highway operation, the model has been trained using various known highway drive cycles. Encoder-decoder models were trained and hyperparameter tuning was performed for the same. Finally, the most suitable model has been chosen for the application. For testing the entire framework, drive cycle/speed prediction corresponding to different desired SOC profiles has been presented. A case study showing the relevance of the proposed framework in predicting the drive cycle on various routes and its impact on taking critical policy decisions during the planning of electric truck platoons has also been presented. This study would help to efficiently plan the feasible routes for electric trucks considering multiple constraints such as battery capacity, expected discharge rate, charging infrastructure availability, route length/travel time, and other on-road operating conditions while also maintaining stability.

19.
iScience ; 27(6): 110126, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947511

RESUMO

The aviation industry's emissions have had a significant impact on global climate change. This study focuses on carbon emission trading schemes, sustainable aviation fuels (SAFs), and hydrogen energy, as vital means for the aviation industry to reduce emissions. To evaluate the climate effects of global routes under four scenarios (24 sub-scenarios) until 2100, this study proposes the Aviation-FAIR (Aviation-Finite Amplitude Impulse Response) method. The findings reveal that while CO2 emissions and concentrations are significant, other emissions, such as N2O and CH4, have a greater effective radiative forcing (ERF) and contribute significantly to climate change. Moreover, SAFs are more effective in mitigating airline pollutant emissions than relying solely on carbon trading schemes. The effectiveness of hydrogen fuel cells may be hindered by technical limitations compared to hydrogen turbine engines. The findings of this study provide reference for the global aviation industry to adopt emission reduction measures.

20.
Heliyon ; 10(11): e32485, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961953

RESUMO

Objective: Investigating the effects of MYB proto-oncogene like 2 (MYBL2)-mediated regulation of Cell division cycle associated 8 (CDCA8) expression on the biological activity of cutaneous malignant melanoma cells. Methods: A375 cells with MYBL2 and CDCA8 overexpression and knockdown were evaluated using migration, invasion, and proliferation assays. Besides, cell apoptosis was quantified by flow cytometry. To investigate the tumorigenic effects of MYBL2 knockdown in vivo, A375 cells with MYBL2 knockdown were injected in BALB/C nude mice. Results: The levels of MYBL2 and CDCA8 gene expression were notably elevated in A375 cells in comparison to HaCat cells (P < 0.05). Downregulation of MYBL2 led to a notable reduction in the migratory and invasive capability of A375 cells in vitro (P < 0.001). On the contrary, overexpression of MYBL2 enhanced migration and invasion ability (P < 0.001). There existed a positive correlation between CDCA8 and MYBL2 gene and protein expression levels after overexpression or knockdown of MYBL2 (P < 0.001). In the in vivo tumorigenic study, the MYBL2 knockdown group displayed a substantial decrease in tumor volume (P < 0.01) and exhibited decreased CDCA8 expression in tumors in comparison to the control group. Conclusion: We arrived at such a conclusion that MYBL2 promoted the migration, invasion and proliferation ability of cutaneous malignant melanoma cells by targeted regulation of CDCA8 expression in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...