Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Neuro Oncol ; 26(4): 735-748, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011799

RESUMO

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS: We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS: High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS: Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Imidazóis , Piridinas , Pirimidinas , Criança , Humanos , Epigênese Genética , Histonas/genética , Glioma Pontino Intrínseco Difuso/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Piperazinas
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069205

RESUMO

Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.


Assuntos
Dopamina , Transtornos de Enxaqueca , Camundongos , Humanos , Animais , Dopamina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Hipotálamo/metabolismo , Receptores de Dopamina D1/metabolismo , Transtornos de Enxaqueca/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cefaleia/metabolismo
3.
Biomolecules ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37509114

RESUMO

Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Xantina/farmacologia , Xantina/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Dopamina , Ligantes , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Monoaminoxidase/metabolismo , Dopaminérgicos/farmacologia
4.
Int J Psychiatry Clin Pract ; 27(4): 367-384, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37428441

RESUMO

OBJECTIVE: The aim of this review is to analyse the literature regarding studies centred on the clinical outcome of individuals affected by schizophrenia and treated with various antipsychotics, and then switched to orally administered partial D2-dopamine agonists (PD2A): Aripiprazole (ARI), brexpiprazole (BREX) or cariprazine (CARI). METHOD: A PubMed literature search was performed on 16 February 2021, and updated on Jan 26, 2022 for literature on antipsychotic switching in individuals affected by schizophrenia. Literature was included from 2002 onward. Six strategies were defined: Abrupt, gradual and cross-taper switch, and 3 hybrid strategies. The primary outcome was all-cause discontinuation rate per switch strategy per goal medication. RESULTS: In 10 reports on switching to ARI, 21 studies with different strategies were described, but there were only 4 reports and 5 strategies on switching to BREX. Only one study about CARI was included, but it was not designed as a switch study. The studies are difficult to compare due to differences in methodology, previous antipsychotic medication, doses of the introduced P2DA and study duration. CONCLUSION: This analysis did not reveal evidence for a preferable switching strategy. A protocol should be developed which defines optimal duration, instruments to be used, and the timing of the exams.KEY MESSAGESMost switch studies on partial D2-agonists focus on ARI, with only a few on BREX, while little is known about the clinical outcome of switching individuals to CARIThere is a wide variation of possible switch methods: Abrupt switch - gradual switch - cross-tapering switch - hybrid strategies including plateau switchThe protocols used differ considerably between the studies. A strict comparison between the studies is difficult, for which reason the present evidence does not support an unambiguous preference for a particular switch strategy.From a methodological point of view, a standardised clinical protocol should be developed to allow comparisons between studies regarding the clinical outcome of individuals switched from one antipsychotic drug to another.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Agonistas de Dopamina/uso terapêutico , Dopamina/uso terapêutico , Aripiprazol
5.
Br J Pharmacol ; 180(16): 2140-2155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929333

RESUMO

BACKGROUND AND PURPOSE: Drugs of abuse, including alcohol, increase dopamine in the mesocorticolimbic system via actions on dopamine neurons in the ventral tegmental area (VTA). Increased dopamine transmission can activate inhibitory G protein signalling pathways in VTA dopamine neurons, including those controlled by GABAB and D2 receptors. Members of the R7 subfamily of regulator of G protein signalling (RGS) proteins can regulate inhibitory G protein signalling, but their influence on VTA dopamine neurons is unclear. Here, we investigated the influence of RGS6, an R7 RGS family memberthat has been implicated in the regulation of alcohol consumption in mice, on inhibitory G protein signalling in VTA dopamine neurons. EXPERIMENTAL APPROACH: We used molecular, electrophysiological and genetic approaches to probe the impact of RGS6 on inhibitory G protein signalling in VTA dopamine neurons and on binge-like alcohol consumption in mice. KEY RESULTS: RGS6 is expressed in adult mouse VTA dopamine neurons and it modulates inhibitory G protein signalling in a receptor-dependent manner, tempering D2 receptor-induced somatodendritic currents and accelerating deactivation of synaptically evoked GABAB receptor-dependent responses. RGS6-/- mice exhibit diminished binge-like alcohol consumption, a phenotype replicated in female (but not male) mice lacking RGS6 selectively in VTA dopamine neurons. CONCLUSIONS AND IMPLICATIONS: RGS6 negatively regulates GABAB - and D2 receptor-dependent inhibitory G protein signalling pathways in mouse VTA dopamine neurons and exerts a sex-dependent positive influence on binge-like alcohol consumption in adult mice. As such, RGS6 may represent a new diagnostic and/or therapeutic target for alcohol use disorder.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Animais , Feminino , Camundongos , Consumo de Bebidas Alcoólicas , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transdução de Sinais , Área Tegmentar Ventral/metabolismo , Masculino
6.
Curr Top Behav Neurosci ; 60: 29-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35505061

RESUMO

When the rat D3 dopamine receptor (D3R) was cloned and the distribution of its mRNA examined in 1990-1991, it attracted attention due to its peculiar distribution in the brain quite different from that of its closest relative, the D2 receptor. In the rat brain, the D3R mRNA is enriched in the limbic striatum as opposed to the D2 receptor, which is highly expressed in the motor striatal areas. Later studies in the primate and human brain confirmed relative enrichment of the D3R in the limbic striatum but also demonstrated higher abundance of the D3R in the primate as compared to the rodent brain. Additionally, in the rodent brain, the D3R in the dorsal striatum appears to be co-expressed with the D1 dopamine receptor-bearing striatal neurons giving rise to the direct output striatal pathway, although the picture is less clear with respect to the nucleus accumbens. In contrast, in the primate striatum, the D3R co-localizes with the D2 receptor throughout the basal ganglia as well as in extrastriatal brain areas. The relative abundance of the D3R in the limbic striatum, its output structures, secondary targets, and some of the other connected limbic territories may underpin its role in reward, drug dependence, and impulse control. Selective expression of D3R in the brain proliferative areas may point to its important role in the neural development as well as in neurodevelopmental abnormalities associated with schizophrenia and other developmental brain disorders.


Assuntos
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Ratos , Humanos , Animais , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo , Dopamina , RNA Mensageiro/metabolismo
7.
Front Neurosci ; 16: 988167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278007

RESUMO

The proinflammatory state, which may be induced by sleep deprivation, seems to be a determining factor in the development of neurodegenerative processes. Investigations of mechanisms that help to mitigate the inflammatory effects of sleep disorders are important. A new proposal involves the neurotransmitter dopamine, which may modulate the progression of the immune response by activating receptors expressed on immune cells. This study aimed to determine whether dopamine D2 receptor (D2DR) activation attenuates the proinflammatory response derived from rapid eye movement (REM) sleep deprivation in mice. REM sleep deprivation (RSD) was induced in 2-month-old male CD1 mice using the multiple platform model for three consecutive days; during this period, the D2DR receptor agonist quinpirole (QUIN) was administered (2 mg/kg/day i.p.). Proinflammatory cytokine levels were assessed in serum and homogenates of the brain cortex, hippocampus, and striatum using ELISAs. Long-term memory deficits were identified using the Morris water maze (MWM) and novel object recognition (NOR) tests. Animals were trained until learning criteria were achieved; then, they were subjected to RSD and treated with QUIN for 3 days. Memory evocation was determined afterward. Moreover, we found RSD induced anhedonia, as measured by the sucrose consumption test, which is commonly related to the dopaminergic system. Our data revealed increased levels of proinflammatory cytokines (TNFα and IL-1ß) in both the hippocampus and serum from RSD mice. However, QUIN attenuated the increased levels of these cytokines. Furthermore, RSD caused a long-term memory evocation deficit in both the MWM and NOR tests. In contrast, QUIN coadministration during the RSD period significantly improved the performance of the animals. On the other hand, QUIN prevented the anhedonic condition induced by RSD. Based on our results, D2DR receptor activation protects against memory impairment induced by disturbed REM sleep by inhibiting neuroinflammation.

8.
Biochemistry (Mosc) ; 87(10): 1206-1218, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273889

RESUMO

The mechanisms of autism are of extreme interest due to the high prevalence of this disorder in the human population. In this regard, special attention is given to the transcription factor Freud-1 (encoded by the Cc2d1a gene), which regulates numerous intracellular signaling pathways and acts as a silencer for 5-HT1A serotonin and D2 dopamine receptors. Disruption of the Freud-1 functions leads to the development of various psychopathologies. In this study, we found an increase in the expression of the Cc2d1a/Freud-1 gene in the hippocampus of BTBR mice (model of autistic-like behavior) in comparison with C57Bl/6J mice and examined how restoration of the Cc2d1a/Freud-1 expression in the hippocampus of BTBR mice affects their behavior, expression of 5-HT1A serotonin and D2 dopamine receptors, and CREB and NF-κB intracellular signaling pathways in these animals. Five weeks after administration of the adeno-associated viral vector (AAV) carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a small hairpin RNA (shRNA) that suppressed expression of the Cc2d1a/Freud-1 gene, we observed an elevation in the anxiety levels, as well as the increase in the escape latency and path length to the platform in the Morris water maze test, which was probably associated with a strengthening of the active stress avoidance strategy. However, the Cc2d1a/Freud-1 knockdown did not affect the spatial memory and phosphorylation of the CREB transcription factor, although such effect was found in C57Bl/6J mice in our previous study. These results suggest the impairments in the CREB-dependent effector pathway in BTBR mice, which may play an important role in the development of the autistic-like phenotype. The knockdown of Cc2d1a/Freud-1 in the hippocampus of BTBR mice did not affect expression of the 5-HT1A serotonin and D2 dopamine receptors and key NF-κB signaling genes (Nfkb1 and Rela). Our data suggest that the transcription factor Freud-1 plays a significant role in the pathogenesis of anxiety and active stress avoidance in autism.


Assuntos
Transtorno Autístico , Hipocampo , Animais , Humanos , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serotonina/genética , Serotonina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
9.
PeerJ ; 10: e13520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795178

RESUMO

Animals experience stress throughout their lives and exhibit both physiological and behavioral responses to cope with it. The stress response can become harmful when prolonged and increasing evidence suggests that dopamine plays a critical role in extinguishing the stress response. In particular, activation of the D2 dopamine receptor reduces glucocorticoids and increases coping behavior, i.e., behavioral responses to adverse stimuli that reduce the harmful effects of stress. However, few studies have examined the effects of dopamine on the stress responses of wild species. We therefore tested the hypothesis that activation of the D2 dopamine receptor influences coping-like behavior in a wild-caught species. We recorded behavior of house sparrows (Passer domesticus) before and after they received injections of D2 dopamine agonists, D2 dopamine antagonists, or saline. House sparrows are common in urban environments and understanding how they cope with stress may help us better understand how animals cope with urban stressors. We found that the birds significantly increased biting of inanimate objects after the agonist but there was no change following the antagonist or saline. The biting of inanimate objects may be a mechanism of behavioral coping. This change in biting behavior was not correlated with general movement. This study supports the hypothesis that D2 dopamine receptor activation is involved in the regulation of the stress response in a wild bird.


Assuntos
Dopamina , Pardais , Animais , Pardais/fisiologia , Animais Selvagens/fisiologia , Adaptação Psicológica
10.
J Comput Chem ; 43(19): 1298-1312, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638694

RESUMO

We report here for the first time the potential energy surfaces (PES) of phenyletilamine (PEA) and meta-tyramine (m-OH-PEA) at the D2 dopamine receptor (D2DR) binding site. PESs not only allow us to observe all the critical points of the surface (minimums, maximums, and transition states), but also to note the ease or difficulty that each local minima have for their conformational inter-conversions and therefore know the conformational flexibility that these ligands have in their active sites. Taking advantage of possessing this valuable information, we analyze how accurate a standard docking study is in these cases. Our results indicate that although we have to be careful in how to carry out this type of study and to consider performing some extra-simulations, docking calculations can be satisfactory. In order to analyze in detail the different molecular interactions that are stabilizing the different ligand-receptor (L-R) complexes, we carried out quantum theory of atoms in molecules (QTAIM) computations and NMR shielding calculations. Although some of these techniques are a bit tedious and require more computational time, our results demonstrate the importance of performing computational simulations using different types of combined techniques (docking/MD/hybrid QM-MM/QTAIM and NMR shielding calculations) in order to obtain more accurate results. Our results allow us to understand in details the molecular interactions stabilizing and destabilizing the different L-R complexes reported here. Thus, the different activities observed for dopamine (DA), m-OH-PEA, and PEA can be clearly explained at molecular level.


Assuntos
Dopamina , Teoria Quântica , Sítios de Ligação , Domínio Catalítico , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
11.
Nutr Neurosci ; 25(3): 519-529, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32420816

RESUMO

INTRODUCTION: Parkinson's disease (PD) is a chronic neurological disorder whose pathogenesis involves the loss of dopaminergic neurons and dopamine terminals, formation of Lewy bodies, and microgliosis. Its treatment includes dopamine-based drugs with limited results and adverse effects. Additionally, some neuroleptic drugs used for mental disorders produce side effects referred to as parkinsonism. Dietary interventions with ω-3 polyunsaturated fatty acids (ω-3 PUFA) have attracted attention since they play a key role in most of the processes associated with PD etiology. OBJECTIVE: The purpose of our work was to investigate the effects of an ω-3 PUFA rich algal oil on locomotive alterations induced by haloperidol and D2 receptor protein and gene expression in Wistar rats. METHODOLOGY: Pre- and co-supplementation of algal oil (300 mg of ω-3 FA/kg/day for six weeks) and haloperidol (1.5 mg/kg/day for two weeks) were evaluated. RESULTS: Haloperidol provoked locomotive alterations in the Open Field Test and a 43% diminution in D2 receptor in brain membranes; in pre-supplemented rats a 93% increase in D2 receptor protein expression and a partial maintenance of locomotory performance were observed, while in co-supplemented rats D2 receptor protein expression was maintained as in control rats, although locomotive behavior was found diminished as in haloperidol rats. CONCLUSIONS: These results confirm the beneficial effects of ω-3 PUFA over locomotory alterations and as neuroprotective and neurorestorative compounds and demonstrates a stimulatory action on D2 receptor presence, as a mechanism by which these fatty acids participate in brain health.


Assuntos
Ácidos Graxos Ômega-3 , Transtornos Parkinsonianos , Animais , Dopamina/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Haloperidol , Humanos , Ratos , Ratos Wistar
12.
Curr Res Toxicol ; 2: 367-374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806037

RESUMO

Antipsychotic drugs (APDs) are prescribed for the treatment of psychiatric illness. However, these drugs can also contribute to several developmental and behavioral disorders. Contemporary studies to evaluate the toxic effects of numerous atypical antipsychotics are reported to cause behavioral alteration at variable doses in mammals and nematodes. Risperidone, the second most prescribed drug in India, requires more exploration of its adverse effects on humans. Here, we explore effects on feeding behavior and locomotion patterns due to risperidone exposure in C. elegans model. The study targets to work out the toxic effects of risperidone exposure on feeding and locomotion behavior in addition to the expected pharmacological effects. N2 wild type strain was exposed in liquid culture assay for 2, 4, 6, 8, 10, and 12 hours with fixed 50 µM concentration. Feeding behavior was depleted due to inhibition in pharyngeal pumping varying from 11.05% - 45.67% in a time-dependent manner. Results of locomotion assay also show time-varying increase in reversals (4.9%-34.03%) and omega bends (26.23%-62.17%) with reduction in turn counts (29.07%- 42.2%) and peristaltic speed (31.38%-42.22%) amongst exposed groups as to control. The present work shows behavioral alterations due to risperidone exposure (50 µM) in C. elegans is in a time-dependent manner. The study concludes that risperidone exposure in C. elegans produces toxic effects with time, possibly caused by antagonizing other receptors apart from serotonin (5-H2T) and dopamine (D2) adding to its expected pharmacological effects.

13.
Front Pharmacol ; 12: 713418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566639

RESUMO

Dopamine is a key regulator of glucose metabolism in the central nervous system. However, dopamine is also present in the periphery and may have direct effects on insulin-sensitive tissues. Dopamine receptor 2 (D2R) agonist bromocriptine is a FDA-approved drug for type 2 diabetes. Herein, we explored the role of peripheral dopamine and its receptors in regulating glucose uptake and metabolism on insulin-sensitive tissues. Peripheral dopamine effect in [3H]2-deoxyglucose uptake in insulin-sensitive tissues was tested in vivo in rats. Direct effects on [3H]2-deoxyglucose uptake, insulin receptor phosphorylation, and regulation of metabolic function were tested ex vivo in the liver, soleus muscle, and white and brown adipose tissues. Bromocriptine and the antagonists domperidone, D2R antagonist, and haloperidol, antagonist of both dopamine receptor 1 (D1R) and D2R, were used to disclose dopamine receptors' involvement. Peripheral dopamine increases glucose uptake in vivo. Ex vivo, only dopamine increased glucose uptake in the soleus, while bromocriptine increased it in the liver; the effects were reverted by haloperidol and domperidone, respectively. In adipose tissue, domperidone reverted dopamine- and bromocriptine-mediated potentiation of insulin-induced glucose uptake, but in turn increased the insulin receptor, Akt, AMPK, HSL, ACC, and ACL, phosphorylation. In the soleus muscle, AMPK-phosphorylation increased with bromocriptine and dopamine whose effects were suppressed by domperidone and haloperidol. In conclusion, peripheral dopamine stimulates glucose uptake with its receptors being differentially involved in glucose uptake in insulin-sensitive tissues. Dopamine also has a role in lipid metabolism in white adipose tissue. Altogether, these results suggest that peripheral modulation of the dopaminergic system should be further evaluated as a putative therapeutic approach for metabolic disorders.

14.
Membranes (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436341

RESUMO

The role of lateral mobility and nanodomain organization of G protein-coupled receptors in modulating subcellular signaling has been under increasing scrutiny. Investigation of D2 dopamine receptor diffusion dynamics is of particular interest, as these receptors have been linked to altered neurotransmission in affective disorders and represent the primary target for commonly prescribed antipsychotics. Here, we applied our single quantum dot tracking approach to decipher intrinsic diffusion patterns of the wild-type long isoform of the D2 dopamine receptor and its genetic variants previously identified in several cohorts of schizophrenia patients. We identified a subtle decrease in the diffusion rate of the Val96Ala mutant that parallels its previously reported reduced affinity for potent neuroleptics clozapine and chlorpromazine. Slower Val96Ala variant diffusion was not accompanied by a change in receptor-receptor transient interactions as defined by the diffraction-limited quantum dot colocalization events. In addition, we implemented a Voronoї tessellation-based algorithm to compare nanoclustering of the D2 dopamine receptor to the dominant anionic phospholipid phosphatidylinositol 4,5-bisphosphate in the plasma membrane of live cells.

15.
Mol Metab ; 51: 101241, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933677

RESUMO

BACKGROUND AND OBJECTIVES: The therapeutic effects of the dopamine D2 receptor (D2R) agonist, bromocriptine, in type 2 diabetes (T2D) have been attributed to central nervous system actions. However, peripheral dopamine directly modulates glucose uptake in insulin-sensitive tissues and lipid metabolism in adipose tissue (AT). We hypothesized that the dopaminergic system may be impaired in the adipose tissue of patients with T2D and that the therapeutic actions of bromocriptine could involve the modulation of metabolism in this tissue. METHODS: The expression of dopamine receptors was evaluated in visceral AT samples from patients with obesity and stratified in several groups: insulin sensitive (IS); insulin resistance (IR) normoglycaemic; insulin resistant prediabetic; insulin resistant diabetic, according to Ox-HOMA2IR, fasting glycaemia and HbA1c levels. T2D Goto-Kakizaki rats (GK) were fed a high-caloric diet (HCD) for five months and treated with bromocriptine (10 mg/kg/day, i.p.) in the last month. The levels of dopaminergic system mediators and markers of insulin sensitivity and glucose and lipid metabolism were assessed in the peri-epididymal adipose tissue (pEWAT) and brown (BAT) adipose tissues, liver, and skeletal muscle. RESULTS: Patients with IR presented a decreasing trend of DRD1 expression in the visceral adipose tissue, being correlated with the expression of UCP1, PPARA, and insulin receptor (INSR) independently of insulin resistance and body mass index. Although no differences were observed in DRD2, DRD4 expression was significantly decreased in patients with prediabetes and T2D. In HCD-fed diabetic rats, bromocriptine increased D1R and tyrosine hydroxylase (TH) levels in pEWAT and the liver. Besides reducing adiposity, bromocriptine restored GLUT4 and PPARγ levels in pEWAT, as well as postprandial InsR activation and postabsorptive activation of lipid oxidation pathways. A reduction of liver fat, GLUT2 levels and postprandial InsR and AMPK activation in the liver was observed. Increased insulin sensitivity and GLUT4 levels in BAT and an improvement of the overall metabolic status were observed. CONCLUSIONS: Bromocriptine treatment remodels adipose tissue and the liver dopaminergic system, with increased D1R and TH levels, resulting in higher insulin sensitivity and catabolic function. Such effects may be involved in bromocriptine therapeutic effects, given the impaired expression of dopamine receptors in the visceral adipose tissue of IR patients, as well as the correlation of D1R expression with InsR and metabolic mediators.


Assuntos
Bromocriptina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Agonistas de Dopamina/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Obesidade/terapia , Adulto , Idoso , Animais , Cirurgia Bariátrica , Bromocriptina/uso terapêutico , Estudos de Coortes , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Agonistas de Dopamina/uso terapêutico , Feminino , Humanos , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/cirurgia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Ratos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
16.
Neurología (Barc., Ed. impr.) ; 36(3): 191-200, abril 2021. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-219730

RESUMO

La enfermedad de Parkinson (EP) se caracteriza por una serie de deficiencias motoras que son tratadas comúnmente con L-DOPA; sin embargo, tras un uso crónico se desarrollan disquinesias inducidas por L-DOPA (DIL). Por otra parte, el origen de las DIL no está del todo claro, pero se asocia con alteración en receptores dopaminérgicos, donde los receptores D2 (RD2) han sido poco estudiados. El presente trabajo buscó: 1) desarrollar y estandarizar un modelo experimental de disquinesia con L-DOPA en ratas hemiparkinsonizadas, y 2) evaluar la correlación entre la expresión del RD2 y la manifestación de movimientos involuntarios anormales (MIA). Se utilizaron 21 ratas Wistar macho asignadas a 3 grupos: control intacto, lesionados (con la neurotoxina 6-OHDA) y lesionados disquinéticos (inyectados con L-DOPA durante 19 días). Los reactivos biológicos se sometieron a pruebas comportamentales para evaluar el deterioro sensoriomotor. Los animales del grupo disquinético desarrollaron de forma gradual MIA durante el tratamiento, siendo mayores los MIA de miembro anterior y menores los de tipo locomotor (p < 0,05). Todos los MIA fueron significativamente evidentes a partir del día 5 y se mantuvieron hasta el último día de inyección. Además, se pudo evidenciar incremento en la densidad del RD2 en el estriado y el cerebro anterior medial en los grupos lesionados con respecto al control, así como también una posible asociación entre la expresión del RD2 y MIA de tipo locomotor. Por lo que concluimos que el RD2 está implicado en el fenómeno disquinético generado con la L-DOPA. (AU)


Parkinson's disease (PD) is characterised by motor alterations, which are commonly treated with L-DOPA. However, long-term L-DOPA use may cause dyskinesia. Although the pathogenic mechanism of L-DOPA-induced dyskinesia is unclear, the condition has been associated with alterations in dopamine receptors, among which D2 receptors (D2R) have received little attention. This study aims to: (i) develop and standardise an experimental model of L-DOPA-induced dyskinesia in rats with hemiparkinsonism; and (ii) evaluate the correlation between D2R expression and presence of abnormal involuntary movements (AIM). We allocated 21 male Wistar rats into 3 groups: intact controls, lesioned rats (with neurotoxin 6-OHDA), and dyskinetic rats (injected with L-DOPA for 19 days). Sensorimotor impairment was assessed with behavioural tests. Dyskinetic rats gradually developed AIMs during the treatment period; front leg AIMs were more severe and locomotor AIMs less severe (P < .05). All AIMs were significantly evident from day 5 and persisted until the last day of injection. D2R density was greater in the striatum and the medial anterior brain of the lesioned and dyskinetic rats than in those of controls. Our results suggest an association between D2R expression and locomotor AIMs. We conclude that RD2 is involved in L-DOPA-induced dyskinesia. (AU)


Assuntos
Humanos , Animais , Discinesias , Doença de Parkinson , Ratos , Preparações Farmacêuticas , Levodopa
17.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707203

RESUMO

Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.


Assuntos
Cocaína , Área Tegmentar Ventral , Animais , Cocaína/farmacologia , Neurônios Dopaminérgicos , Feminino , Proteínas de Ligação ao GTP , Masculino , Camundongos , Morfina/farmacologia
18.
J Mol Recognit ; 34(5): e2885, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33401335

RESUMO

More recently, there has been a paradigm shift toward selective drug targeting in the treatment of neurological disorders, including drug addiction, schizophrenia, and Parkinson's disease mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for D3 dopamine receptor (D3DR) over D2 dopamine receptor (D2DR) have been shown to attenuate drug-seeking behavior and associated side effects compared to non-subtype selective antagonists. However, high conservations among constituent residues of both proteins, particularly at the ligand-binding pockets, remain a challenge to therapeutic drug design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-QA31 which substantially inhibited D3DR with >180-fold selectivity over D2DR. Therefore, in this study, we seek to provide molecular and structural insights into these differential binding mechanistic using meta-analytic computational simulation methods. Findings revealed that R-VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, two non-conserved residues; Tyr361.39 and Ser18245.51 were identified in D3DR, based on their crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while van der Waals energies contributed majorly to their binding and stability. Structural analyses also revealed the distinct stabilizing effects of both compounds on D3DR secondary architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic of selectivity of the compounds, which may assist in the rational design of potential small molecules of the D2 -like dopamine family receptor subtype with improved potency and selectivity.


Assuntos
Benzotiazóis/química , Indóis/química , Piperazinas/química , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo , Benzotiazóis/farmacologia , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Relação Estrutura-Atividade
19.
Neurologia (Engl Ed) ; 36(3): 191-200, 2021 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29525397

RESUMO

Parkinson's disease (PD) is characterised by motor alterations, which are commonly treated with L-DOPA. However, long-term L-DOPA use may cause dyskinesia. Although the pathogenic mechanism of L-DOPA-induced dyskinesia is unclear, the condition has been associated with alterations in dopamine receptors, among which D2 receptors (D2R) have received little attention. This study aims to: (i)develop and standardise an experimental model of L-DOPA-induced dyskinesia in rats with hemiparkinsonism; and (ii)evaluate the correlation between D2R expression and presence of abnormal involuntary movements (AIM). We allocated 21 male Wistar rats into 3 groups: intact controls, lesioned rats (with neurotoxin 6-OHDA), and dyskinetic rats (injected with L-DOPA for 19 days). Sensorimotor impairment was assessed with behavioural tests. Dyskinetic rats gradually developed AIMs during the treatment period; front leg AIMs were more severe and locomotor AIMs less severe (P<.05). All AIMs were significantly evident from day 5 and persisted until the last day of injection. D2R density was greater in the striatum and the medial anterior brain of the lesioned and dyskinetic rats than in those of controls. Our results suggest an association between D2R expression and locomotor AIMs. We conclude that RD2 is involved in L-DOPA-induced dyskinesia.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Discinesia Induzida por Medicamentos/etiologia , Levodopa/efeitos adversos , Masculino , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley , Ratos Wistar
20.
IBRO Rep ; 9: 310-318, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294722

RESUMO

Early in the postnatal period, motoneuron axon stimulation can excite motor networks in the spinal cord. Here we tested if these excitatory effects changed across early postnatal development up to postnatal day (P) 24 by when mice are capable of weight-bearing locomotion and locomotor networks are considered functionally mature. This was accomplished in the isolated spinal cord preparation using ventral root evoked entrainment of disinhibited bursts. Ventral root evoked entrainment was defined and characterized over the first 2 weeks of postnatal development, and was found to decline over this period, but entrainment could still be detected in mice as old as P24. Disinhibited bursting could be elicited, and dorsal root evoked entrainment could be recorded as late as P39 and remained unchanged in effectiveness, suggesting that poor tissue viability may not be the cause of the decline in ventral root evoked entrainment. Pharmacological experiments performed on younger animals established that dopamine D2 receptor antagonists and mGluR1 agonists both enhanced ventral root evoked entrainment. In conclusion, the motoneuronal inputs to spinal motor networks via the excitatory pathway is modulated by dopamine and metabotropic glutamate receptors and may be under powerful inhibitory control, which may explain why there is a developmental decline in entrainment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...