Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur J Neurosci ; 59(7): 1441-1459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151481

RESUMO

Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.


Assuntos
Calmodulina , Receptores de Dopamina D3 , Sesterterpenos , Receptores de Dopamina D3/metabolismo , Quimpirol/farmacologia , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colforsina , Receptores de Dopamina D2/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Front Pharmacol ; 14: 1251922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900160

RESUMO

Introduction: The amygdala is a limbic region of high value for understanding anxiety and its treatment. Dopamine D2 receptors (D2Rs) and oxytocin receptors (OXTRs) have both been shown to participate in modulating anxiety involving effects in the amygdala. The goal is to understand if D2R-OXTR heterocomplexes exist in the central amygdala and if, through enhancing allosteric receptor-receptor interactions, may enhance anxiolytic actions. Methods: The methods used involve the shock-probe burying test, the in situ proximity ligation assay (PLA), image acquisition and analysis, and the BRET2 assay. Bilateral cannulas were introduced into the amygdala, and the effects of the coadministration of oxytocin and the D2R-like agonist quinpirole into the amygdala were studied. Results: The combination treatment enhanced the anxiolytic effects compared to the single treatment. The D2R/D3R antagonist raclopride blocked the effects of the combination treatment of oxytocin and the D2R agonist, although oxytocin is regarded as a distinct modulator of fear-mediating anxiolytic effects. In situ PLA results indicate the existence of D2R-OXTR heteroreceptor complexes and/or the co-location of OXTR and D2R within the same cell membrane nanodomains in the central amygdala. With BRET2, evidence is given for the existence of D2R-OXTR heteromers in HEK293 cells upon co-transfection. Discussion: The enhanced behavioral effects observed upon co-treatment with OXTR and D2R agonists may reflect the existence of improved positive receptor-receptor interactions in the putative D2R-OXTR heterocomplexes in certain neuronal populations of the basolateral and central amygdala. The D2R-OXTR heterocomplex, especially upon agonist co-activation in the central amygdala, may open a new pharmacological venue for the treatment of anxiety.

3.
Life (Basel) ; 12(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36143447

RESUMO

Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night-day interphase and peaking at 14.63 h. Similarly, DA and DOPAC's spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.

4.
ASN Neuro ; 14: 17590914221102075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36050845

RESUMO

SUMMARY STATEMENT: A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.


Assuntos
Dopamina , Transtornos Parkinsonianos , Adenosina , Animais , Transtornos Parkinsonianos/tratamento farmacológico , Pramipexol , Receptores de Dopamina D2/fisiologia , Roedores
5.
IBRO Neurosci Rep ; 12: 411-418, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35746971

RESUMO

The dopamine mesolimbic system is a major circuit involved in controlling goal-directed behaviors. Dopamine D2 receptors (D2R) and kappa opioid receptors (KOR) are abundant Gi protein-coupled receptors in the mesolimbic system. D2R and KOR share several functions in dopamine mesencephalic neurons, such as regulation of dopamine release and uptake, and firing of dopamine neurons. In addition, KOR and D2R modulate each other functioning. This evidence indicates that both receptors functionally interact, however, their colocalization in the mesostriatal system has not been addressed. Immunofluorescent assays were performed in cultured dopamine neurons and adult mice's brain tissue to answer this question. We observed that KOR and D2R are present in similar density in dendrites and soma of cultured dopamine neurons, but in a segregated manner. Interestingly, KOR immunolabelling was observed in the first part of the axon, colocalizing with Ankyrin in 20% of cultured dopamine neurons, indicative that KOR is present in the axon initial segment (AIS) of a group of dopaminergic neurons. In the adult brain, KOR and D2R are also segregated in striatal tissue. While the KOR label is in fiber tracts such as the striatal streaks, corpus callosum, and anterior commissure, D2R is located mainly within the striatum and nucleus accumbens, surrounding fiber tracts. D2R is also localized in some fibers that are mostly different from those positives for KOR. In conclusion, KOR and D2R are present in the soma and dendrites of mesencephalic dopaminergic neurons, but KOR is also found in the AIS of a subpopulation of these neurons.

6.
Eur J Neurosci ; 53(11): 3743-3767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33818841

RESUMO

Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.


Assuntos
Catalepsia , Transtornos Parkinsonianos , Animais , Catalepsia/induzido quimicamente , Modelos Animais de Doenças , Haloperidol/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Ratos Wistar
7.
Molecules ; 25(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050524

RESUMO

A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).


Assuntos
Bioensaio/métodos , Receptores de Dopamina D2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Receptores de Dopamina D2/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Relação Estrutura-Atividade
8.
Environ Toxicol Pharmacol ; 80: 103484, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942001

RESUMO

The exposure to environmental pollutants, such as fine and ultrafine particles (FP and UFP), has been associated with increased risk for Parkinson's disease, depression and schizophrenia, disorders related to altered dopaminergic transmission. The striatum, a neuronal nucleus with extensive dopaminergic afferents, is a target site for particle toxicity, which results in oxidative stress, inflammation, astrocyte activation and modifications in dopamine content and D2 receptor (D2R) density. In this study we assessed the in vitro effect of the exposure to FP and UFP on dopaminergic transmission, by evaluating [3H]-dopamine uptake and release by rat striatal isolated nerve terminals (synaptosomes), as well as modifications in the affinity and signaling of native and cloned D2Rs. FP and UFP collected from the air of Mexico City inhibited [3H]-dopamine uptake and increased depolarization-evoked [3H]-dopamine release in striatal synaptosomes. FP and UFP also enhanced D2R affinity for dopamine in membranes from either rat striatum or CHO-K1 cells transfected with the long isoform of the human D2R (hD2LR)2LR). In CHO-K1-hD2L In CHO-K1-hD2LR cells or striatal slices, FP and UFP increased the potency of dopamine or the D2R agonist quinpirole, respectively, to inhibit forskolin-induced cAMP formation. The effects were concentration-dependent, with UFP being more potent than FP. These results indicate that FP and UFP directly affect dopaminergic transmission.


Assuntos
Poluentes Atmosféricos/toxicidade , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Material Particulado/toxicidade , Animais , Células CHO , Corpo Estriado/metabolismo , Cricetulus , Técnicas In Vitro , Masculino , México , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
9.
Eur J Pharmacol ; 859: 172557, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326375

RESUMO

Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.


Assuntos
Analgésicos/farmacologia , Formaldeído/efeitos adversos , Neuropeptídeos/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-30664970

RESUMO

Drug abuse and addiction are overwhelming health problems mainly during adolescence. Based on a previous study of our research group, the rats that received modafinil (MD) during the adolescence showed less preference for amphetamine (AMPH) in adulthood. Our current hypothesis is that MD will show beneficial effects against AMPH preference and abstinence symptoms during adolescence, a critical lifetime period when drug hedonic effects are more pronounced. We investigated the influence of MD pretreatment on AMPH preference in conditioned place preference (CPP) paradigm in adolescent rats and anxiety-like symptoms during drug withdrawal (48 h after the last AMPH dose) in elevated plus maze (EPM) task. Besides that, oxidative and molecular status were evaluated in the ventral tegmental area (VTA) and striatum. Our findings showed, as it was expected, that adolescent animals developed AMPH preference together with anxiety-like symptoms during the drug withdrawal while the MD pretreatment prevented those behaviors. Besides promoting benefits on reward parameters, MD was able to preserve VTA and striatum from oxidative damages. This was observed by the increased catalase activity and reduced generation of reactive species and lipid peroxidation, which were inversely modified by AMPH exposure. At molecular level, MD exerted an interesting modulatory activity on the VTA and induced an up-regulation in striatal dopaminergic targets (TH, DAT, D1R and D2R). So far, during the adolescence, MD presented beneficial behavioral outcomes that could be attributed to its modulatory activity on the striatal dopaminergic system in an attempt to maintain the adequate dopamine levels.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Ansiedade/prevenção & controle , Estimulantes do Sistema Nervoso Central/farmacologia , Modafinila/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Anfetamina/farmacologia , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Masculino , Ratos Wistar , Maturidade Sexual , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/metabolismo
11.
Behav Brain Res ; 361: 26-31, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583031

RESUMO

Orexins (OXs) system has been suggested to play a key role in regulate processes related to arousal, including anxious behaviors. However, until now, the contribution of OXs in anxiogenic-like effects has not been completely clear, particularly in rats, whose results are not yet conclusive in behavioral-tests such as elevated-plus-maze test (EPM-test). The goal of this study was to explore the anxiogenic-like effect induced by orexin-A (OX-A) using two different paradigms; the EPM-test and simultaneously a quantitative index in vivo, the cortical-electroencephalographic-(EEG)-record. This index proposes that a low-frequency domain EEG, particularly 0.5-5-Hz (delta and low portion of theta-waves), is a key indicator to evaluate anxiety levels. We also explored whether the anxious effect of OX-A could be altered by an antagonist of dopamine-D2-receptor (D2R) sulpiride (SUL). Our results showed that intracerebroventricular (i.c.v.) injection of a low dose of OX-A (140 pmol) did not increase anxiety levels in rats. On the other hand, cortical-EEG-activity showed only a decrease in delta-spectral-power but no changes in theta-potency. These data suggest that the reduction in delta-power induced by OX-A only keeps the animals awake and alert without changes in anxiety levels.


Assuntos
Eletroencefalografia/efeitos dos fármacos , Orexinas/farmacologia , Animais , Ansiedade/induzido quimicamente , Transtornos de Ansiedade/metabolismo , Nível de Alerta/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D2/efeitos dos fármacos , Sulpirida/farmacologia
12.
Int Immunopharmacol ; 56: 43-50, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29335159

RESUMO

The dopaminergic antagonist drug Domperidone has immunomodulatory effects. We investigated the effects of repeated Domperidone treatment in a model of Lypopolyssacharide (LPS)-induced acute lung inflammation. Adult C57BL/6J mice were treated with either Vehicle or Domperidone for 5days, and challenged intranasally with LPS in the following day. The behavior of mice was analyzed in the open field and elevated plus-maze test before and 24h after LPS challenge. The bronchoalveolar lavage fluid, blood and lung tissue were collected 24h and 48h after LPS challenge. Domperidone treatment increased LPS-induced tumor necrosis factor (TNF) and interleukin (IL)-6 production in the bronchoalveolar lavage fluid, without altering tissue damage and the number of immune cells in the lungs and circulation. Locomotor and anxiety-like behavior were unchanged after Domperidone and/or LPS treatment. Cytokine data indicate that Domperidone promotes a change in activity of other cell types, likely alveolar epithelial cells, without affecting immune cell migration in the present model. Due to the role of these cytokines in progression of inflammation, Domperidone treatment may exacerbate a subsequent inflammatory injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Domperidona/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Mucosa Respiratória/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Progressão da Doença , Domperidona/efeitos adversos , Antagonistas de Dopamina/efeitos adversos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
13.
World J Biol Psychiatry ; 19(7): 547-560, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28105895

RESUMO

OBJECTIVES: The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS: At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS: Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS: Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Função Executiva , Hipóxia-Isquemia Encefálica/fisiopatologia , Comportamento Impulsivo , Córtex Pré-Frontal/fisiopatologia , Animais , Atrofia , Atenção , Comportamento Animal , Dopamina/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Ratos , Ratos Wistar , Recompensa
14.
Rev. argent. endocrinol. metab ; Rev. argent. endocrinol. metab;54(1): 29-36, ene.-mar. 2017.
Artigo em Espanhol | LILACS | ID: biblio-957965

RESUMO

Los prolactinomas son tumores bien diferenciados que se originan en las células lactotropas pituitarias, una línea celular que secreta fisiológicamente prolactina (PRL). A nivel hipofisario, la dopamina está implicada en la regulación de la secreción de PRL por las células lactotropas y este efecto inhibitorio está mediado por la activación del receptor de prolactina tipo 2 (DRD2). Hay varios polimorfismos del DRD2, el primero y más estudiado es TaqI A1; está demostrado que este alelo se encuentra asociado a una reducción de la actividad cerebral dopaminérgica, además de observarse una reducción en su capacidad de unión de aproximadamente un 30%. Este alelo se ha vinculado con una menor densidad de DRD2 en el cuerpo estriado, especialmente en el putamen y caudado ventral, y la cantidad de DRD2 en portadores del alelo A1 fue un 30-40% más bajo que en los no portadores (es decir, TaqI A2 homocigotos). En la literatura, hay evidencia que apoya la posible participación de los polimorfismos DRD2 en la regulación de la secreción hormonal.


Prolactinomas are well differentiated tumours that originate in the pituitary lactotrope cells, a cell line that physiologically secretes prolactin (PRL). At pituitary level, dopamine is involved in the regulation of PRL secretion by lactotropes, and this inhibitory effect is mediated by activation of prolactin type 2 receptor (DRD2). Of the several DRD2 polymorphisms, the first and most studied is TaqI A1. It has been demonstrated that this allele is associated with a reduced dopaminergic brain activity, and a reduction in its binding capacity of approximately 30% also being observed. This allele was associated with a lower density of DRD2 in the striatum, especially in the putamen and ventral caudate. The amount of DRD2 in A1 allele carriers was 30 - 40% lower than in non-carriers (this is, TaqI A2 Homozygotes). There is evidence in the literature, that supports the possible involvement of DRD2 polymorphisms in the regulation of hormonal secretion.


Assuntos
Humanos , Masculino , Feminino , Polimorfismo Genético , Prolactinoma/etiologia , Receptores de Dopamina D2 , Receptores da Prolactina , Prolactinoma/patologia , Prolactinoma/metabolismo
15.
Drug Alcohol Depend ; 172: 66-72, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28152448

RESUMO

BACKGROUND: Mexico has an ancient tradition of alcohol drinking influenced by genetic and sociocultural factors. This study aimed to determine the distribution of the DRD2/ANKK1 TaqIA polymorphism in Mexican populations and to analyze its association with heavy drinking. METHODS: In a cross-sectional and analytical study, 680 unrelated subjects including two Native Amerindians groups (87 Nahuas and 139 Huicholes), and two Mestizos groups (158 subjects from Tepic, Nayarit and 296 subjects from Guadalajara, Jalisco) were enrolled. DRD2/ANKK1 genotyping was performed by PCR-RFLP and allelic discrimination assays. Genetic analyses were conducted by Arlequin and Structure software. Heavy drinking was defined as ≥300g alcohol/week. The association of the DRD2/ANKK1 TaqIA polymorphism with heavy drinking was estimated. RESULTS: Heavy drinking was prevalent in 64.7% of the study population. The DRD2/ANKK1 A1 allele prevailed in 67% and 65% of Nahuas and Huicholes, respectively and 51% and 47.3% in Mestizos from Tepic and Guadalajara, respectively. Heavy drinking was associated with the A1A1 genotype in the Mestizos of Guadalajara (A1A1 vs. A1A2 OR=4.79, 95%CI 1.81-12.68, p=0.0006; A1A1 vs. A1A2+A2A2, OR=4.09, 95%CI 1.56-10.68, p=0.0021) and in the Mestizos from Tepic (A1A1 vs. A1A2, OR=5.92, 95%CI 2.12-16.49, p=0.0002); A2A2, OR=14.56, 95%CI 3.57-59.24, p=0.00004); A1A2+A2A2, OR=6.68, 95%CI 2.42-18.42, p=0.00005). In Native Amerindians, a lack of association was found. CONCLUSIONS: High frequencies of the DRD2/ANKK1 A1 allele were present in Mexican populations. Native Amerindians exhibited the highest frequencies of the A1 allele documented worldwide to date. The A1A1 genotype was associated with heavy drinking in Mestizos.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Hispânico ou Latino/estatística & dados numéricos , Indígenas Norte-Americanos/estatística & dados numéricos , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D2/genética , Adulto , Alcoolismo/epidemiologia , Alcoolismo/genética , Estudos Transversais , Etnicidade , Feminino , Frequência do Gene , Genótipo , Humanos , Testes de Função Hepática , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
16.
Neuropharmacology ; 110(Pt A): 407-418, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27506997

RESUMO

Because activation of D2 receptors reverses the neurochemical effects of cannabinoids, we examined whether increasing dopaminergic tone in the globus pallidus (GPe) switches cannabinoid induced depression of synaptic transmission. GABAergic synaptic currents evoked in pallidal neurons by stimulation of striatal projections (IPSCs) were depressed by perfusion with the CB1R agonist ACEA. Coactivation of D2Rs with quinpirole converted the depression into stimulation. Pretreatment with pertussis toxin (PTX) to limit Gi/o protein coupling also switched the CB1R-induced depression of IPSCs. The stimulation of IPSCs was blocked by the selective PKA blocker H89. Changes in the paired pulse ratio during both inhibitory and stimulatory responses indicate that the effects are due to changes in transmitter release. Postsynaptic depolarization induces endocannabinoid release that inhibits transmitter release (DSI). When D2Rs were activated with quinpirole, depolarization increased transmission instead of depressing it. This increase was blocked by AM251. We also examined the effects of CB1R/D2R coactivation on cAMP accumulation in the GPe to further verify that the AC/PKA cascade is involved. CB1R/D2R coactivation converted the inhibition of cAMP seen when each receptor is stimulated alone into a stimulation. We also determined the effects on turning behavior of unilateral injection of ACEA into the GPe of awake animals and its modification by dopamine antagonists. Blockade of D2 family receptors with sulpiride antagonized the motor effects of ACEA. We show, for the first time, that cannabinoid-inhibition of synaptic transmission in the GPe becomes a stimulation after D2Rs or PTX treatment and that the switch is probably relevant for the control of motor behavior.


Assuntos
Dopamina/metabolismo , Endocanabinoides/metabolismo , Globo Pálido/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Moduladores de Receptores de Canabinoides/farmacologia , AMP Cíclico/metabolismo , Globo Pálido/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
17.
Front Psychiatry ; 7: 28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047394

RESUMO

Episodic memory, working memory, emotional memory, and attention are subject to dopaminergic modulation. However, the potential role of dopamine on the generation of false memories is unknown. This study defined the role of the dopamine D2 receptor on true and false recognition memories. Twenty-four young, healthy volunteers ingested a single dose of placebo or 400 mg oral sulpiride, a dopamine D2-receptor antagonist, just before starting the recognition memory task in a randomized, double-blind, and placebo-controlled trial. The sulpiride group presented more false recognitions during visual and verbal processing than the placebo group, although both groups had the same indices of true memory. These findings demonstrate that dopamine D2 receptors blockade in healthy volunteers can specifically increase the rate of false recognitions. The findings fit well the two-process view of causes of false memories, the activation/monitoring failures model.

18.
Neurochem Res ; 41(1-2): 423-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26869038

RESUMO

The aim of the present article is to review experimental evidence which suggest joint involvement of both the dopaminergic and neurotensinergic systems in stress conditions. At present, the concept of stress refers to an environmental demand exceeding the normal regulatory ability of an organism, particularly during unpredictable and uncontrollable situations. Chronic stress yields devastating effects including cognitive and working memory dysfunctions, for which neurotransmission mediated by the catecholamines dopamine and noradrenaline is crucial. Catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase, whose expression is associated with working memory and the response to chronic stress. Neurotensin is a tridecapeptide widely distributed in the nervous system, at both central and peripheral levels, which behaves as a neurotransmitter or neuromodulator. It mediates diverse biological actions including reward, locomotion, pain modulation and stress. Neurotensin and its high affinity NTS1 receptor are densely localized in areas that process emotion (amygdala nucleus), cognition (such as hippocampal nuclei and cortical areas) and the response to stress (hypothalamic nucleus). Experimental evidence indicates a crosstalk between the dopaminergic and the neurotensinergic systems either from an anatomical or a biochemical point of view. It is suggested that a concomitant alteration of dopaminergic and neurotensinergic systems takes place in diverse stress conditions.


Assuntos
Dopamina/metabolismo , Neurotensina/metabolismo , Estresse Fisiológico , Animais , Humanos
19.
Neurosci Lett ; 552: 5-9, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23896530

RESUMO

Histamine H3 receptors (H3Rs) co-localize with dopamine (DA) D1 receptors (D1Rs) on striatal medium spiny neurons and functionally antagonize D1R-mediated responses. The intra-striatal administration of D1R agonists reduces DA release whereas D1R antagonists have the opposite effect. In this work, a microdialysis method was used to study the effect of co-activating D1 and H3 receptors on the release of DA from the rat dorsal striatum. Infusion of the D1R agonist SKF-38393 (0.5 and 1 µM) significantly reduced DA release (26-58%), and this effect was prevented by co-administration of the H3R agonist immepip (10 µM). In turn, the effect of immepip was blocked by the H3R antagonist thioperamide (10 µM). Our results indicate that co-stimulation of post-synaptic D1 and H3 receptors may indirectly regulate basal DA release in the rat striatum and provide in vivo evidence for a functional interaction between D1 and H3 receptors in the basal ganglia.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Receptores de Dopamina D1/fisiologia , Receptores Histamínicos H3/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/administração & dosagem , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/antagonistas & inibidores , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacologia , Interações Medicamentosas , Agonistas dos Receptores Histamínicos/administração & dosagem , Agonistas dos Receptores Histamínicos/farmacologia , Imidazóis/administração & dosagem , Imidazóis/antagonistas & inibidores , Imidazóis/farmacologia , Masculino , Microdiálise , Microinjeções , Piperidinas/administração & dosagem , Piperidinas/antagonistas & inibidores , Piperidinas/farmacologia , Ratos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA