Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.714
Filtrar
1.
FASEB J ; 38(14): e23798, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989582

RESUMO

The role of mesenchymal-stem-cell-derived exosomes (MSCs-Exo) in the regulation of macrophage polarization has been recognized in several diseases. There is emerging evidence that MSCs-Exo partially prevent the progression of diabetic nephropathy (DN). This study aimed to investigate whether exosomes secreted by MSCs pre-treated with a diabetic environment (Exo-pre) have a more pronounced protective effect against DN by regulating the balance of macrophages. Exo-pre and Exo-Con were isolated from the culture medium of UC-MSCs pre-treated with a diabetic mimic environment and natural UC-MSCs, respectively. Exo-pre and Exo-Con were injected into the tail veins of db/db mice three times a week for 6 weeks. Serum creatinine and serum urea nitrogen levels, the urinary protein/creatinine ratio, and histological staining were used to determine renal function and morphology. Macrophage phenotypes were analyzed by immunofluorescence, western blotting, and quantitative reverse transcription polymerase chain reaction. In vitro, lipopolysaccharide-induced M1 macrophages were incubated separately with Exo-Con and Exo-pre. We performed microRNA (miRNA) sequencing to identify candidate miRNAs and predict their target genes. An miRNA inhibitor was used to confirm the role of miRNAs in macrophage modulation. Exo-pre were more potent than Exo-Con at alleviating DN. Exo-pre administration significantly reduced the number of M1 macrophages and increased the number of M2 macrophages in the kidney compared to Exo-Con administration. Parallel outcomes were observed in the co-culture experiments. Moreover, miR-486-5p was distinctly expressed in Exo-Con and Exo-pre groups, and it played an important role in macrophage polarization by targeting PIK3R1 through the PI3K/Akt pathway. Reducing miR-486-5p levels in Exo-pre abolished macrophage polarization modulation. Exo-pre administration exhibited a superior effect on DN by remodeling the macrophage balance by shuttling miR-486-5p, which targets PIK3R1.


Assuntos
Nefropatias Diabéticas , Exossomos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Cordão Umbilical , Exossomos/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Nefropatias Diabéticas/metabolismo , Camundongos , Macrófagos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Macrófagos
2.
J Endocr Soc ; 8(8): bvae114, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38966710

RESUMO

Background: Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing. Method: In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) with DN (T2D + DN, n = 20), T2D without DN (T2D - DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted. Results: The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in the T2D - DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1. Conclusion: Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.

3.
Aging (Albany NY) ; 162024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968594

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a severe complication of diabetes that affects the kidneys. Disulfidptosis, a newly defined type of programmed cell death, has emerged as a potential area of interest, yet its significance in DN remains unexplored. METHODS: This study utilized single-cell sequencing data GSE131882 from GEO database combined with bulk transcriptome sequencing data GSE30122, GSE30528 and GSE30529 to investigate disulfidptosis in DN. Single-cell sequencing analysis was performed on samples from DN patients and healthy controls, focusing on cell heterogeneity and communication. Weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA) were employed to identify disulfidptosis-related gene sets and pathways. A diagnostic model was constructed using machine learning techniques based on identified genes, and immunocorrelation analysis was conducted to explore the relationship between key genes and immune cells. PCR validation was performed on blood samples from DN patients and healthy controls. RESULTS: The study revealed significant disulfidptosis heterogeneity and cell communication differences in DN. Specific targets related to disulfidptosis were identified, providing insights into the pathogenesis of DN. The diagnostic model demonstrated high accuracy in distinguishing DN from healthy samples across multiple datasets. Immunocorrelation analysis highlighted the complex interactions between immune cells and key disulfidptosis-related genes. PCR validation supported the differential expression of model genes VEGFA, MAGI2, THSD7A and ANKRD28 in DN. CONCLUSION: This research advances our understanding of DN by highlighting the role of disulfidptosis and identifying potential biomarkers for early detection and personalized treatment.

4.
Front Pharmacol ; 15: 1392123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962302

RESUMO

Introduction: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods: We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results: Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion: Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.

5.
Transpl Immunol ; : 102078, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964515

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells. METHODS: To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays. RESULTS: HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation. CONCLUSION: Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.

6.
Clin Ther ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964935

RESUMO

PURPOSE: Diabetic nephropathy represents the leading cause of end-stage kidney disease in developed countries. Cardiovascular outcome trials have found that in participants who received a glucagon-like peptide-1 receptor agonist (GLP1RA) and a sodium-glucose cotransporter 2 inhibitor (SGLT2i), the risk of incidence and progression of diabetic nephropathy in type 2 diabetes mellitus was reduced. The aim of this study was to compare the decline in estimated glomerular filtration rate (eGFR) among people taking a GLP1RA with that among people taking an SGLT2i in a real-world setting. METHODS: Data for 478 patients with type 2 diabetes mellitus who initiated therapy with a GLP1RA (n = 254) or an SGLT2i (n = 224) between January 1, 2018 and December 31, 2021 were extracted. The primary outcome was any reduction ≥30% in eGFR after the start of therapy. Weight loss and drug discontinuation were also assessed. FINDINGS: Over a median follow-up of 24 months, an eGFR reduction ≥30% occurred in 34 of 254 patients (13.4%) starting a GLP1RA and in 26 of 223 patients (11.6%) starting an SGLT2i (hazard ratio = 0.89; 95% CI, 0.54-1.49; P = 0.67). Median eGFR change over the whole follow-up was similar between groups (SGLT2i: median, -2 mL/min/1.73 m2; 25th, 75th percentile, -13, 8 mL/min/1.73 m2; GLP1RA: median, 0 mL/min/1.73 m2; 25th, 75th percentile, -10, 7 mL/min/1.73 m2; P = 0.54). No worsening of kidney function was observed, even when considering the ratio eGFR mean. The value of eGFR at baseline indicated a statistically significant indirect correlation with the observed absolute value of eGFR change over the follow-up (ρ = -0.36; P < 0.001). The difference in eGFR changes over time observed by eGFR categories was statistically significant (P = 0.0001) in both treatment groups. No significant differences in weight loss and drug discontinuations were observed between groups. IMPLICATIONS: Although acting on different molecular mechanisms, both GLP1RA and SGLT2i might have similar effects on eGFR decline in diabetes, as suggested by the results of the present study conducted in a real-world setting. (Clin Ther. 2024;46:XXX-XXX) © 2024 Elsevier HS Journals, Inc.

7.
Mol Cell Biochem ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965127

RESUMO

Oxidative stress (OS) and inflammation play essential roles in the development of diabetic nephropathy (DN). Tirzepatide (TZP) has a protective effect in diabetes. However, its underlying mechanism in DN remains unclear. DN model mice were induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg), followed by administration of different doses of TZP (3 and 10 nmol/kg) via intraperitoneal injection for 8 weeks. The effects of TZP on DN were evaluated by detecting DN-related biochemical indicators, kidney histopathology, apoptosis, OS, and inflammation levels. Additionally, to further reveal the potential mechanism, we investigated the role of TZP in modulating the IL-17 pathway. TZP reduced serum creatinine (sCR), blood urea nitrogen (BUN), and advanced glycosylation end products (AGEs) levels, while simultaneously promoting insulin secretion in diabetic mice. Additionally, TZP attenuated tubular and glomerular injury and reduced renal apoptosis levels. Further studies found that TZP increased the levels of SOD and CAT, and decreased MDA. Meanwhile, TZP also reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in both mouse serum and kidney homogenates. TZP effectively inhibited the IL-17 pathway, and subsequent intervention with an IL-17 pathway agonist (IL-17A) reversed the suppressive effects of TZP on OS and inflammation. TZP can improve DN by inhibiting OS and inflammation through the suppression of the IL-17 pathway.

8.
Int Immunopharmacol ; 138: 112560, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959541

RESUMO

BACKGROUND: Dysregulation of lipid metabolism is a key factor influencing the progression of diabetic nephropathy (DN). Morroniside (MOR) is a major active compound isolated from the traditional Chinese herb Cornus officinalis, our previous research found that it can improve the lipid deposition of renal tubular epithelial cells. The purpose of this study is to explore whether MOR can improve podocyte lipid deposition and its mechanism of reducing DN. METHODS: Initially, we used network pharmacology and bioinformatics techniques to predict the relationship between renal lipid metabolism of MOR and DN. Subsequently, the binding activity of MOR with lipid-related proteins was studied by molecular docking to determine how MOR acts through these proteins. After determining the target of MOR, animal experiments and cell tests were carried out to verify it. RESULTS: Using network pharmacology, bioinformatics, and molecular docking, target proteins for MOR treatment of DN were predicted and screened, including PGC-1α, LXRs, ABCA1, PPARY, CD36, and nephrin. It is particularly noted that MOR effectively binds to PGC-1α, while LXRs, ABCA1, PPARY and CD36 are downstream molecules of PGC-1α. Silencing the PGC-1α gene significantly reduced the therapeutic effects of MOR. Conversely, in groups without PGC-1α knockdown, MOR was able to increase the expression levels of PGC-1α and influence the expression of downstream proteins. Furthermore, through in vivo and in vitro experiments, utilizing techniques such as lipid droplet staining, PAS, MASSON staining, immunofluorescence, and Western blot, we found that MOR effectively elevated the expression levels of the podocyte protein nephrin and lipid metabolism-regulating proteins PGC-1α, PPARY, and ABCA1, while significantly inhibiting the expression of the lipid accumulation promoter CD36. CONCLUSION: MOR can regulate the cholesterol efflux in podocytes via the PGC-1α/LXRs/ABCA1 signaling pathway, and control cholesterol intake via the PGC-1α/PPARY/CD36 signaling pathway, thereby ameliorating lipid deposition in DN.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38961842

RESUMO

Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules purified from diabetic nephropathy patients and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, while genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, while methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38954410

RESUMO

OBJECTIVES: This study investigated the antidiabetic effects of the methanolic extract of E. africanum (MEEA) stem bark on streptozotocin (STZ)-induced diabetic nephropathy (DN) in Wistar rats. METHODS: The in vitro enzyme (α-amylase) inhibitory activity of MEEA was measured using a standard procedure. Diabetic rats with fasting blood glucose above 250 mg/dL were considered diabetic and were divided into the following groups: control (distilled water-treated), diabetic-control, diabetic metformin (100 mg/kg), diabetes + MEEA (150 mg/kg), and diabetes + MEEA (300 mg/kg) via oral gavage once daily for 14 days. At the end of the experimental period, kidney tissues were collected for biochemical and histological analyses. Kidney apoptosis and marker gene expression were measured by real-time quantitative PCR. RESULTS: MEEA exhibited α-amylase inhibitory effects. MEEA significantly (p<0.05) reduced the STZ-induced increases in blood glucose, serum urea, serum creatinine, uric acid, alanine aminotransferase, alkaline phosphatase, and malondialdehyde and increased the STZ-induced decreases in superoxide dismutase, catalase, and reduced glutathione. In addition, MEEA protects against DN by significantly downregulating the mRNA expression of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response binding protein (CREB), and cFOS and upregulating B-cell lymphoma 2 (Bcl-2), suggesting that the nephroprotective ability of MEEA is due to the modulation of the cAMP/PKA/CREB/cFOS signaling pathway. Furthermore, MEEA treatment protected against histopathological alterations observed in diabetic rats. CONCLUSIONS: The data from this study suggest that MEEA modulates glucose homeostasis and inhibits redox imbalance in DN rats.

11.
Amino Acids ; 56(1): 44, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960916

RESUMO

Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.


Assuntos
Carnosina , Dipeptidases , Rim , Polietilenoglicóis , Carnosina/metabolismo , Animais , Polietilenoglicóis/química , Hidrólise , Dipeptidases/metabolismo , Camundongos , Humanos , Rim/metabolismo , Masculino
12.
Cell Biol Int ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946126

RESUMO

Diabetic nephropathy (DN) is the predominant secondary nephropathy resulting in global end-stage renal disease. It is attracting significant attention in both domestic and international research due to its widespread occurrence, fast advancement, and limited choices for prevention and treatment. The pathophysiology of this condition is intricate and involves multiple molecular and cellular pathways at various levels. This article provides a concise overview of the molecular processes involved in the development of DN. It discusses various factors, such as signaling pathways, cytokines, inflammatory responses, oxidative stress, cellular damage, autophagy, and epigenetics. The aim is to offer clinicians a valuable reference for DN's diagnosis, treatment, and intervention.

13.
J Proteome Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949094

RESUMO

Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, this study collected urine from 87 patients with type 2 diabetes mellitus (which will be classified into normal albuminuria, microalbuminuria, and macroalbuminuria groups) and 38 healthy subjects. Twelve individuals from each group were then randomly selected as the screening cohort for proteomics analysis and the rest as the validation cohort. The results showed that humoral immune response, complement activation, complement and coagulation cascades, renin-angiotensin system, and cell adhesion molecules were closely related to the progression of DN. Five overlapping proteins (KLK1, CSPG4, PLAU, SERPINA3, and ALB) were identified as potential biomarkers by machine learning methods. Among them, KLK1 and CSPG4 were positively correlated with the urinary albumin to creatinine ratio (UACR), and SERPINA3 was negatively correlated with the UACR, which were validated by enzyme-linked immunosorbent assay (ELISA). This study provides new insights into disease mechanisms and biomarkers for early diagnosis of DN.

14.
Biomater Adv ; 163: 213935, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38970881

RESUMO

In the present era of "Diabetic Pandemic", peptide-based therapies have generated immense interest however, are facing odds due to inevitable limitations like stability, delivery complications and off-target effects. One such promising molecule is C-peptide (CPep, 31 amino acid polypeptide with t1/2 30 min); it is a cleaved subunit of pro-insulin, well known to suppress microvascular complications in kidney but has not been able to undergo translation to the clinic till date. Herein, a polymeric CPep nano-complexes (NPX) was prepared by leveraging electrostatic interaction between in-house synthesized cationic, polyethylene carbonate (PEC) based copolymer (Mol. wt. 44,767 Da) and negatively charged CPep (Mol. wt. 3299 Da) at pH 7.4 and further evaluated in vitro and in vivo. NPX exhibited a spherical morphology with a particle size of 167 nm and zeta potential equivalent to +10.3, with 85.70 % of CPep complexation efficiency. The cellular uptake of FITC-tagged CPep NPX was 95.61 % in normal rat kidney cells, NRK-52E. Additionally, the hemocompatible NPX showed prominent cell-proliferative, anti-oxidative (1.8 folds increased GSH; 2.8 folds reduced nitrite concentration) and anti-inflammatory activity in metabolic stress induced NRK-52E cells as well. The observation was further confirmed by upregulation of anti-apoptotic protein BCl2 by 3.5 folds, and proliferative markers (ß1-integrin and EGFR) by 3.5 and 2.3 folds, respectively, compared to the high glucose treated control group. Pharmacokinetic study of NPX in Wistar rats revealed a 6.34 folds greater half-life than free CPep. In in-vivo efficacy study in STZ-induced diabetic nephropathy animal model, NPX reduced blood glucose levels and IL-6 levels significantly by 1.3 and 2.5 folds, respectively, as compared to the disease control group. The above findings suggested that NPX has tremendous potential to impart sustained release of CPep, resulting in enhanced efficacy to treat diabetes-induced nephropathy and significantly improved renal pathology.

15.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970061

RESUMO

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Assuntos
Nefropatias Diabéticas , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Trifosfato de Adenosina/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia
16.
Front Endocrinol (Lausanne) ; 15: 1426380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978623

RESUMO

Diabetes, a multifaceted metabolic disorder, poses a significant global health burden with its increasing prevalence and associated complications, such as diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, and diabetic angiopathy. Recent studies have highlighted the intricate interplay between N6-methyladenosine (m6A) and non-coding RNAs (ncRNAs) in key pathways implicated in these diabetes complications, like cell apoptosis, oxidative stress, and inflammation. Thus, understanding the mechanistic insights into how m6A dysregulation impacts the expression and function of ncRNAs opens new avenues for therapeutic interventions targeting the m6A-ncRNAs axis in diabetes complications. This review explores the regulatory roles of m6A modifications and ncRNAs, and stresses the role of the m6A-ncRNA axis in diabetes complications, providing a therapeutic potential for these diseases.


Assuntos
Adenosina , Complicações do Diabetes , RNA não Traduzido , Humanos , Complicações do Diabetes/metabolismo , Complicações do Diabetes/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA não Traduzido/genética , Animais , Estresse Oxidativo
17.
Front Med (Lausanne) ; 11: 1388074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978780

RESUMO

Aims: Vitamin D deficiency (VDD) is prevalent in the population, with inadequate intake, impaired absorption and metabolism as the main causative factors. VDD increases the risk of developing chronic diseases such as type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), but the molecular mechanisms underlying this phenomenon are not known. The aim of this study was to investigate the association and potential mechanisms of vitamin D levels with the progression of DN by analyzing general clinical data and using bioinformatics methods. Methods: The study included 567 diabetes mellitus type 2 (T2DM) patients from the Rocket Force Characteristic Medical Center as the case group and 221 healthy examinees as the normal control group. T2DM patients were categorized into T2DM, early diabetic nephropathy (EDN), and advanced diabetic nephropathy (ADN) based on the progression of diabetic nephropathy. The renal RNA-seq and scRNA-seq data of patients with DN were mined from public databases, and the differential expression of vitamin D-related genes in normal-EDN-ADN was analyzed by bioinformatics method, protein interaction network was constructed, immune infiltration was evaluated, single cell map was drawn, and potential mechanisms of VD and DN interaction were explored. Results: Chi-square test showed that vitamin D level was significantly negatively correlated with DN progression (p < 0.001). Bioinformatics showed that the expression of vitamin D-related cytochrome P450 family genes was down-regulated, and TLR4 and other related inflammatory genes were abnormally up-regulated with the progression of DN. Vitamin D metabolism disturbance up-regulate "Nf-Kappa B signaling pathway," B cell receptor signaling pathway and other immune regulation and insulin resistance related pathways, and inhibit a variety of metabolic pathways. In addition, vitamin D metabolism disturbance are strongly associated with the development of diabetic cardiomyopathy and several neurological disease complications. Conclusion: VDD or vitamin D metabolism disturbance is positively associated with the severity of renal injury. The mechanisms may involve abnormal regulation of the immune system by vitamin D metabolism disturbance, metabolic suppression, upregulation of insulin resistance and inflammatory signalling pathways.

18.
Clin Chim Acta ; 561: 119842, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969086

RESUMO

BACKGROUND: Diabetic nephropathy (DN), a severe complication of diabetes, involves a range of renal abnormalities driven by metabolic derangements. Metabolomics, revealing dynamic metabolic shifts in diseases like DN and offering insights into personalized treatment strategies, emerges as a promising tool for improved diagnostics and therapies. METHODS: We conducted an extensive literature review to examine how metabolomics contributes to the study of DN and the challenges associated with its implementation in clinical practice. We identified and assessed relevant studies that utilized metabolomics methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) to assess their efficacy in diagnosing DN. RESULTS: Metabolomics unveils key pathways in DN progression, highlighting glucose metabolism, dyslipidemia, and mitochondrial dysfunction. Biomarkers like glycated albumin and free fatty acids offer insights into DN nuances, guiding potential treatments. Metabolomics detects small-molecule metabolites, revealing disease-specific patterns for personalized care. CONCLUSION: Metabolomics offers valuable insights into the molecular mechanisms underlying DN progression and holds promise for personalized medicine approaches. Further research in this field is warranted to elucidate additional metabolic pathways and identify novel biomarkers for early detection and targeted therapeutic interventions in DN.

19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 377-384, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970511

RESUMO

Secondary nephrosis is a series of chronic kidney diseases secondary to other underlying diseases, mainly manifesting as structural and functional abnormalities of the kidneys and metabolic disorders. It is one of the important causes of end-stage renal disease, with high morbidity and significant harm. Iron is an essential metal element in human cells, and ferroptosis is a non-traditional form of iron-dependent cell death, and its main mechanisms include iron accumulation, lipid metabolism disorders, abnormal amino acid metabolism, and damage to the antioxidant system. Recently studies have found that ferroptosis is involved in the occurrence and progression of secondary nephrosis, and the mechanism of ferroptosis in different secondary nephrosis vary. Therefore, an in-depth and systematic understanding of the association between ferroptosis and secondary nephrosis, as well as their specific regulatory mechanisms, can provide a theoretical basis for the diagnosis, prevention, treatment, and prognosis assessment of secondary nephrosis, laying the foundation for exploring new clinical therapeutic targets for secondary nephrosis.


Assuntos
Ferroptose , Ferro , Nefrose , Humanos , Ferroptose/fisiologia , Ferro/metabolismo , Nefrose/metabolismo , Animais , Falência Renal Crônica/complicações , Metabolismo dos Lipídeos
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 359-366, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970509

RESUMO

OBJECTIVES: Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS: A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS: By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS: Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.


Assuntos
Doenças Cardiovasculares , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , Leucócitos Mononucleares , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Doenças Cardiovasculares/etiologia , Nefropatias Diabéticas/sangue , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Masculino , Leucócitos Mononucleares/metabolismo , Fatores de Risco , Proteína C-Reativa/metabolismo , Pessoa de Meia-Idade , Prognóstico , Albumina Sérica/metabolismo , Albumina Sérica/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...