Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Elife ; 132024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873887

RESUMO

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.


Assuntos
Transição Epitelial-Mesenquimal , Crista Neural , Crista Neural/citologia , Animais , Camundongos , Análise de Célula Única
2.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563084

RESUMO

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Assuntos
Adesões Focais , Proteínas Ativadoras de GTPase , Mecanotransdução Celular , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Retroalimentação Fisiológica , Adesões Focais/metabolismo , Adesões Focais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular/genética , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
3.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961316

RESUMO

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation is a classic example of developmental EMT. An important feature of NCC development is their delamination from the neuroepithelium via EMT, following which NCC migrate throughout the embryo and undergo differentiation. NCC delamination shares similar changes in cellular state and structure with cancer cell invasion. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single cell RNA sequencing, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the progressive transcriptional and spatial transitions from premigratory to migratory cranial NCC during EMT and delamination. Of note gene expression and trajectory analysis indicate that distinct intermediate populations of NCC delaminate in either S phase or G2/M phase of the cell cycle, and the importance of cell cycle regulation in facilitating mammalian cranial NCC delamination was confirmed through cell cycle inhibition studies. Additionally, transcriptional knockdown revealed a functional role for the intermediate stage marker Dlc1 in regulating NCC delamination and migration. Overall, our work identifying and characterizing the intermediate cellular states, processes, and molecular signals that regulate mammalian NCC EMT and delamination furthers our understanding of developmental EMP and may provide new insights into mechanisms regulating pathological EMP.

4.
Aging (Albany NY) ; 15(18): 9809-9821, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37737712

RESUMO

Lines of evidence have demonstrated that the oncogenic miRNAs are pivotal to the progression of breast cancer. In this study, we investigated the biological traits of microRNA-429 (miR-429) in triple-negative breast cancer (TNBC) and the underlying molecular mechanism. We found that miR-429 was notably overexpressed in TNBC, and promoted TNBC cell proliferation, migration, and invasion by degrading the tumor suppressor DLC1. In conclusion, our findings reveal the mechanism of tumorigenic miR-429 in TNBC, which paves the way for target therapies translation in clinical settings.

5.
DNA Cell Biol ; 42(3): 140-150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36917700

RESUMO

Hepatocellular carcinoma (HCC), a common primary liver cancer, is the third leading cause of death worldwide. DNA methylation changes are common in HCC and have been studied to be associated with hepatocarcinogenesis. In our study, we used the MassARRAY® EpiTYPER technology to investigate the methylation differences of deleted in liver cancer 1 (DLC1) (isoform 1 and 3) promoter between HCC tissues and corresponding adjacent noncancerous tissues and the association between methylation levels and clinicopathological features. In addition, the modified CRISPR-Cas9 system and the DNA methyltransferase inhibitor (DNMTi) were utilized to explore the functional correlation of epigenetic modifications and DLC1 gene regulation. The methylation levels of the DLC1 isoforms in HCC samples were found significantly lower than those in the adjacent noncancerous tissues (all p < 0.0001). Also, we found that the expression of DLC1 could be bidirectionally regulated by the modified CRISPR-Cas9 system and the DNMTi. Moreover, the hypomethylation of DLC1 in HCC samples was connected with the presence of satellite lesions (p = 0.0305) and incomplete tumor capsule (p = 0.0204). Receiver operator characteristic curve analysis demonstrated that the methylation levels of DLC1 could be applied to discriminate HCC patients (area under the curve = 0.728, p < 0.0001). The hypomethylation status was a key regulatory mechanism of DLC1 expression and might serve as a potential biomarker for HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas Ativadoras de GTPase , Neoplasias Hepáticas , Proteínas Supressoras de Tumor , Humanos , Carcinoma Hepatocelular/patologia , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/genética , Neoplasias Hepáticas/patologia , Isoformas de Proteínas/genética , Proteínas Supressoras de Tumor/genética
6.
Front Immunol ; 14: 1206990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322013

RESUMO

Aim: suppression of methylation inhibitors (epigenetic genes) in hepatocarcinogenesis induced by diethylnitrosamine using glycyrrhetinic acid. Method: In the current work, we investigated the effect of sole GA combined with different agents such as doxorubicin (DOX) or probiotic bacteria (Lactobacillus rhamanosus) against hepatocarcinogenesis induced by diethylnitrosamine to improve efficiency. The genomic DNA was isolated from rats' liver tissues to evaluate either methylation-sensitive or methylation-dependent resection enzymes. The methylation activity of the targeting genes DLC-1, TET-1, NF-kB, and STAT-3 was examined using specific primers and cleaved DNA products. Furthermore, flow cytometry was used to determine the protein expression profiles of DLC-1 and TET-1 in treated rats' liver tissue. Results: Our results demonstrated the activity of GA to reduce the methylation activity in TET-1 and DLC-1 by 33.6% and 78%, respectively. As compared with the positive control. Furthermore, the association of GA with DOX avoided the methylation activity by 88% and 91% for TET-1 and DLC-1, respectively, as compared with the positive control. Similarly, the combined use of GA with probiotics suppressed the methylation activity in the TET-1 and DLC-1 genes by 75% and 81% for TET-1 and DLC-1, respectively. Also, GA and its combination with bacteria attenuated the adverse effect in hepatocarcinogenesis rats by altering potential methylomic genes such as NF-kb and STAT3 genes by 76% and 83%, respectively. Conclusion: GA has an ameliorative effect against methylation inhibitors in hepatocellular carcinoma (HCC) by decreasing the methylation activity genes.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Dietilnitrosamina , NF-kappa B/metabolismo , Ácido Glicirretínico/farmacologia , Doxorrubicina , Carcinogênese , Metilação , DNA/metabolismo
7.
Exp Hematol Oncol ; 11(1): 74, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258263

RESUMO

Acute myeloid leukemia (AML) is a complex, heterogeneous malignant hematologic disease. Although multiple prognostic-related genes gave been explored in previous studies, there are still many genes whose prognostic value remains unclear. In this study, a total of 1532 AML patients from three GEO databases were included, five genes with potential prognostic value (DLC1, NF1B, DENND5B, TANC2 and ELAVL4) were screened by weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE). Based on this, we conducted survival analysis of the above five genes through the TCGA database and found that low level of DLC1 was detrimental to the long-term prognosis of AML patients. We also performed external validation in 48 AML patients from our medical center to analyze the impact of DLC1 level on prognosis. In conclusion, DLC1 may be a potential marker affecting the prognosis of AML, and its deficiency is associated with poor prognosis.

8.
Front Oncol ; 12: 900166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185184

RESUMO

DLC1 (deleted in liver cancer-1) is downregulated or deleted in colorectal cancer (CRC) tissues and functions as a potent tumor suppressor, but the underlying molecular mechanism remains elusive. We found that the conditioned medium (CM) collected from DLC1-overexpressed SW1116 cells inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but had no effect on proliferation, which suggested DLC1-mediated secretory components containing a specific inhibitor for colon adenocarcinoma cell migration. Analysis by mass spectrometry identified mesencephalic astrocyte-derived neurotrophic factor (MANF) as a candidate. More importantly, exogenous MANF significantly inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but did not affect proliferation. Mechanistically, DLC1 reduced the retention of MANF in ER by competing the interaction between MANF and GRP78. Taken together, these data provided new insights into the suppressive effects of DLC1 on CRC, and revealed the potential of MANF in the treatment of CRC.

9.
Genes Dis ; 9(3): 814-819, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782987

RESUMO

DLC1 is a focal adhesion molecule that regulates cell polarity, proliferation, migration, and survival. DLC1 functions as a tumor suppressor and its expression is often down-regulated in various malignant neoplasms of epithelial origin. Recent studies have suggested that lack of DLC1 in endothelial cells may contribute to the development of angiosarcoma, and that DLC1 mutations have been identified in patients with nephrotic syndrome, a disease mainly due to leaky glomerular filtration barriers. To demonstrate whether lack of endothelial DLC1 induces angiosarcoma and/or damages glomerular capillaries leading to nephrotic syndrome, we have extended our analyses on endothelial cell-specific DLC1 knockout mice with focuses on their liver and kidney function. Mice were monitored up to 24 months of age. However, no histological or clinical difference was found between DLC1 knockout and wild type mice, indicating that lack of endothelial DLC1 alone does not compromise kidney and liver function in mice.

10.
Int J Biol Sci ; 18(4): 1663-1676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280693

RESUMO

Colon cancer (CC) is one of the most common malignances in digestive tract. M2-polarized macrophages within the tumor microenvironment could facilitate CC cell growth by transferring molecules via extracellular vesicles, but the mechanisms are not fully elucidated. The current study aims to identify the possible effectors in M2 macrophage-derived extracellular vesicles (M2-EVs) and reveal related molecular mechanisms. In our study, we validated the promotion effects of M2-EVs on the proliferation and motility of CC cells, which was found to be dependent on the EVs enclosed molecules by a mild EVs digestion assay. Then we found that miR-186-5p was enriched in M2-EVs and was responsible for the tumor promoting functions of M2-EVs. Furthermore, mechanism investigation revealed M2-EVs transferring miR-186-5p inhibited DLC1 expression by targeting its 3'UTR, and restored DLC1 successfully neutralized the tumor-promoting effects of M2-EVs transferring miR-186-5p via inhibiting the ß-catenin pathway. Our study revealed that M2-EVs facilitates the growth and motility of CC cells by delivering the enclosed miR-186-5p, which directly targets DLC1 mRNAs and facilitates their degradation, which could provide a potential biomarker and therapeutic target for CC.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , MicroRNAs , Neoplasias do Colo/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Front Oncol ; 12: 823018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223504

RESUMO

BACKGROUND AND AIM: Deleted in liver cancer 1 (DLC1) is confirmed as a metastasis suppressor gene in endometrial carcinoma (EC). However, its functional mechanisms remain unclear. This study aimed to explore the relationship between DLC1 expression and EC. METHODS: The Cancer Genome Atlas database was used for evaluating the expression of DLC1 in pan-cancer. CIBERSORT was used to assess the relationship between DLC1 and tumor immune infiltration. We applied real-time quantitative polymerase chain reaction to determine the expression of DLC1 in EC and adjacent normal tissue samples. The targeting endogenous protein levels were assessed using the dataset from the cBioPortal database. RESULTS: DLC1 expression negatively correlated with the clinical characteristics (clinical stage, histologic grade) and positively correlated with the survival of patients with uterine corpus EC (UCEC). The gene set enrichment analysis displayed that the low-expression DLC1 group was enriched in metabolic pathways. Concomitantly, the high-expression DLC1 group was enriched in tumor immune-related activities. The CIBERSORT analysis showed that the number of resting memory CD4 T cells and resting mast cells positively correlated with DLC1 expression, while the number of macrophages M2 had a negative correlation, indicating that DLC1 played a key role in mediating immune cell infiltration. The target gene validation confirmed that DLC1 expression was downregulated in tumor samples. The target protein level was consistently downregulated in tumor samples. CONCLUSIONS: DLC1 levels might be useful in predicting the prognosis of patients with UCEC and especially governing the status of tumor microenvironment transition from immune-dominant to metabolic-dominant. The findings shed a different light on the immune therapeutics of UCEC.

12.
J Mol Histol ; 53(1): 39-49, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34751841

RESUMO

Gastric cancer (GC) is one of the most common malignancies, ranking the third highest mortality rate worldwide. Due to the insidious symptoms and difficulty in early detection, patients with GS were mostly in the middle and late stages when they were diagnosed. Although ontogenetic or tumor-suppressive effects of miRNA-200a-3p have been demonstrated, the exact mechanism underlying GC is not clear. Therefore, the expression, effect, and mechanism of miRNA-200a-3p in GC progression were systematically investigated in this study. qRT-PCR, Western blotting, and immunohistochemical staining were applied to investigate the miRNA-200a-3p and deleted in liver cancer 1 (DLC-1) expression. Cell viability, proliferation, apoptosis, migration, and invasion capabilities of GC cells were assessed using cell counting kit-8 (CCK-8) colorimetry, EdU integration, flow cytometry, wound healing, and the transwell assay. The relationship between miRNA-200a-3p and tumor growth was investigated by tumor xenograft assay in vivo. A dual-luciferase reporter assay was estimated to verify the connection between miR-200-3p and DLC-1. The results showed that miRNA-200a-3p expression was significantly increased in both GC tissues and cells. Furthermore, via DLC-1, miRNA-200a-3p promotes tumor growth and development. miRNA-200a-3p, by targeting DLC-1, can function as an oncogene in GC cells. Collectively, our findings indicated that the miRNA-200a-3p/DLC axis might provide a theological basis for potential improvements in GC treatment strategies.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose , Western Blotting , Contagem de Células , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Feminino , Marcação de Genes , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Gástricas/patologia , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer ; 20(1): 141, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727930

RESUMO

BACKGROUND: DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. METHODS: Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. RESULTS: We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. CONCLUSION: These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.


Assuntos
Caveolina 1/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase C delta/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Proteínas de Transporte , Caveolina 1/química , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Humanos , Modelos Moleculares , Mutação , Fosfolipase C delta/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/genética
14.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771537

RESUMO

Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state. We recently described that the restoration of DLC1 expression induces cellular senescence. However, this principle is not amenable to direct therapeutic targeting. We therefore performed gene expression profiling for HepG2 cells depleted of DLC1 to identify druggable gene targets mediating the effects of DLC1 on senescence induction. This approach revealed that versican (VCAN), tetraspanin 5 (TSPAN5) and N-cadherin (CDH2) were strongly upregulated upon DLC1 depletion in HCC cells, but only TSPAN5 affected the proliferation of HCC cells and human HCC. The depletion of TSPAN5 induced oncogene-induced senescence (OIS), mediated by the p16INK4a/pRb pathways. Mechanistically, silencing TSPAN5 reduced actin polymerization and thereby myocardin-related transcription factor A- filamin A (MRTF-A-FLNA) complex formation, resulting in decreased expression of MRTF/SRF-dependent target genes and senescence induction in vitro and in vivo. Our results identify TSPAN5 as a novel druggable target for HCC.

15.
J Biol Chem ; 297(4): 101161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480897

RESUMO

Cell migration is an essential physiological process, and aberrant migration of epithelial cells underlies many pathological conditions. However, the molecular mechanisms governing cell migration are not fully understood. We report here that growth factor-induced epithelial cell migration is critically dependent on the crosstalk of two molecular switches, namely phosphorylation switch (P-switch) and transcriptional switch (T-switch). P-switch refers to dynamic interactions of deleted in liver cancer 1 (DLC1) and PI3K with tensin-3 (TNS3), phosphatase and tensin homolog (PTEN), C-terminal tension, and vav guanine nucleotide exchange factor 2 (VAV2) that are dictated by mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2-dependent phosphorylation of TNS3, PTEN, and VAV2. Phosphorylation of TNS3 and PTEN on specific Thr residues led to the switch of DLC1-TNS3 and PI3K-PTEN complexes to DLC1-PTEN and PI3K-TNS3 complexes, whereas Ser phosphorylation of VAV2 promotes the transition of the PI3K-TNS3/PTEN complexes to PI3K-VAV2 complex. T-switch denotes an increase in C-terminal tension transcription/expression regulated by both extracellular signal-regulated protein kinase 1/2 and signal transducer and activator of transcription 3 (STAT3) via interleukin-6-Janus kinase-STAT3 signaling pathway. We have found that, the P-switch is indispensable for both the initiation and continuation of cell migration induced by growth factors, whereas the T-switch is only required to sustain cell migration. The interplay of the two switches facilitated by the interleukin-6-Janus kinase-STAT3 pathway governs a sequence of dynamic protein-protein interactions for sustained cell migration. That a similar mechanism is employed by both normal and tumorigenic epithelial cells to drive their respective migration suggests that the P-switch and T-switch are general regulators of epithelial cell migration and potential therapeutic targets.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
16.
Int J Biol Macromol ; 182: 264-275, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33836193

RESUMO

Deleted in liver cancer 1 (DLC1) is a recognized tumor suppressor gene that negatively regulates Rho family proteins by hydrolyzing the active GTP-bound state to its inactive GDP-bound state. Active Rho proteins play a positive role in tumorigenesis. Numerous in vitro and in vivo experiments have shown that DLC1 is downregulated or inactivated in various solid tumors, which may be due to the following five reasons: genomic deletion, epigenetic modification and ubiquitin-dependent proteasomal degradation may cause DLC1 underexpression; phosphorylation at the post-translation level may cause DLC1 inactivation; and failure to localize at focal adhesions (FAs) may prevent DLC1 from exerting full activity. All of the causes could be attributed to molecular binding. Experimental evidence suggests that direct or indirect targeting of DLC1 is feasible for cancer treatment. Therefore, elucidating the interaction of DLC1 with its binding partners might provide novel targeted therapies for cancer. In this review, we summarized the binding partners of DLC1 at both the gene and protein levels and expounded a variety of anticancer drugs targeting DLC1 to provide information about DLC1 as a cancer diagnostic indicator or therapeutic target.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
17.
Technol Cancer Res Treat ; 20: 1533033821990036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754907

RESUMO

BACKGROUND: miR-301b-3p is reported in various human cancers for its abnormal expression, while the role and molecular mechanisms in lung adenocarcinoma (LUAD) remain unclear, and this is the focus of the present study. MATERIALS AND METHODS: TCGA database was consulted to know gene expression in LUAD tissue. CCK-8, colony formation assay and Transwell assay were applied to identify the role of target genes in regulating LUAD cell biological properties. Bioinformatics analysis plus dual-luciferase assay were performed to validate the potential connection between genes. RESULTS: miR-301b-3p and DLC1 were the target genes of this study and respectively differentially up-regulated and down-regulated in LUAD. Functional experiments indicated that miR-301b-3p contributed to cancer cell proliferation, migration and invasion, while this effect was reversed with overexpressed DLC1 which was identified as a direct target of and regulated by miR-301b-3p. CONCLUSIONS: Collectively, miR-301b-3p was identified to actively function on LUAD malignant progression by suppressing DLC1 expression. This discovery provides a novel therapeutic strategy for LUAD patients, which helps improve the survival of patients.


Assuntos
Adenocarcinoma/genética , Proteínas Ativadoras de GTPase/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação para Baixo , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
18.
Exp Lung Res ; 47(4): 173-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678109

RESUMO

Lung adenocarcinoma (LUAD), one of the most common cancers, is a major threat to people's health due to its high mortality, and the survival of most patients suffering LUAD remains poor. This study aimed to explore the mechanism of Deleted in Liver Cancer 1 (DLC1) as a tumor suppressor underlying the occurrence and progression of LUAD. As revealed by bioinformatics analysis and qRT-PCR, DLC1 was significantly down-regulated in LUAD tumor tissue and cells. A series of cellular experiments including CCK-8, wound healing and Transwell assays were performed to detect the effect of DLC1 on the biological function of LUAD cells. It was found that overexpressing DLC1 significantly inhibited LUAD cell proliferative, migratory and invasive abilities, while knockdown of DLC1 promoted these abilities. Gene Set Enrichment Analysis (GSEA) and dual-luciferase assay were used to explore the downstream signaling pathway of DLC1, finding that DLC1 could remarkably inhibit the activity of mitogen-activated protein kinase (MAPK) signaling pathway. Western blot implemented for MAPK signaling pathway-related proteins further identified that DLC1 restrained the activation of MAPK/ERK signaling pathway. Furthermore, rescue experiments suggested that DLC1 inhibited LUAD cell proliferation and invasion by suppressing the MAPK/ERK signaling pathway. Overall, our study discussed the DLC1-dependent mechanism involved in LUAD. We found that the up-regulation of DLC1 may inhibit the malignant progression of LUAD by suppressing MAPK signaling pathway, which supports the view that DLC1 may serve as a molecular target for the targeted therapy of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Ativadoras de GTPase , Neoplasias Pulmonares , Proteínas Supressoras de Tumor , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Humanos , Sistema de Sinalização das MAP Quinases , Invasividade Neoplásica , Proteínas Supressoras de Tumor/genética
19.
Dig Dis Sci ; 66(12): 4374-4383, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33439397

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. CircZKSCAN1 (hsa_circ_0001727) was reported to be related to HCC development. The present study aims to elucidate the potential role and molecular mechanism of circZKSCAN1 in the regulation of HCC progression. METHODS: CircZKSCAN1, miR-873-5p, and downregulation of deleted in liver cancer 1 (DLC1) in HCC tissues and cells were detected by RT-qPCR. Correlation between circZKSCAN1 expression and overall survival rate was measured by Kaplan-Meier survival analysis. The effects of circZKSCAN1, miR-873-5p, and DLC1 on proliferation, migration, and invasion were analyzed by CCK-8 and transwell assays, respectively. CyclinD1, Matrix metalloproteinase (MMP)-9, MMP-2, and DLC1 in HCC cells were detected by Western blot assay. The binding relationship between miR-873-5p and circZKSCAN1 or DLC1 was predicted by the Circinteractome or Starbase, and then confirmed by dual-luciferase reporter assays, respectively. Tumor volume and tumor weight were measured in vivo. RESULTS: CircZKSCAN1 was downregulated in HCC tissues and cells. Kaplan-Meier survival analysis suggested that there was a positive correlation between circZKSCAN1 expression and overall survival rate. Functionally, circZKSCAN1 blocked proliferation, migration, and invasion of HCC cells. MiR-873-5p was a target miRNA of circZKSCAN1, and miR-873-5p directly bound with DLC1. Rescue experiments confirmed that miR-873-5p overexpression or DLC1 knockdown attenuated the suppressive effects of circZKSCAN1 on HCC tumor growth in vitro. Besides, circZKSCAN1 inhibited HCC cell growth in vivo. CONCLUSIONS: This study firstly revealed that circZKSCAN1 curbed HCC progression via modulating miR-873-5p/DLC1 axis, providing a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética
20.
Cells ; 9(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255630

RESUMO

Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.


Assuntos
Carcinoma Hepatocelular/metabolismo , Senescência Celular/fisiologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...