Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.105
Filtrar
1.
Biodivers Data J ; 12: e127190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360178

RESUMO

Tipulidae, commonly known as true crane flies, represent one of the most species-rich dipteran families, boasting approximately 4,500 known species globally. Their larvae serve as vital decomposers across diverse ecosystems, prompting their frequent and close observation in biomonitoring programs. However, traditional morphological identification methods are laborious and time-consuming, underscoring the need for a comprehensive DNA barcode reference library to speed up species determination. In this study, we present the outcomes of the German Barcode of Life initiative focused on Tipulidae. Our DNA barcode library comprises 824 high-quality cytochrome c oxidase I (COI) barcodes encompassing 76 crane fly species, counting for ca. 54% of the German tipulid fauna. Our results significantly increased the number of European tipulid species available in the Barcode of Life Data System (BOLD) by 14%. Additionally, the number of barcodes from European tipulid specimens more than doubled, with an increase of 118%, bolstering the DNA resource for future identification inquiries. Employing diverse species delimitation algorithms - including the multi-rate Poisson tree processes model (mPTP), Barcode Index Number assignments (BIN), Assemble Species by Automatic Partitioning (ASAP), and the TaxCI R-script - we successfully match 76-86% of the morphologically identified species. Further validation through neighbor-joining tree topology analysis and comparison with 712 additional European tipulid barcodes yield a remarkable 89% success rate for the species identification of German tipulids based on COI barcodes. This comprehensive DNA barcode dataset not only enhances species identification accuracy but also serves as a pivotal resource for ecological and biomonitoring studies, fostering a deeper understanding of crane fly diversity and distribution across terrestrial landscapes.

2.
Braz J Microbiol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39384703

RESUMO

The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), ß-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.

3.
J Fish Biol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385531

RESUMO

Astroblepus species, commonly known as Andean climbing catfish, exhibit a unique challenge in species delimitation, leading to ongoing taxonomic debates. Here we report data on Astroblepus mindoensis, a vulnerable species endemic to Ecuador, obtained by an integrative approach that includes cytogenetic analysis, molecular identification of the specimens, and recording of morphological and morphometric characters useful for species diagnosis. Thus, this study aimed to associate the karyotype data of the specimens analyzed with morphological and molecular characters, improving and expanding the existing taxonomic information, thus contributing to the systematics of the species. Our morphology results, unlike Regan's original description, which is brief and ambiguous, provide a more detailed morphometric and meristic description. Molecular phylogenetic reconstruction and genetic distance based on a fragment of the cytochrome c oxidase subunit I (COI) showed that our samples constitute a well-supported and monophyletic clade within the A. grixalvii species complex. The cytogenetic analysis identified distinct chromosomal markers, including a single cluster of major ribosomal genes (on chromosome pair 3) and of minor ribosomal genes (on chromosome pair 12) with their localization differing from those reported in other Astroblepus species analyzed. Additionally, the presence of a heteromorphic chromosome pair in males suggests the presence of an XX/XY sex-determination system that has not been identified in other congeneric species. Further investigation is necessary to determine if these chromosomes are associated with the accumulation of repeated sequences, as typically occurs with sex chromosomes, and to assess their presence in other species of the genus.

4.
Mol Syst Biol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375541

RESUMO

Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation. Here, we used complementation of auxotrophs and DNA barcode sequencing (Coaux-Seq) to enable high-throughput characterization of protein function. Fragment libraries from eleven genetically diverse bacteria were tested in twenty different auxotrophic strains of Escherichia coli to identify genes that complement missing biochemical activity. We recovered 41% of expected hits, with effectiveness ranging per source genome, and observed success even with distant E. coli relatives like Bacillus subtilis and Bacteroides thetaiotaomicron. Coaux-Seq provided the first experimental validation for 53 proteins, of which 11 are less than 40% identical to an experimentally characterized protein. Among the unexpected function identified was a sulfate uptake transporter, an O-succinylhomoserine sulfhydrylase for methionine synthesis, and an aminotransferase. We also identified instances of cross-feeding wherein protein overexpression and nearby non-auxotrophic strains enabled growth. Altogether, Coaux-Seq's utility is demonstrated, with future applications in ecology, health, and engineering.

5.
Ecol Evol ; 14(10): e70352, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364039

RESUMO

The Ili River Valley, located in the northwest of China, serves as a vital repository for fish genetic resources. Its extensive water network and diverse climate have given rise to a unique fish composition and endemic species. In this study, we collected the cytochrome c oxidase subunit I (COI) sequences from 660 fish specimens in the Ili River Valley. The effectiveness of DNA barcoding in identifying fish species in the area was assessed by examining genetic distances, constructing phylogenetic trees, and performing ABGD (Automatic Barcode Gap Discovery) analyses, among other methods. In total, 20 species were identified, including one unidentified species (Silurus sp.). Except for Silurus asotus and Hypophthalmichthys molitrix (only one sample), the maximum intraspecific genetic distance among the remaining species was smaller than the minimum interspecific distance, which proves that the species exhibit obvious barcode gaps. In the Neighbor-Joining trees, 20 species formed separate monophyletic branches. According to ABGD analysis, 660 sequences were categorized into 19 Operational Taxonomic Units, with Silurus sp. and S. asotus grouped into a single OTU. The Silurus in this study exhibits shared haplotypes and significant genetic divergence, suggesting the potential presence of cryptic species. Furthermore, the nucleotide diversity across all species fell below the threshold level, indicating that the local fish population is gradually declining. In conclusion, this study has demonstrated the effectiveness of DNA barcoding in identifying fish species in the Ili River Valley, providing valuable data to support the conservation of local fish resources.

6.
Wellcome Open Res ; 9: 339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386966

RESUMO

Biodiversity genomics research requires reliable organismal identification, which can be difficult based on morphology alone. DNA-based identification using DNA barcoding can provide confirmation of species identity and resolve taxonomic issues but is rarely used in studies generating reference genomes. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We present a standardised framework for DNA barcode sequencing and data interpretation that is then adapted for diverse organismal groups. DNA barcoding data from over 12,000 DToL specimens has identified up to 20% of samples requiring additional verification, with 2% of seed plants and 3.5% of animal specimens subsequently having their names changed. We also make recommendations for future developments using new sequencing approaches and streamlined bioinformatic approaches.


Identifying species based solely on their morphology can be difficult. DNA-based identification using DNA barcoding can aid species identification, but can be challenging to implement in biodiversity projects sampling diverse organismal groups. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We discuss how a standardised approach has been adapted by each partner to suit different organismal groups, show the efficacy of this approach for confirming species identities and resolving taxonomic issues, and make recommendations for future developments.

7.
Zookeys ; 1214: 105-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391540

RESUMO

Mordellistenapeloponnesensis Batten, 1980, previously known from Cyprus and Greece, is reported from Italy and Turkey for the first time. The species is redescribed based on type specimens and additional material from its entire known distributional range. Eighteen DNA barcoding sequences of M.peloponnesensis from Greece, Cyprus, and Italy were generated, and genetic variability across the sampling localities was examined. Three mitochondrial haplotypes were detected within M.peloponnesensis. Specimens from mainland Italy share the same haplotype as those from Rhodes and Cyprus, whereas Sardinian specimens exhibit a distinct haplotype. The third haplotype is represented by one specimen from Cyprus. The DNA barcoding sequences of M.peloponnesensis were compared with those of the morphologically allied M.gemellata Schilsky, 1898, and M.pyrenaea Ermisch, 1966, to reveal the phylogenetic relationships between the species.

8.
PeerJ ; 12: e18113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329133

RESUMO

Background: The mislabeling of seafood, wherein a food product's marketed name does not match its contents, has the potential to mask species of conservation concern. Less discussed is the role of legally ambiguous market names, wherein a single name could be used to sell multiple species. Here we report the first study in Canada to examine mislabeling and ambiguous market names in both invertebrate (e.g., bivalve, cephalopod, shrimp) and finfish products. Methods: A total of 109 invertebrate and 347 finfish products were sampled in Calgary between 2014 and 2020. Market names were documented from the label or equivalent and determined to be precise (the name could apply to only one species) or ambiguous (multiple species could be sold under that name). A region of the cytochrome c oxidase I gene was sequenced and compared to reference sequences from boldsystems.org. Samples were considered mislabeled if the species identified through DNA barcoding did not correspond to the market name, as determined through the Canadian Food Inspection Agency Fish List. Mislabeling was further differentiated between semantic mislabeling, wherein the market name was not found on the Fish List but the barcode identity was in line with what a consumer could reasonably have expected to have purchased; invalid market names, wherein the market name was so unusual that no legitimate inferences as to the product's identity could be made; and product substitution, wherein the DNA barcode identified the product as a species distinct from that associated with the market name. Invalid market names and product substitutions were used to provide conservative estimates of mislabeling. The global conservation status of the DNA-identified invertebrate or finfish was determined through the International Union for the Conservation of Nature Red List. A logistic regression was used to determine the relationship between precision and accuracy in predicting conservation status of the sampled species. Results: There was no significant difference in mislabeling occurrence between invertebrates (33.9% total mislabeling occurrence, 20.2% product substitution) and finfish (32.3% total mislabeling occurrence, 21.3% product substitution/invalid market names). Product substitutions sometimes involved species of conservation concern, such as foods marketed as freshwater eel (Anguilla rostrata) that were determined through DNA barcoding to be European eel (Anguilla anguilla), or cuttlefish balls putatively identified as the Endangered threadfin porgy (Evynnis cardinalis). Product substitutions and ambiguous market names were significantly associated with the sale of species of conservation concern, but ambiguity was a more important predictor. Although preventing the mislabeling of seafoods can and must remain a priority in Canada, our work suggests that moving towards precise names for all seafood products will better support sustainable fisheries goals.


Assuntos
Código de Barras de DNA Taxonômico , Alimentos Marinhos , Animais , Alberta , Alimentos Marinhos/análise , Rotulagem de Alimentos/legislação & jurisprudência , Invertebrados/classificação , Conservação dos Recursos Naturais , Peixes/genética , Espécies em Perigo de Extinção
9.
Parasitol Int ; 104: 102964, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303852

RESUMO

Caligus minimus Otto, 1821 has been known for over two centuries and it is the second oldest of the approximately 275 species of Caligus O. F. Müller, 1985. Despite the numerous records of this species from European waters, it has never been fully described to modern standards. The lack of a comprehensive modern description has resulted in numerous misidentifications, even in recently published reports, and this is especially problematic for a species that is known to have a significant economic impact in aquaculture. This study presents a detailed description of both sexes and documents newly observed features of C. minimus collected from the buccal cavity of farmed European Sea Bass (ESB), Dicentrarchus labrax (Linnaeus, 1758). The morphology of C. minimus was examined using light microscope (LM), scanning electron microscope (SEM), and confocal laser scanning microscope (CLSM), and new details are revealed regarding the structure and ornamentation of the marginal membrane of the cephalothorax, maxilliped, antenna, sternal furca, abdomen, and legs 1, 3, 4, and 6. The ornamentation of the marginal membrane of the cephalothorax is unique and its impact on the functioning of the cephalothoracic sucker requires further investigation. Additionally, partial COI gene region sequences were obtained from four individuals of C. minimus and provided for future references. A phylogenetic analysis was conducted in conjunction with Caligus sequences available in the NCBI GenBank database.

10.
Ann Bot ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349404

RESUMO

BACKGROUND AND AIMS: Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation. METHODS: We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification. KEY RESULTS: Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported). CONCLUSIONS: Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.

11.
Insects ; 15(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39336651

RESUMO

Psyllids (Hemiptera: Psylloidea) are plant sap-sucking insects whose identification is often difficult for non-experts. Despite the rapid development of DNA barcoding techniques and their widespread use, only a limited number of sequences of psyllids are available in the public databases, and those that are available are often misidentified. Here, we provide 80 sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and cytochrome b (Cytb), for 25 species of Aphalaridae, mainly from Bulgaria. The DNA barcodes for 15 of these species are published for the first time. In cases where standard primers failed to amplify the target gene fragment, we designed new primers that can be used in future studies. The distance-based thresholds for the analysed species were between 0.0015 and 0.3415 for COI and 0.0771 and 0.4721 for Cytb, indicating that the Cytb gene has a higher interspecific divergence, compared to COI, and therefore allows for more accurate species identification. The species delimitation based on DNA barcodes is largely consistent with the differences resulting from morphological and host plant data, demonstrating that the use of DNA barcodes is suitable for successful identification of most aphalarid species studied. The phylogenetic reconstruction based on maximum likelihood and Bayesian inference analyses, while showing similar results at high taxonomic levels to previously published phylogenies, provides additional information on the placement of aphalarids at the species level. The following five species represent new records for Bulgaria: Agonoscena targionii, Aphalara affinis, Colposcenia aliena, Co. bidentata, and Craspedolepta malachitica. Craspedolepta conspersa is reported for the first time from the Czech Republic, while Agonoscena cisti is reported for the first time from Albania.

12.
Mol Ecol ; : e17529, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290075

RESUMO

Ectomycorrhizal (ECM) fungi are important tree symbionts within forests. The biogeography of ECM fungi remains to be investigated because it is challenging to observe and identify species. Because most ECM plant taxa have a Holarctic distribution, it is difficult to evaluate the extent to which host preference restricts the global distribution of ECM fungi. To address this issue, we aimed to assess whether host preference enhances the endemism of ECM fungi that inhabit dipterocarp rainforests. Highly similar sequences of 175 operational taxonomic units (OTUs) for ECM fungi that were obtained from Lambir Hill's National Park, Sarawak, Malaysia, were searched for in a nucleotide sequence database. Using a two-step binomial model, the probability of presence for the query OTUs and the registration rate of barcode sequences in each country were simultaneously estimated. The results revealed that the probability of presence in the respective countries increased with increasing species richness of Dipterocarpaceae and decreasing geographical distance from the study site (i.e. Lambir). Furthermore, most of the ECM fungi were shown to be endemic to Malaysia and neighbouring countries. These findings suggest that not only dispersal limitation but also host preference are responsible for the high endemism of ECM fungi in dipterocarp rainforests. Moreover, host preference likely determines the areas where ECM fungi potentially expand and dispersal limitation creates distance-decay patterns within suitable habitats. Although host preference has received less attention than dispersal limitation, our findings support that host preference has a profound influence on the global distribution of ECM fungi.

13.
Mar Pollut Bull ; 208: 116927, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255672

RESUMO

The introduction of biopollutant species challenge ecosystem health and economy in remote islands. Here we checked the advance of invasive fouling species in five French Polynesian islands. Expansion of invasive species (Acantophora spicifera, Bugula neritina, Chthamalus proteus, Dendostrea frons) was detected using individual barcoding (COI for animals, RBLC for algae), and metabarcoding on biofouling (COI and 18S sequences). They were especially abundant in Port Phaeton (Tahiti), Bora Bora and Rangiroa atoll. Chthamalus proteus is a vector of bacterial diseases and may harm native French Polynesian mollusks. Dendostrea frons is a vector of Perkinsus, a parasite to which black pearl oysters, the mainstay of the Polynesian economy, are susceptible. High ecological and epidemiological risks were estimated for C. proteus and D. frons, and ecological risks also for A. spicifera and especially for B. neritina. Strengthening marine biosecurity measures is highly recommended to conserve these unique ecosystems and their associated services.

14.
Med Vet Entomol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258880

RESUMO

Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arboviruses. The Balkan region, including the Republic of Kosovo, harbours a diverse sand fly fauna. Vector species of Leishmania infantum as well as phleboviruses are endemic; however, recent data are scarce. We performed a cross-sectional study to update the current sand fly distribution in Kosovo and assess biological as well as environmental factors associated with sand fly presence. CDC light trapping was conducted at 46 locations in 2022 and 2023, specifically targeting understudied regions in Kosovo. Individual morphological species identification was supported by molecular barcoding. The occurrence data of sand flies was used to create distribution maps and perform environmental analyses, taking elevation, wind speed and climate-related factors into account. In addition, PCR-based blood meal analysis and pathogen screening were conducted. Overall, 303 specimens of six sand fly species were trapped, predominated by Phlebotomus neglectus (97%). Barcodes from eight of nine known endemic sand fly species were obtained. Combining our data with previous surveys, we mapped the currently known sand fly distribution based on more than 4000 specimens at 177 data points, identifying Ph. neglectus and Ph. perfiliewi as the predominant species. Environmental analyses depicted two geographical groups of sand flies in Kosovo, with notable differences between the species. In total, 223 blood meals of five sand fly species were analysed. Of seven identified host species, the predominant blood meal source was observed to be cattle, but the DNA of dogs and humans, among others, was also detected. This study assessed biological as well as ecological factors of sand fly occurrence, which should help better understand and evaluate potential hot spots of disease transmission in Kosovo.

15.
Vet Parasitol ; 332: 110300, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270602

RESUMO

Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp. nov., was found in southern Spain after extensive sampling with carbon-dioxide baited suction traps. A total of 52 females and 32 males were collected at 29 out of 476 sites examined over eight months in 2023. Lipoptena andaluciensis sp. nov. was characterized morphologically and molecularly. The new Lipoptena species can be differentiated from the closely related L. fortisetosa by size, chaetotaxy of the dorsal and ventral thorax, abdominal plates, and genitalia. Based on DNA-barcoding, our specimens showed the highest similarity with Melophagus ovinus (Linnaeus, 1758) (88.4 %) and with L. fortisetosa (86-88 %). Individual screening of Lipoptena specimens (n = 76) for seven important zoonotic pathogens such as bacteria (Anaplasmataceae family: Bartonella spp., Borrelia spp., Coxiella burnetii and Rickettsia spp.) and protozoans (Babesia spp. and Theileria spp.) by conventional PCR and RT-PCR was performed. DNA of C. burnetii was detected in one specimen, while two other specimens harboured Anaplasmataceae (Wolbachia spp., 100 % homology and another endosymbiont probably related to Arsenophonus sp., 95.3 % homology, respectively), all representing the first records of these bacteria in the Lipoptena spp. from Europe. Carbon dioxide traps probed its effectiveness as a reliable passive method for keds surveillance. Our study highlights the existence of a new Lipoptena species, presumably widely distributed in southern Spain. The role of this species in the transmission cycle of pathogens of medical-veterinary relevance needs to be considered in the area.

16.
Am J Bot ; : e16401, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267427

RESUMO

PREMISE: Sphagnum magellanicum (Sphagnaceae, Bryophyta) has been considered to be a single semi-cosmopolitan species, but recent molecular analyses have shown that it comprises a complex of at least seven reciprocally monophyletic groups, that are difficult or impossible to distinguish morphologically. METHODS: Newly developed barcode markers and RADseq analyses were used to identify species among 808 samples from 119 sites. Molecular approaches were used to assess the geographic ranges of four North American species, the frequency at which they occur sympatrically, and ecological differentiation among them. Microhabitats were classified with regard to hydrology and shade. Hierarchical modelling of species communities was used to assess climate variation among the species. Climate niches were projected back to 22,000 years BP to assess the likelihood that the North American species had sympatric ranges during the late Pleistocene. RESULTS: The species exhibited parallel morphological variation, making them extremely difficult to distinguish phenotypically. Two to three species frequently co-occurred within peatlands. They had broadly overlapping microhabitat and climate niches. Barcode- versus RADseq-based identifications were in conflict for 6% of the samples and always involved S. diabolicum vs. S. magniae. CONCLUSIONS: These species co-occur within peatlands at scales that could permit interbreeding, yet they remain largely distinct genetically and phylogenetically. The four cryptic species exhibited distinct geographic and ecological patterns. Conflicting identifications from barcode vs. RADseq analyses for S. diabolicum versus S. magniae could reflect incomplete speciation or hybridization. They comprise a valuable study system for additional work on climate adaptation.

17.
Zookeys ; 1210: 287-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234150

RESUMO

Two new species, Macropelopia (Macropelopia) excavata Xu & Fu, sp. nov. and Macropelopia (Macropelopia) quadrimacula Xu & Fu, sp. nov., are described as male adults. A key to identify the males of Macropelopia from China is provided. Furthermore, in order to ascertain the genetic distance between these species and their morphological characteristics, mitochondrial cytochrome c oxidase subunit I gene sequences were uploaded to the National Center for Biotechnology Information. These COI sequences were then utilized to infer the relationships between the species, employing the neighbor-joining method.

18.
J Ethnopharmacol ; 337(Pt 2): 118855, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332616

RESUMO

The study evaluated 297 carrot germplasm lines, focusing on 52 cultivars to explore their therapeutic potential and address challenges related to the accessibility and affordability of nutraceuticals and health promoting foods. The investigation explores the application of DNA barcoding using the ITS region for precise species identification, highlighting genetic diversity among the examined cultivars. Through ITS sequence-based analysis and phylogenetic examination, six diverse Daucus spp. genotypes were differentiated and classified into distinct groups, indicating the presence of vast genetic variation. Evaluation of antioxidant activities using the DPPH radical scavenging assay revealed varying degrees of scavenging ability among genotypes with SKAU-C-15, SKAU-C-17, and SKAU-C-16 exhibiting the highest activity, suggesting their potential for antioxidant-rich products. Thin Layer Chromatography (TLC) bioautography confirmed the presence of bioactive compounds in carrot extracts responsible for their antioxidant properties. In cell culture studies, specific carrot genotype extracts demonstrated potential anti-proliferative and anti-invasive effects on recurrent prostate cancer cell line - C4-2 (SKAU-C-30, SKAU-C-10, and SKAU-C-42) and non-small cell lung cancer cell line - A549 (SKAU-C-18 and SKAU-C-11) cancer cells, as indicated by MTT assay, wound healing assay, and Colony Forming Unit assay. These findings suggest the promising therapeutic potential of carrot genotypes for developing anti-cancer functional foods, nutraceuticals and health supplements.Therefore, the study contributes to the nutrition security, paving the way for advancements in functional foods and health applications, particularly in cancer treatment and prevention.

19.
J Nematol ; 56(1): 20240025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39221104

RESUMO

Six distinct COI mitochondrial Haplotype Groups (HG) are morphologically, ecologically, and genetically characterized from the aquatic nematode family Tobrilidae. Collection locations included the extreme habitats of the Alkaline Lakes in the western Nebraska Sandhills and the contaminated stream, Johnson Creek, bordering the AltEn 2021 catastrophic pesticide release near the village of Mead in eastern Nebraska. Maximum likelihood and genetic distance metrics supported the genetic integrity of the haplotype groups. Discriminant function analysis of COI haplotype group datasets of combined morphological characters and soil chemistry attributes for both male and female Tobrilidae were classified correctly in all but one case. Scanning electron microscopy revealed new details about amphid apertures, male supplements, and spicules. Partial 18S gene phylogeny suggests that the genus Semitobrilus may not be a member of the subfamily Neotobrilinae, and three specimens in the 226 tobrilid dataset provide evidence of incongruence between COI and 18S derived phylogenies. Given the strong signal provided by the environmental chemistry data, tobrilid mitochondrial haplotypes may well have value as environmental indicators.

20.
Mol Ecol Resour ; 24(8): e14018, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285627

RESUMO

For two decades, DNA barcoding and, more recently, DNA metabarcoding have been used for molecular species identification and estimating biodiversity. Despite their growing use, few studies have systematically evaluated these methods. This study aims to evaluate the efficacy of barcoding methods in identifying species and estimating biodiversity, by assessing their consistency with traditional morphological identification and evaluating how assignment consistency is influenced by taxonomic group, sequence similarity thresholds and geographic distance. We first analysed 951 insect specimens across three taxonomic groups: butterflies, bumblebees and parasitic wasps, using both morphological taxonomy and single-specimen COI DNA barcoding. An additional 25,047 butterfly specimens were identified by COI DNA metabarcoding. Finally, we performed a systematic review of 99 studies to assess average consistency between insect species identity assigned via morphology and COI barcoding and to examine the distribution of research effort. Species assignment consistency was influenced by taxonomic group, sequence similarity thresholds and geographic distance. An average assignment consistency of 49% was found across taxonomic groups, with parasitic wasps displaying lower consistency due to taxonomic impediment. The number of missing matches doubled with a 100% sequence similarity threshold and COI intraspecific variation increased with geographic distance. Metabarcoding results aligned well with morphological biodiversity estimates and a strong positive correlation between sequence reads and species abundance was found. The systematic review revealed an 89% average consistency and also indicated taxonomic and geographic biases in research effort. Together, our findings demonstrate that while problems persist, barcoding approaches offer robust alternatives to traditional taxonomy for biodiversity assessment.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Insetos/classificação , Insetos/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vespas/genética , Vespas/classificação , Vespas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA