Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
J Virol ; : e0111924, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311578

RESUMO

The mechanism used by polyomavirus and other viral SF3 helicases to unwind DNA at replication forks remains unknown. Using AlphaFold2, we have determined the structure of a representative SF3 helicase, the SV40 T-antigen (T-ag). This model has been analyzed in terms of the features of T-ag required for helicase activity, particularly the proximity of the T-ag origin binding domain (OBD) to the replication fork and the distribution of basic residues on the surface of the OBD that are known to play roles in DNA unwinding. These and related studies provide additional evidence that the T-ag OBDs have a role in the unwinding of DNA at the replication fork. Nuclear magnetic resonance and modeling experiments also indicate that protonated histidines on the surface of the T-ag OBD play an important role in the unwinding process, and additional modeling studies indicate that protonated histidines are essential in other SF3 and SF6 helicases. Finally, a model for T-ag's helicase activity is presented, which is a variant of the "rope climber." According to this model, the hands are the N-terminal OBD domains that interact with the replication fork, while the C-terminal helicase domains contain the feet that bind to single-stranded DNA. IMPORTANCE: Enzymes termed helicases are essential for the replication of DNA tumor viruses. Unfortunately, much remains to be determined about this class of enzymes, including their structures and the mechanism(s) they employ to unwind DNA. Herein, we present the full-length structure of a model helicase encoded by a DNA tumor virus. Moreover, this AI-based structure has been analyzed in terms of its basic functional properties, such as the orientation of the helicase at replication forks and the relative locations of the amino acid residues that are critical for helicase activity. Obtaining this information is important because it permits proposals regarding how DNA is routed through these model helicases. Also presented is structural evidence that the conclusions drawn from our detailed analyses of one model helicase, encoded by one class of tumor viruses, are likely to apply to other viral and eukaryotic helicases.

2.
J Biol Chem ; 300(10): 107726, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214305

RESUMO

The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III. Perturbation of the α-τ binding interaction in vivo resulted in cellular and genomic stress markers that included reduced growth rates, fitness, and viabilities. Specifically, dnaX:mut strains showed increased cell filamentation, mutagenesis frequencies, and activated SOS. In situ fluorescence flow cytometry and microscopy quantified large increases in the amount of ssDNA gaps present. Removal of the C terminus of τ (I618X) still maintained its interactions with DnaB and stimulated unwinding but lost its interaction with Pol III, resulting in significantly reduced rolling circle DNA synthesis. Intriguingly, dnaX:L635P/D636G had the largest induction of SOS, high mutagenesis, and the most prominent ssDNA gaps, which can be explained by an impaired ability to regulate the unwinding speed of DnaB resulting in a faster rate of in vitro rolling circle DNA replication, inducing replisome decoupling. Therefore, τ-stimulated DnaB unwinding and physical coupling with Pol III acts to enforce replisome plasticity to maintain an efficient rate of synthesis and prevent genomic instability.

3.
Biology (Basel) ; 13(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194567

RESUMO

In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.

4.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948847

RESUMO

The Escherichia coli XPD/Rad3-like helicase, YoaA, and DNA polymerase III subunit, χ, are involved in E. coli DNA damage tolerance and repair. YoaA and χ promote tolerance to the DNA chain-terminator, 3 -azidothymidine (AZT), and together form the functional helicase complex, YoaA-χ. How YoaA-χ contributes to DNA damage tolerance is not well understood. E. coli single-stranded DNA binding protein (SSB) accumulates at stalled replication forks, and the SSB-χ interaction is required to promote AZT tolerance via an unknown mechanism. YoaA-χ and SSB interactions were investigated in vitro to better understand this DNA damage tolerance mechanism, and we discovered YoaA-χ and SSB have a functional interaction. SSB confers a substrate-specific effect on the helicase activity of YoaA-χ, barely affecting YoaA-χ on an overhang DNA substrate but inhibiting YoaA-χ on forked DNA. A paralog helicase, DinG, unwinds SSB-bound DNA in a similar manner to YoaA-χ on the substrates tested. Through use of ensemble experiments, we believe SSB binds behind YoaA-χ relative to the DNA ds/ss junction and show via single-molecule assays that SSB translocates along ssDNA with YoaA-χ. This is, to our knowledge, the first demonstration of a mechanoenzyme pulling SSB along ssDNA.

5.
Sci Rep ; 14(1): 15740, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977862

RESUMO

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Assuntos
DNA Helicases , Replicação do DNA , Quadruplex G , Humanos , DNA Helicases/metabolismo , Dano ao DNA , Aberrações Cromossômicas , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
6.
mBio ; 15(8): e0124824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39012146

RESUMO

Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.


Assuntos
Reparo do DNA , Ficusina , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Ficusina/química , Ficusina/farmacologia , Ficusina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Dano ao DNA , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Mitomicina/farmacologia , Mitomicina/metabolismo , Deleção de Genes
7.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683976

RESUMO

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


Assuntos
DNA Helicases , Replicação do DNA , Filogenia , Vibrionaceae , Vibrionaceae/genética , Vibrionaceae/enzimologia , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimologia , Evolução Molecular , Genoma Bacteriano , DnaB Helicases/metabolismo , DnaB Helicases/genética , Vibrio/genética , Vibrio/enzimologia
8.
J Biol Chem ; 300(5): 107275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588814

RESUMO

DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.


Assuntos
Replicação do DNA , DnaB Helicases , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , DnaB Helicases/metabolismo , DnaB Helicases/genética , DnaB Helicases/química , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Mutação
9.
J Ethnopharmacol ; 323: 117694, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163559

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Bazhen decoction is one of the most extensively used Traditional Chinese medicine (TCM) prescriptions for treatment of aging related diseases. However, due to the complexity of the components, the pharmacological mechanism of Bazhen decoction is still limited. AIM OF THE STUDY: In this study, with the aim of helping the clinical precision medicine of TCM, we try out a systematic analysis for dissecting the molecular mechanism of complicated TCM prescription: Bazhen decoction. We identify the pharmacological mechanism of Bazhen decoction in telomere elongation as revealed by systematic analysis. MATERIALS AND METHODS: By RNA sequencing and transcriptome analysis of Bazhen decoction treated wild type cells, we reveal the transcriptome profile induced by Bazhen decoction. We utilized the cells derived from Werner syndrome (WS) mice, which is known to be dysfunctional in telomere elongation due to the deficiency of DNA helicase Wrn. By Western blot, qPCR, Immunofluorescence, flow cytometry, telomere FISH, and SA-ß-Gal staining, we verify the transcriptome data and confirm the pharmacological function of Bazhen decoction and its drug containing serum in telomere elongation and reversing progeroid cell senescence. RESULTS: We reveal that Bazhen decoction may systematically regulate multiple anti-aging pathways, including stem cell regulation, protein homeostasis, cardiovascular function, neuronal function, anti-inflammation, anti-DNA damage induced stress, DNA helicase activity and telomere lengthening. We find that Bazhen decoction and its drug containing serum could up-regulate multiple DNA helicases and telomere regulating proteins. The increased DNA helicases promote the resolving of G-quadruplex (G4) structures, and facilitate DNA replication and telomere elongation. These improvements also endow the cellular resistance to DNA damages induced by replication stress, and rescue the WS caused cellular senescence. CONCLUSIONS: Together these data suggest that Bazhen decoction up-regulate the expression of DNA helicases, thus facilitate G4 resolving and telomere maintenance, which rescue the progeroid cellular senescence and contribute to its anti-aging properties. Our data reveal a new molecular mechanism of Bazhen decoction in anti-aging related diseases via elongating telomere, this may shed light in the application of Bazhen decoction in multiple degenerative diseases caused by telomere erosion.


Assuntos
Síndrome de Werner , Animais , Camundongos , Síndrome de Werner/genética , Dano ao DNA , Telômero , Senescência Celular , DNA Helicases/genética
10.
Microbiol Mol Biol Rev ; 87(4): e0004123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047637

RESUMO

SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.


Assuntos
Proteínas de Escherichia coli , Recombinação Genética , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Escherichia coli , DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Biomed Pharmacother ; 169: 115908, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37988849

RESUMO

The high expression of BLM (Bloom syndrome) DNA helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to study the antitumor effect of fangchinoline derivative HY-2 by targeting BLM642-1290 DNA helicase, and then explore its inhibitory mechanism on proliferation of MDA-MB-435 breast cancer cells. We confirmed that the mRNA and protein levels of BLM DNA helicase in breast cancer were higher than those in normal tissues. HY-2 could inhibit the DNA binding, ATPase and DNA unwinding of BLM642-1290 DNA helicase with enzymatic assay. HY-2 could also inhibit the DNA unwinding of DNA helicase in cells. In addition, HY-2 showed an inhibiting the MDA-MB-435, MDA-MB-231, MDA-MB-436 breast cancer cells expansion. The mRNA and protein levels of BLM DNA helicase in MDA-MB-435 cells increased after HY-2 treatment, which might contribute to HY-2 inhibiting the DNA binding, ATPase and DNA unwinding of BLM DNA helicase. The mechanism of HY-2 inhibition on BLM DNA helicase was further confirmed with the effect of HY-2 on the ultraviolet spectrogram of BLM642-1290 DNA helicase and Molecular dynamics simulation of the interacting between HY-2 and BLM640-1291 DNA helicase. Our study provided some valuable clues for the exploration of HY-2 in the living body and developing it as an anticancer drug.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Neoplasias da Mama , Feminino , Humanos , Benzilisoquinolinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , DNA/metabolismo , RecQ Helicases/química , RecQ Helicases/genética , RecQ Helicases/metabolismo , RNA Mensageiro , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo
12.
Aging (Albany NY) ; 15(19): 10767-10784, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827695

RESUMO

The G-rich DNA, such as telomere, tends to form G-quadruplex (G4) structure, which slows down the replication fork progression, induces replication stress, and becomes the chromosome fragile sites. Here we described a molecular strategy that cells developed to overcome the DNA replication stress via DNA helicase regulation. The p53N236S (p53S) mutation has been found in the Werner syndrome mouse embryo fibroblast (MEFs) escaped from senescence, could be the driving force for cell escaping senescence. We revealed that the p53S could transcriptionally up-regulate DNA helicases expression, including Wrn, Blm, Timeless, Ddx, Mcm, Gins, Fanc, as well as telomere specific proteins Terf1, Pot1, through which p53S promoted the unwinding of G4 structures, and protected the cells from DNA replication stress induced by G4 stabilizer. By modified iPOND (isolation of proteins on nascent DNA) assay and telomere assay, we demonstrated that the p53S could promote the recruitment of those helicases to the DNA replication forks, facilitated the maintenance of telomere, and prevent the telomere dysfunction induced by G4 stabilizer. Interestingly, we did not observe the function of promoting G4 resolving and facilitating telomere lengthening in the cells with Li-Fraumeni Syndrome mutation-p53R172H (p53H), which suggests that this is the specific gain of function for p53S. Together our data suggest that the p53S could gain the new function of releasing the replication stress via regulating the helicase function and G4 structure, which benefits telomere lengthening. This strategy could be applied to the treatment of diseases caused by telomere replication stress.


Assuntos
Replicação do DNA , Síndrome de Werner , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA/genética , Telômero/genética , Telômero/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
13.
DNA Repair (Amst) ; 132: 103582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839213

RESUMO

Hmi1 is a UvrD-like DNA helicase required for the maintenance of the yeast Saccharomyces cerevisiae mitochondrial DNA (mtDNA). Deletion of the HMI1 ORF leads to the formation of respiration-deficient petite mutants, which either contain a short fragment of mtDNA arranged in tandem repeats or lack mtDNA completely. Here we characterize point mutants of the helicase designed to target the ATPase or ssDNA binding activity and show that these mutations do not separately lead to complete loss of the Hmi1 function. The mutant strains support ATP production via oxidative phosphorylation and enable us to directly analyze the impact of both activities on the stability of wild-type mtDNA in this petite-positive yeast. Our data reveal that Hmi1 mutants affecting ssDNA binding display a stronger defect in the maintenance of mtDNA compared to the mutants of ATP binding/hydrolysis. Hmi1 mutants impaired in ssDNA binding demonstrate sensitivity to UV irradiation and lower levels of Cox2 encoded by the mitochondrial genome. This suggests a complex and multifarious role for Hmi1 in mtDNA maintenance-linked transactions, some of which do not require the ATP-dependent helicase activity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-37757728

RESUMO

Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Suramina/farmacologia , Suramina/uso terapêutico , DNA Helicases/genética , Trypanosoma/genética , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei brucei/genética
15.
Genes Cells ; 28(10): 694-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632696

RESUMO

The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.

16.
Genes Cells ; 28(9): 663-673, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37469008

RESUMO

The SLFN11 gene participates in cell fate decision following cancer chemotherapy and encodes the N-terminal ribonuclease (RNase) domain and the C-terminal helicase/ATPase domain. How these domains contribute to the chemotherapeutic response remains controversial. Here, we expressed SLFN11 containing mutations in two critical residues required for RNase activity in SLFN11-/- cells. We found that this mutant was still able to suppress DNA damage tolerance, destabilized the stalled replication forks, and perturbed recruitment of the fork protector RAD51. In contrast, we confirmed that the helicase domain was essential to accelerate fork degradation. The fork degradation by the RNase mutant was dependent on both DNA2 and MRE11 nuclease, but not on MRE11's novel interactor FXR1. Collectively, these results supported the view that the RNase domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response.


Assuntos
Replicação do DNA , Ribonucleases , Ribonucleases/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Mutação , Dano ao DNA
17.
Mitochondrion ; 69: 130-139, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764503

RESUMO

Irc3 is one of the six mitochondrial helicases described in Saccharomyces cerevisiae. Physiological functions of Irc3 are not completely understood as both DNA metabolic processes and mRNA translation have been suggested to be direct targets of the helicase. In vitro analysis of Irc3 has been hampered by the modest thermostability of the S. cerevisiae protein. Here, we purified a homologous helicase (Irc3op) of the thermotolerant yeast Ogataea polymorpha that retains structural integrity and catalytic activity at temperatures above 40 °C. Irc3op can complement the respiratory deficiency phenotype of a S. cerevisiae irc3Δ mutant, indicating conservation of biochemical functions. The ATPase activity of Irc3op is best stimulated by branched and double- stranded DNA cofactors. Single-stranded DNA binds Irc3op tightly but is a weak activator of the ATPase activity. We could also detect a lower level stimulation with RNA, especially with molecules possessing a compact three-dimensional structure. These results support the idea that that Irc3 might have dual specificity and remodel both DNA and RNA molecules in vivo. Furthermore, our analysis of kinetic parameters predicts that Irc3 could have a regulatory function via sensing changes of the mitochondrial ATP pool or respond to the accumulation of single-stranded DNA.


Assuntos
DNA Helicases , Proteínas Fúngicas , Saccharomycetales , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , RNA , Saccharomyces cerevisiae , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética
18.
Methods Mol Biol ; 2615: 191-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807793

RESUMO

TWINKLE is an essential helicase that unwinds the duplex mitochondrial genome during DNA replication. In vitro assays using purified recombinant forms of the protein have been an instrumental tool for gaining mechanistic insights about TWINKLE and its function at the replication fork. Here we present methods to probe the helicase and ATPase activities of TWINKLE. For the helicase assay, TWINKLE is incubated with a radiolabeled oligonucleotide annealed to an M13mp18 single-stranded DNA template. TWINKLE will displace the oligonucleotide, which is then visualized by gel electrophoresis and autoradiography. To measure the ATPase activity of TWINKLE, a colorimetric assay is used, which quantifies the release of phosphate upon ATP hydrolysis by TWINKLE.


Assuntos
Replicação do DNA , Proteínas Mitocondriais , Proteínas Mitocondriais/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , Oligonucleotídeos , DNA Mitocondrial/genética
19.
Protein Pept Lett ; 30(1): 35-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36336812

RESUMO

BACKGROUND: DNA helicases are unwinding enzymes that are essential for many cellular processes. Research has suggested that both the model microorganisms of a single chromosome and the model microorganisms of multiple chromosomes adopt DNA helicases encoded by chromosome I. Therefore, studying DNA helicases encoded by chromosome II may lay some foundation for understanding nucleic acid metabolism processes. OBJECTIVE: To prove the existence of DNA helicase encoded by chromosome II and to reveal its difference compared to DNA helicase encoded by chromosome I. METHODS: The DNA helicases of Pseudoalteromonas spongiae JCM 12884T and Pseudoalteromonas tunicata DSM 14096T were analyzed by sequence alignment and phylogenetic relationships with other known DNA helicases. Then, proteins of P. spongiae JCM 12884T and P. tunicata DSM 14096T were obtained by heterologous expression. N-terminal sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were performed to confirm the form of proteins. A fluorescence resonance energy transfer (FRET) assay was used to measure the activity of helicases. RESULTS: DnaB-pspo and DnaB-ptun belong to the same family, the PRK08840 superfamily, and form a branch with helicases encoded by chromosome I. YwqA-pspo and YwqA-ptun have similar domains and form another branch with helicases encoded by chromosome II. All four helicases have DNA unwinding activity. YwqA is more efficient than DnaB for DNA unwinding, especially YwqA-pspo, which is encoded by bidirectional replication chromosome II. CONCLUSION: This is the first study to show that the existence of a DNA helicase encoded by chromosome II, and DNA helicase encoded by chromosome II is more efficient than chromosome I for DNA unwinding.


Assuntos
Escherichia coli , Espectrometria de Massas em Tandem , DnaB Helicases/química , DnaB Helicases/genética , DnaB Helicases/metabolismo , Cromatografia Líquida , Filogenia , Escherichia coli/genética , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Bactérias/química
20.
J Biol Chem ; 299(1): 102786, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509145

RESUMO

Escherichia coli YoaA aids in the resolution of DNA damage that halts DNA synthesis in vivo in conjunction with χ, an accessory subunit of DNA polymerase III. YoaA and χ form a discrete complex separate from the DNA polymerase III holoenzyme, but little is known about how YoaA and χ work together to help the replication fork overcome damage. Although YoaA is predicted to be an iron-sulfur helicase in the XPD/Rad3 helicase family based on sequence analysis, the biochemical activities of YoaA have not been described. Here, we characterize YoaA and show that purified YoaA contains iron. YoaA and χ form a complex that is stable through three chromatographic steps, including gel filtration chromatography. When overexpressed in the absence of χ, YoaA is mostly insoluble. In addition, we show the YoaA-χ complex has DNA-dependent ATPase activity. Our measurement of the YoaA-χ helicase activity illustrates for the first time YoaA-χ translocates on ssDNA in the 5' to 3' direction and requires a 5' single-stranded overhang, or ssDNA gap, for DNA/DNA unwinding. Furthermore, YoaA-χ preferentially unwinds forked duplex DNA that contains both 3' and 5' single-stranded overhangs versus duplex DNA with only a 5' overhang. Finally, we demonstrate YoaA-χ can unwind damaged DNA that contains an abasic site or damage on 3' ends that stall replication extension. These results are the first biochemical evidence demonstrating YoaA is a bona fide iron-sulfur helicase, and we further propose the physiologically relevant form of the helicase is YoaA-χ.


Assuntos
DNA Helicases , DNA Polimerase III , Proteínas de Escherichia coli , Escherichia coli , DNA Helicases/metabolismo , DNA Polimerase III/genética , Replicação do DNA , DNA de Cadeia Simples , Escherichia coli/metabolismo , Ferro , Proteínas de Escherichia coli/metabolismo , Reparo do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA