Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
1.
Discov Oncol ; 15(1): 248, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937285

RESUMO

BACKGROUND: Acute myeloid leukemia, constituting a majority of leukemias, grapples with a 24% 5-year survival rate. Recent strides in research have unveiled fresh targets for drug therapies. LIM-only, a pivotal transcription factor within LIM proteins, oversees cell development and is implicated in tumor formation. Among these critical LIM proteins, CSRP1, a Cysteine-rich protein, emerges as a significant player in various diseases. Despite its recognition as a potential prognostic factor and therapeutic target in various cancers, the specific link between CSRP1 and acute myeloid leukemia remains unexplored. Our previous work, identifying CSRP1 in a prognostic model for AML patients, instigates a dedicated exploration into the nuanced role of CSRP1 in acute myeloid leukemia. METHODS: R tool was conducted to analyze the public data. qPCR was applied to evaluate the expression of CSRP1 mRNA for clinical samples and cell line. Unpaired t test, Wilcoxon Rank Sum test, KM curves, spearman correlation test and Pearson correlation test were included in this study. RESULTS: CSRP1 displays notable expression variations between normal and tumor samples in acute myeloid leukemia (AML). It stands out as an independent prognostic factor for AML patients, showing correlations with clinical factors like age and cytogenetics risk. Additionally, CSRP1 correlates with immune-related pathways, immune cells, and immune checkpoints in AML. Furthermore, the alteration of CSRP1 mRNA levels is observed upon treatment with a DNMT1 inhibitor for THP1 cells. CONCLUSION: The CSRP1 has potential as a novel prognostic factor and appears to influence the immune response in acute myeloid leukemia. Additionally, there is an observed association between CSRP1 and DNA methylation in acute myeloid leukemia.

2.
Sci Rep ; 14(1): 13508, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866895

RESUMO

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Metilação de DNA , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/química , Sítios de Ligação
3.
Neurosurg Rev ; 47(1): 285, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907038

RESUMO

To evaluate the utility of magnetic resonance imaging (MRI) histogram parameters in predicting O(6)-methylguanine-DNA methyltransferase promoter (pMGMT) methylation status in IDH-wildtype glioblastoma (GBM). From November 2021 to July 2023, forty-six IDH-wildtype GBM patients with known pMGMT methylation status (25 unmethylated and 21 methylated) were enrolled in this retrospective study. Conventional MRI signs (including location, across the midline, margin, necrosis/cystic changes, hemorrhage, and enhancement pattern) were assessed and recorded. Histogram parameters were extracted and calculated by Firevoxel software based on contrast-enhanced T1-weighted images (CET1). Differences and diagnostic performance of conventional MRI signs and histogram parameters between the pMGMT-unmethylated and pMGMT-methylated groups were analyzed and compared. No differences were observed in the conventional MRI signs between pMGMT-unmethylated and pMGMT-methylated groups (all p > 0.05). Compared with the pMGMT-methylated group, pMGMT-unmethylated showed a higher minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50, and coefficient of variation (CV) (all p < 0.05). Among all significant CET1 histogram parameters, minimum achieved the best distinguishing performance, with an area under the curve of 0.836. CET1 histogram parameters could provide additional value in predicting pMGMT methylation status in patients with IDH-wildtype GBM, with minimum being the most promising parameter.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioblastoma , Isocitrato Desidrogenase , Imageamento por Ressonância Magnética , Regiões Promotoras Genéticas , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto , Metilação de DNA/genética , Idoso , Isocitrato Desidrogenase/genética , Estudos Retrospectivos , O(6)-Metilguanina-DNA Metiltransferase/genética
4.
Eur J Med Chem ; 274: 116538, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823264

RESUMO

DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 µM and 0.777 µM, respectively (compared to RG108 with an IC50 above 250 µM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.


Assuntos
Carbazóis , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Inibidores Enzimáticos , Humanos , Relação Estrutura-Atividade , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/síntese química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Ftalimidas , Triptofano/análogos & derivados
5.
Oncol Res ; 32(6): 1037-1045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827324

RESUMO

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Assuntos
Astrocitoma , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Progressão da Doença , Isocitrato Desidrogenase , Mutação , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases , Proteínas Supressoras de Tumor , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Isocitrato Desidrogenase/genética , Masculino , Feminino , Astrocitoma/genética , Astrocitoma/patologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Gradação de Tumores , Idoso , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Regulação Neoplásica da Expressão Gênica
6.
Mol Cell ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38936361

RESUMO

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.

7.
Insect Mol Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923717

RESUMO

Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.

8.
Life Sci ; 351: 122795, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852793

RESUMO

Oral diseases are among the most common diseases worldwide and are associated with systemic illnesses, and the rising occurrence of oral diseases significantly impacts the quality of life for many individuals. It is crucial to detect and treat these conditions early to prevent them from advancing. DNA methylation is a fundamental epigenetic process that contributes to a variety of diseases including various oral diseases. Taking advantage of its reversibility, DNA methylation becomes a viable therapeutic target by regulating various cellular processes. Understanding the potential role of this DNA alteration in oral diseases can provide significant advances and more opportunities for diagnosis and therapy. This article will review the biology of DNA methylation, and then mainly discuss the key findings on DNA methylation in oral cancer, periodontitis, endodontic disease, oral mucosal disease, and clefts of the lip and/or palate in the background of studies on global DNA methylation and gene-specific DNA methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Doenças da Boca , Humanos , Doenças da Boca/genética , Doenças da Boca/metabolismo , Animais
9.
Front Pharmacol ; 15: 1381168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720770

RESUMO

Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.

10.
Biomedicines ; 12(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791049

RESUMO

DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7-23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide-HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy.

11.
Ir J Med Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740675

RESUMO

The nature versus nurture debate has intrigued scientific circles for decades. Although extensive research has established a clear relationship between genetics and disease development, recent evidence has highlighted the insufficiency of attributing adverse health outcomes to genetic factors alone. In fact, it has been suggested that environmental influences, such as socioeconomic position (SEP), may play a much larger role in the development of disease than previously thought, with extensive research suggesting that low SEP is associated with adverse health conditions. In relation to oral health, a higher prevalence of caries (tooth decay) exists among those of low SEP. Although little is known about the biological mechanisms underlying this relationship, epigenetic modifications resulting from environmental influences have been suggested to play an important role. This review explores the intersection of health inequalities and epigenetics, the role of early-life social adversity and its long-term epigenetic impacts, and how those living within the lower hierarchies of the socioeconomic pyramid are indeed at higher risk of developing diseases, particularly in relation to oral health. A deeper understanding of these mechanisms could lead to the development of targeted interventions for individuals of low SEP to improve oral health or identify those who are at higher risk of developing oral disease.

12.
SLAS Discov ; 29(4): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788976

RESUMO

Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.


Assuntos
Ensaios Enzimáticos , Metiltransferases , Riboswitch , S-Adenosil-Homocisteína , S-Adenosilmetionina , S-Adenosil-Homocisteína/metabolismo , Riboswitch/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Ensaios Enzimáticos/métodos , S-Adenosilmetionina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Metilação , Humanos , Polarização de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética
13.
Inflammopharmacology ; 32(3): 1791-1804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653938

RESUMO

Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.


Assuntos
Epigênese Genética , Doença de Huntington , Doenças Neuroinflamatórias , Doença de Huntington/genética , Doença de Huntington/terapia , Humanos , Animais , Doenças Neuroinflamatórias/genética , Metilação de DNA/genética , Inflamação/genética
14.
Cancer Pathog Ther ; 2(2): 112-120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601484

RESUMO

Background: Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is associated with several biomarkers. Decitabine, a deoxyribonucleic acid (DNA) methyltransferase (DNMT) inhibitor, combined with cytarabine, aclarubicin hydrochloride, and granulocyte colony-stimulating factor (DCAG), has been used in patients newly diagnosed with AML. This regimen has been especially used in older and fragile patients who are immunocompromised or have co-morbidities, as well as those with specific gene mutations. However, the integration of molecular risk stratification and treatment guidance for the DCAG regimen has not been well defined. Therefore, this study aimed to investigate the genetic mutations associated with AML and establish appropriate treatment strategies for patients newly diagnosed with AML. Methods: This study analyzed the clinical data and genetic mutations based on next-generation sequencing (NGS) in 124 newly diagnosed patients with AML who received the DCAG regimen at the People's Liberation Army (PLA) General Hospital from January 2008 to August 2020. Factors associated with the cumulative incidence of relapse (CIR) and leukemia-free survival (LFS) in patients newly diagnosed with AML were analyzed. Results: The most adverse prognosis of DCAG-treated patients was observed in those with FLT3-ITD, KIT, PTPN11, GATA2, or IDH1 mutations during univariable analysis, whereas PTPN11 mutation was solely significant in multivariable analysis, with an increased likelihood of CIR (P = 0.001) and reduced LFS duration (P = 0.077). Hyperleukocytosis was maintained as an independent risk factor for increased CIR risk (P = 0.044) and decreased LFS duration (P = 0.042) in multivariable analysis. In this study, we validated the risk classification of patients with AML receiving an epigenetic modifier-based induction regimen across a broad age range. Conclusion: NGS demonstrated a dismal overall outcome in patients with the rare PTPN11 mutations, indicating the need for new therapies that target this high-risk subtype of AML. These results offer a potential molecular stratification and treatment guidance for patients with AML.

15.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611052

RESUMO

Introduction: Sex differences in glioblastoma (GBM) have been observed in incidence, genetic and epigenetic alterations, and immune response. These differences have extended to the methylation of the MGMT promoter, which critically impacts temozolomide resistance. However, the association between sex, MGMT methylation, and survival is poorly understood, which this study sought to evaluate. Methods: A retrospective cohort study was conducted and reported following STROBE guidelines, based on adults with newly diagnosed GBM who received their first surgical intervention at Cleveland Clinic (Ohio, USA) between 2012 and 2018. Kaplan-Meier and multivariable Cox proportional hazards models were used to analyze the association between sex and MGMT promoter methylation status on overall survival (OS). MGMT was defined as methylated if the mean of CpG 1-5 ≥ 12. Propensity score matching was performed on a subset of patients to evaluate the effect of individual CpG site methylation. Results: A total of 464 patients had documented MGMT methylation status with a mean age of 63.4 (range 19-93) years. A total of 170 (36.6%) were female, and 133 (28.7%) received gross total resection as a first intervention. A total of 42.5% were MGMT methylated, with females more often having MGMT methylation than males (52.1% vs. 37.4%, p = 0.004). In univariable analysis, OS was significantly longer for MGMT promoter methylated than un-methylated groups for females (2 yr: 36.8% vs. 11.1%; median: 18.7 vs. 9.5 months; p = 0.001) but not for males (2 yr: 24.3% vs. 12.2%; median: 12.4 vs. 11.3 months; p = 0.22, p for MGMT-sex interaction = 0.02). In multivariable analysis, MGMT un-methylated versus methylated promoter females (2.07; 95% CI, 1.45-2.95; p < 0.0001) and males (1.51; 95% CI, 1.14-2.00; p = 0.004) had worse OS. Within the MGMT promoter methylated group, males had significantly worse OS than females (1.42; 95% CI: 1.01-1.99; p = 0.04). Amongst patients with data on MGMT CpG promoter site methylation values (n = 304), the median (IQR) of CpG mean methylation was 3.0% (2.0, 30.5). Females had greater mean CpG methylation than males (11.0 vs. 3.0, p < 0.002) and higher per-site CpG methylation with a significant difference at CPG 1, 2, and 4 (p < 0.008). After propensity score matching, females maintained a significant survival benefit (18.7 vs. 10.0 months, p = 0.004) compared to males (13.0 vs. 13.6 months, p = 0.76), and the pattern of difference was significant (P for CpG-sex interaction = 0.03). Conclusions: In this study, females had higher mean and individual CpG site methylation and received a greater PFS and OS benefit by MGMT methylation that was not seen in males despite equal degrees of CpG methylation.

16.
Clin Epigenetics ; 16(1): 55, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622665

RESUMO

BACKGROUND: CSLCs(Cancer stem cell-like cells), which are central to tumorigenesis, are intrinsically influenced by epigenetic modifications. This study aimed to elucidate the underlying mechanism involving the DNMT1/miR-152-3p/SOS1 axis in regulating the self-renewal and tumor growth of LCSLCs (lung cancer stem-like cells). MATERIALS AND METHODS: Target genes of miR-152-3p were predicted using TargetScan Human 8.0. Self-renewal and tumor growth of LCSLC were compared in suspension-cultured non-small cell lung cancer (NSCLC) cell lines H460 and A549 cell-derived globe cells. Functional effects of the DNMT1/miR-152-3p/SOS1 axis were assessed through gain-of-function experiments in vitro and in vivo. Additionally, luciferase reporter assays were employed to analyze the interaction among DNMT1, miR-152-3p, and SOS1. RESULTS: Our findings highlight a negative interaction between DNMT1 and miR-152-3p, resulting in reduced miR-152-3p level. This, in turn, leads to the alleviation of the inhibitory effect of miR-152-3p on the target gene SOS1, ultimately activating SOS1 and playing an essential role in self-renewal and tumor growth of LCSLC. However, the alteration of SOS1 does not affect DNMT1/miR-152-3p regulation. Therefore, it is reasonable to infer that the DNMT1/miR-152-3p negative feedback loop critically sustains self-renewal and tumor growth of LCSLC through SOS1. CONCLUSIONS: This study reveals a novel mechanism underpinning self-renewal and tumor growth of CSLC (cancer stem cell) in NSCLC and identifies potential therapeutic targets for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
17.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675387

RESUMO

Aberrant epigenetic modifications are fundamental contributors to the pathogenesis of various cancers. Consequently, targeting these aberrations with small molecules, such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors, presents a viable strategy for cancer therapy. The objective of this study is to assess the anti-cancer efficacy of trichostatin C (TSC), an analogue of trichostatin A sourced from the fermentation of Streptomyces sp. CPCC 203909. Our investigations reveal that TSC demonstrates potent activity against both human lung cancer and urothelial bladder cancer cell lines, with IC50 values in the low micromolar range. Moreover, TSC induces apoptosis mediated by caspase 3/7 and arrests the cell cycle at the G2/M phase. When combined with the DNMT inhibitor decitabine, TSC exhibits a synergistic anti-cancer effect. Additionally, protein analysis elucidates a significant reduction in the expression of the tyrosine kinase receptor Axl. Notably, elevated concentrations of TSC correlate with the up-regulation of the transcription factor forkhead box class O1 (FoxO1) and increased levels of the proapoptotic proteins Bim and p21. In conclusion, our findings suggest TSC as a promising anti-cancer agent with HDAC inhibitory activity. Furthermore, our results highlight the potential utility of TSC in combination with DNMT inhibitors for cancer treatment.

18.
Int J Lab Hematol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679027

RESUMO

INTRODUCTION: Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic stem cell disorders. DNA hypermethylation is considered to be the key mechanism of pathogenesis for MDS. Studies have demonstrated that DNA methylation can be regulated by the co-effect between long non-coding RNAs (lncRNAs) and DNA methyltransferases (DNMTs). The aim of this study was to identify DNMTs-associated differentially expressed (DE) lncRNAs, which may be a novel diagnostic and therapeutic target for MDS. METHODS: Two gene expression profile datasets (GSE4619 and GSE19429) were downloaded from the Gene Expression Omnibus (GEO) database. Systematic bioinformatics analysis was conducted. Then we verified the expression of PRKCQ-AS1 in MDS patients and features in SKM-1 cells. RESULTS: Bioinformatics analysis revealed that the DNMT-associated DE-lncRNA PRKCQ-AS1 was functionally related to DNA methylation. The target genes of PRKCQ-AS1 associated with DNA methylation are mainly methionine synthetase (MTR) and ten-eleven-translocation 1 (TET1). Moreover, the high expression of PRKCQ-AS1 was verified in real MDS cases. Further cellular analysis in SKM-1 cells revealed that overexpressed PRKCQ-AS1 promoted methylation levels of long interspersed nuclear element 1 (LINE-1) and cell proliferation, and apparently elevated both mRNA and protein levels of MTR and TET1, while knockdown of PRKCQ-AS1 showed opposite trend in SKM-1 cells. CONCLUSION: DNMT-associated DE-lncRNA PRKCQ-AS1 may affects DNA methylation levels by regulating MTR and TET1.

19.
Anal Chim Acta ; 1298: 342395, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462345

RESUMO

DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.


Assuntos
Técnicas Biossensoriais , DNA , Biomarcadores
20.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464090

RESUMO

Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...