Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Ann Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969930

RESUMO

Understanding the underlying mechanism of acute myeloid leukemia (AML) has led to the discovery of novel biomarkers to help predict, treat and monitor leukemia. DNA (cytosine-5)-methyltransferase 3 A (DNMT3A) is considered a prognostic and therapeutic epigenetic target in AML patients with a hotspot mutation of R882. R882 mutation is associated with impaired differentiation of Hematopoietic stem cells in the bone marrow and disease progression. The prevalence of R882 mutation varied in different ethnicities and countries, and similarly, its prognostic impact differed among numerous studies. Nevertheless, the co-occurrence of mutations in R882 with NPM1 and FLT3 has been reported more frequently and is associated with a worse prognosis. These studies also suggest diverse results regarding bone marrow transplantation response as a treatment, while chemoresistance is reached as a conclusive outcome These findings highlight the crucial need for an in-depth discussion on the significance of the R882 mutation in AML patients. Understanding its impact on leukemic transformation, prognosis, and treatment is vital for advancing clinical implications.

2.
Am J Cardiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972534

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common risk factor for both hematological malignancies and cardiovascular (CV) diseases. The purpose of this study was to investigate the association between CHIP-related mutations and symptomatic heart failure in patients diagnosed with acute myeloid leukemia (AML). A total of 563 patients with newly-diagnosed AML who underwent DNA sequencing of bone marrow before treatment were retrospectively investigated. Cox proportional hazard regression models and Fine and Gray's subdistribution hazard regression models were used to assess the association between CHIP-related mutations and symptomatic heart failure (HF). 79.0% patients had at least 1 CHIP-related mutation; the most frequent mutations were DNMT3A, ASXL1 and TET2. Fifty-one patients (9.1%) developed symptomatic HF. The incidence of symptomatic HF was more frequent in patients with DNMT3A mutations (P<0.01), with a 1-year cumulative incidence of symptomatic HF in patients with DNMT3A mutations of 11.4%, compared to 3.9% in wild-type DNMT3A patients (P<0.01). After adjustment for age and anthracyclines dose, DNMT3A mutations remained independently correlated with HF (HR: 2.32, 95% CI: 1.26-4.29, P=0.01). In conclusion, in patients with AML, the presence of DNMT3A mutations was associated with a 2-fold increased risk for symptomatic HF irrespective of age and anthracyclines use.

3.
Sci Rep ; 14(1): 13508, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866895

RESUMO

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Metilação de DNA , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/química , Sítios de Ligação
4.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920644

RESUMO

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Antígeno Nuclear de Célula em Proliferação , Piridonas , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Piridonas/farmacologia , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Células Hep G2 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Masculino , Ratos Endogâmicos F344 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dietilnitrosamina , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/genética
5.
Cell Stem Cell ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38917807

RESUMO

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.

6.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906602

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Assuntos
DNA Metiltransferase 3A , Proteína Forkhead Box O1 , Linfoma Difuso de Grandes Células B , MicroRNAs , Ácido Palmítico , MicroRNAs/genética , MicroRNAs/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animais , Camundongos , Ácido Palmítico/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Camundongos Nus , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos BALB C
7.
Cell Rep ; 43(6): 114297, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824643

RESUMO

The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.


Assuntos
Núcleo Celular , Células Endoteliais , Fatores de Transcrição Kruppel-Like , Transcriptoma , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , DNA Metiltransferase 3A , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Transcriptoma/genética , Masculino , Feminino
8.
Int J Hematol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861243

RESUMO

The classification of clonal plasmacytoid dendritic cell (pDC) proliferation associated with myeloid neoplasms remains a topic of ongoing debate. Although the fifth edition of the World Health Organization classification classifies clonal pDC proliferation into two categories, it is unclear whether this classification adequately captures the complexities of clonal pDC pathogenesis. We present a clinical case featuring myeloid sarcoma with pDC-like cells in cervical lymph nodes and bone marrow (BM). Analysis of biopsy specimens and BM aspirate revealed two distinct cellular populations expressing myeloid and pDC markers. One population exhibited myeloid leukemia and monocyte markers, including MPO, CD13, CD33, CD11b, and CD14, while the other manifested an immunophenotype reminiscent of pDCs, characterized by expression of CD56 and CD123. Additionally, whole exome sequencing and RNA sequencing of BM mononuclear cells were conducted to explore the pathophysiology of this rare malignancy, and unveiled pDC-like cell proliferation driven by IKZF1 and ETV6 mutations originating from clonal hematopoiesis initiated by a DNMT3A mutation. Notably, venetoclax-based therapy exhibited efficacy for achieving and sustaining complete remission. This case provides pivotal insights into the mechanistic aspects of pDC/pDC-like cell proliferation in myeloid sarcoma, offering valuable perspectives on therapeutic strategies.

9.
Ther Adv Rare Dis ; 5: 26330040241254123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827639

RESUMO

Overgrowth-intellectual disability (OGID) syndromes are a collection of rare genetic disorders with overlapping clinical profiles. In addition to the cardinal features of general overgrowth (height and/or head circumference at least two standard deviations above the mean) and some degree of intellectual disability, the OGID syndromes are often associated with neurological anomalies including seizures. In an effort to advance research in directions that will generate meaningful treatments for people with OGID syndromes, a new collaborative partnership called the Overgrowth Syndromes Alliance (OSA) formed in 2023. By taking a phenotype-first approach, OSA aims to unite research and patient communities traditionally siloed by genetic disorder. OSA has galvanized OGID patient organizations around shared interests and developed a research roadmap to identify and address our community's greatest unmet needs. Here, we describe the literature regarding seizures among those with overgrowth syndromes and present the OSA Research Roadmap. This patient-driven guide outlines the milestones essential to reaching the outcome of effective treatments for OGID syndromes and offers resources for reaching those milestones.


Working together to speed up treatments for rare genetic syndromes linked to excessive growth and intellectual disability To address the shared challenges experienced among those affected by overgrowth­intellectual disability (OGID) syndromes, we recently formed the Overgrowth Syndromes Alliance (OSA). The OSA unites patient advocacy organizations that have typically worked independently of one another, in hopes of accelerating our progress toward treatments. Here, we summarize the OGID syndromes represented by the OSA, the prevalence of seizures in these disorders, and efforts by the OSA to tackle the most pressing needs of the overgrowth community. We also present the steps patient organizations can take in pursuit of developing treatments. We hope the work of our alliance can be a template for creating collaborative, patient-led advances in diagnosis, management guidelines, and, eventually, treatment of rare genetic disorders.

10.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38838669

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.

11.
Clin Epigenetics ; 16(1): 76, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845031

RESUMO

Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Linhagem , Humanos , DNA Metiltransferase 3A/genética , Adulto , Masculino , DNA (Citosina-5-)-Metiltransferases/genética , Feminino , Cardiomiopatias/genética , Doenças da Aorta/genética , Sequenciamento do Exoma/métodos , Deficiência Intelectual/genética , Mutação
12.
FASEB J ; 38(10): e23690, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38795327

RESUMO

Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3A , DNA Metiltransferase 3B , Dieta Hiperlipídica , Intolerância à Glucose , Fígado , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética , Feminino , Camundongos Endogâmicos C57BL
13.
Transl Cancer Res ; 13(4): 1786-1806, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737693

RESUMO

Background: DNMT3A is the main molecule responsible for DNA methylation in cells. DNMT3A affects the progression of inflammation, degenerative diseases, and malignant tumors, and exhibits significant aberrantly expression in tumor tissues. Methods: Transcriptome data and relevant clinical information were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) datasets. Differential expression analysis and prognostic analysis were conducted based on above statistics. We constructed a clinical prognostic model and identified DNMT3A as an independent prognostic factor to accurately predict patient prognosis. Differential gene enrichment analysis revealed that DNMT3A affects the progression of glioma through multiple pathways, among which the tumor necrosis factor-α (TNF-α)/nuclear factor-kappa B (NF-κB) pathway shows a strong correlation. Immunological analysis also revealed a certain correlation between DNMT3A and tumor immunity. We demonstrated through gene editing that DNMT3A can affect the release of TNF-α in cells, thereby affecting the progression of glioma. Functional experiments have also demonstrated that DNMT3A plays a crucial role in tumors. Results: RNA-sequencing and survival analyses of lower-grade glioma (LGG) patients in TCGA, CGGA, and GEO cohorts showed that high DNMT3A expression correlated with poor prognosis of LGG patients. Univariate and multivariate Cox regression analyses showed that DNMT3A expression was an independent prognostic indicator in LGG. The prognosis prediction nomogram with age, World Health Organization (WHO) grading, and DNMT3A expression showed reliable performance in predicting the 1-, 3-, and 5-year overall survival (OS) of LGG patients. Functional enrichment analysis, gene set enrichment analysis (GSEA), and ESTIMATE algorithm analyses showed that DNMT3A expression was associated with the tumor infiltration of immune cells and predicted response to immunotherapy in two immunotherapy cohorts of pan-cancer patients. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of DNMT3A in the LGG cell lines suppressed proliferation, migration, and invasion of LGG cells by downregulating the TNF-α/NF-κB signaling pathway. Conclusions: Our data showed that DNMT3A was a potential prognostic biomarker in glioma. DNMT3A promoted proliferation and malignancy of LGG cells through the TNF-α/NF-κB signaling pathway. DNMT3A is a promising therapeutic target for treating patients with LGG.

14.
Clin Pract ; 14(3): 928-933, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38804405

RESUMO

Tatton-Brown-Rahman syndrome is a rare autosomal dominant hereditary disease caused by pathogenic variants in the DNMT3A gene, which is an important participant in epigenetic regulation, especially during embryonic development, and is highly expressed in all tissues. The main features of the syndrome are high growth, macrocephaly, intellectual disability, and facial dysmorphic features. We present a clinical case of Tatton-Brown-Rahman syndrome in a ten-year-old boy with macrocephaly with learning difficulties, progressive eye impairment, and fatigue suspected by a deep learning-based diagnosis assistance system, Face2Gene. The proband underwent whole-exome sequencing, which revealed a recurrent nonsense variant in the 12th exon of the DNMT3A, leading to the formation of a premature stop codon-NM_022552.5:c.1443C>A (p.Tyr481Ter), in a heterozygous state. This variant was not found in parents, confirming its de novo status. The patient case described here contributes to the understanding of the clinical diversity of Tatton-Brown-Raman syndrome with a mild clinical presentation that expands the phenotypic spectrum of the syndrome. We report the first recurrent nonsense variant in the DNMT3A gene, suggesting a mutational hot-spot. Differential diagnoses of this syndrome with Sotos syndrome, Weaver syndrome, and Cowden syndrome, as well as molecular confirmation, are extremely important, since the presence of certain types of pathogenic variants in the DNMT3A gene significantly increases the risk of developing acute myeloid leukemia.

15.
Heliyon ; 10(9): e29733, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707304

RESUMO

Background: Based on the bioinformatics prediction, this study investigates the correlation between aberrant transcription factor Frizzled 5 (FZD5) expression and the establishment of non-small cell lung cancer (NSCLC). Methods: A mouse model with regard to primary NSCLC was encouraged by intraperitoneal injection of urethane. Lentivirus-based FZD5 silencing was then administrated to examine its role in tumorigenesis in the mouse lung. Silencing of FZD5 was induced in two NSCLC cell lines to examine its function in the malignant behavior pertaining to cells in vitro. Quantitative methylation-specific PCR was employed to assess the DNA methylation level within the NSCLC cells. DNA methyltransferases (DNMTs) that administer FZD5 were assessed by chromatin immunoprecipitation assay. Consequently, overexpression of DNMT3A was introduced in mice and NSCLC cells to verify its regulation on FZD and its biological roles in NSCLC development. Results: In NSCLC, FZD5 expression is elevated, and its knockdown reduced tumor incidence rate in the urethane-challenged mice. The FZD5 silencing also inhibited proliferation, migration, as well as invasion with regard to Calu-3 and NCI-H1299 cells in vitro. The aberrant upregulation with regard to FZD5 in NSCLC was due to at least partly by reduced promoter methylation level. DNMT3A, which bound to FZD5 promoter to suppress its transcription, was poorly expressed in NSCLC. Artificial upregulation of DNMT3A suppressed urethane-induced lung carcinogenesis in mice and suppressed the malignant phenotype pertaining to NSCLC cells in vitro. Conclusion: This research demonstrates that the lack of DNA methylation level-induced activation of FZD5 is correlated with NSCLC's onset and progression.

16.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739169

RESUMO

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , DNA Metiltransferase 3A , Epigênese Genética , L-Lactato Desidrogenase , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , DNA Metiltransferase 3A/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Prognóstico
17.
Med Oncol ; 41(5): 109, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592567

RESUMO

Wnt-signaling pathway plays a crucial role in the pathogenesis and progression of Chronic Myeloid Leukemia (CML). sFRP1 is involved in the suppression of the Wnt-signaling pathway and has been shown to be epigenetically silenced by promoter hypermethylation during CML progression. DNMT3A plays a crucial role in promoter hypermethylation and is responsible for establishing methylation patterns. We aimed to analyze the relationship between sFRP1 expression and DNMT3A, TET1, TET2 and TET3 proteins that are responsible for maintaining cellular methylation patterns; along with miRNAs miR144-3p and miR-767-5p that are known to be associated with these proteins. CML cell lines K562 and K562S which stably expresses sFRP1, were used to compare the changes in miR144-3p and miR-767-5p expression. DNMT3A, TET1, TET2 and TET3 protein levels were analyzed by Western blot. In K562S cells the expression of miR-144-3p and miR-767-5p were decreased along with DNMT3A and TET1 protein levels. On the contrary, TET2 protein was increased. Our results support other reports involving sFRP1 and methylation dynamics; as well as opening new avenues of exploration. Our data supports the conclusion that re-expression of sFRP1 protein alters the expression of factors that play important roles in the overall methylation patterns in the leukemic cell line K562.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Humanos , Linhagem Celular , Metilação de DNA , Metilases de Modificação do DNA , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/genética
18.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643118

RESUMO

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Assuntos
MicroRNAs , Miocardite , Animais , Camundongos , Antagomirs/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose
19.
Front Oncol ; 14: 1342998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577341

RESUMO

Background: DNMT3A mutations can be detected in premalignant hematopoietic stem cells and are primarily associated with clonal hematopoiesis of indeterminate potential; however, current evidence does not support assigning them to a distinct European Leukemia Net (ELN) prognostic risk stratification. CD7 is a lymphoid antigen expressed on blasts in approximately 30% of acute myeloid leukemia (AML), and its role in AML remains unclear and depends on subgroup evaluation. This study investigated the prognostic value of DNMT3A mutation combined with CD7 expression in AML. Methods: We retrospectively analyzed the clinical data of 297 newly diagnosed non-M3 AML patients. According to the DNMT3A mutation and CD7 expression in AML cells, patients were divided into the DNMT3A-mutated/CD7-positive (CD7+), DNMT3A-mutated/CD7-negative (CD7-), DNMT3A-wild-type/CD7+, and DNMT3A-wild-type/CD7- groups. Results: The DNMT3A-mutated/CD7+ group had lower complete remission rates and higher relapse rates. Importantly, these patients had significantly shorter overall survival (OS) and relapse-free survival (RFS). Furthermore, multivariate analysis showed that CD7+ with DNMT3A mutation was an independent risk factor for OS and RFS. Conclusion: CD7+ with DNMT3A mutation predicts a poor prognosis in AML patients, and the immunophenotype combined with molecular genetic markers can help to further refine the current risk stratification of AML.

20.
Neurosci Lett ; 830: 137770, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616004

RESUMO

Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.


Assuntos
Moléculas de Adesão Celular Neuronais , Corticosterona , DNA Metiltransferase 3A , Proteínas da Matriz Extracelular , Hipotálamo , Proteína 2 de Ligação a Metil-CpG , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Feminino , Masculino , Ratos , Moléculas de Adesão Celular Neuronais/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/metabolismo , Caracteres Sexuais , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...