Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 172: 232-7, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26099636

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua preparations have antinociceptive, antiinflammatory, and neuroprotective activity. Recently, a neuroprotective role for T. catigua was proposed using an in vitro model of ischemia-reperfusion in rat hippocampal slices. The aim of the present study was to evaluate the effects of an ethyl-acetate fraction (EAF) of T. catigua, which has potent antioxidant activity, in mice subjected to an in vivo model of cerebral ischemia. MATERIAL AND METHODS: Male Swiss mice were subject to the bilateral common carotid occlusion (BCCAO) model of cerebral ischemia. The animals were orally administered the T. catigua EAF (200, 400, or 800 mg/kg) 30 min before and once per day for 7 days after BCCAO. Histological and behavioral outcomes were assessed using Nissl staining and the Morris water maze test of cognition, respectively. RESULTS: Mice that were subjected to BCCAO exhibited cognitive impairments in the Morris water maze. The spatial cognitive deficits were counteracted by T. catigua EAF administration (200-800 mg/kg). The T. catigua EAF significantly increased the number of intact-appearing Nissl-stained cells in the hippocampus in BCCAO mice. CONCLUSIONS: These results show that the T. catigua EAF promoted functional recovery, decreased the delayed hippocampal cell loss, and mitigated the ongoing neurodegenerative processes induced by BCCAO in mice.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Meliaceae/química , Extratos Vegetais/farmacologia , Acetatos/química , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Artéria Carótida Primitiva/patologia , Estenose das Carótidas/complicações , Morte Celular/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Extratos Vegetais/administração & dosagem
2.
J Nutr Sci ; 3: e27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26101596

RESUMO

While methods to evaluate antioxidant capacity in animals exist, one problem with the models is induction of oxidative stress. It is necessary to promote a great enough challenge to induce measurable alterations to oxidative parameters while ensuring the protocol is compatible with animal welfare. The aim of the present study was to evaluate caged transport as a viable short-term stress that would significantly affect oxidative parameters. Twenty adult Beagle dogs, maintained on the same diet for 60 d prior to the transport, were included in the study. To simulate the stress, the dogs were housed in pairs in transport cages (1·0 m × 1·0 m × 1·5 m), placed on a truck coupled to a trailer and transported for a period of 15 min. Blood collection was performed immediately before and again 3 h after the transportation to evaluate oxidative parameters in blood serum, including thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), sequestration activity of the radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), protein carbonylation (PC), total sulfhydryl groups (SH), alpha-tocopherol (αToc) and retinol (Ret). PC, SH and αToc were not significantly changed in the study; however, TBARS, TAC and DPPH increased, whereas Ret decreased after the transport. Although the lack of a control group of dogs not submitted to transport is a limitation to be considered, we conclude that the transport model is effective in inducing an antioxidant response in dogs and relevant blood parameters show sensitivity to this proposed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA