Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 25(10): e3209, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410953

RESUMO

Historically, methods to remove the 4-methoxybenzyl (Mob)-protecting group from selenocysteine (Sec) in peptides have used harsh and toxic reagents. The use of 2,2'-dithiobis-5-nitropyridine (DTNP) is an improvement over these methods; however, many wash steps are required to remove the by-product contaminant 5-nitro-2-thiopyridine. Even with many washes, excess DTNP adheres to the peptide. The final product needs excess purification to remove these contaminants. It was recently discovered by our group that hindered hydrosilanes could be used to reduce Cys(Mob). We sought to apply a similar methodology to reduce Sec(Mob), which we expected to be even more labile. Here, we present a gentle and facile method for deprotection of Sec(Mob) using triethylsilane (TES), phenol, and a variety of other scavengers often used in deprotection cocktails. The different cocktails were all incubated at 40 °C for 4 hours. The combination of TFA/TES/thioanisole (96:2:2) appeared to be the most efficient of the cocktails tested, providing complete deprotection and yielded peptide that was mainly in the diselenide form. This cocktail also showed no evidence of side reactions or significant contaminants in the high-performance liquid chromatography (HPLC) and mass spectral (MS) analyses. We envision that our new method will allow for a simple and gentle "one-pot" deprotection of Sec(Mob) following solid-phase peptide synthesis and will minimize the need for extensive purification steps.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Selenocisteína/química , Técnicas de Síntese em Fase Sólida , Sequência de Aminoácidos
2.
Biotechnol J ; 10(3): 480-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25303209

RESUMO

These investigations were designed to improve capture efficiency and selectivity in the immobilized metal ion affinity chromatographic (IMAC) purification of tagged recombinant proteins expressed in Escherichia coli cells, utilizing an alternative and novel class of immobilized metal binding ligands. The impact of loading conditions and lysate composition on the IMAC purification of NT1A- or His6 -tagged green fluorescent protein (GFP), using the ligands 1,4,7-triazacyclononane (tacn) and bis(1,4,7-triazacyclononyl)propane (dtnp), charged with Cu(2+) ions, has thus been explored. These findings were compared to the performance of a commercial adsorbent, IMAC Sepharose™ 6 FF, similarly charged with Cu(2+) ions. With the same loading, wash and elution protocols, the tacn- and dtnp-derived adsorbents showed higher selectivity in terms of removal of E. coli host cell proteins than the commercial adsorbent, while low molecular weight components in the crude lysate had a higher impact on the binding capacities of tacn- and dtnp-derived adsorbents. This effect of lysate composition could be reduced through osmotic shock treatment of the E. coli cells prior to lysis. Additionally, the protein-binding capacities of the tacn-based resins were enhanced by increasing their ligand densities. Because both the tacn- and the dtnp-derived IMAC adsorbents exhibit very high metal ion stability constants, under the chromatographic conditions examined, they could be used several times without re-charging with Cu(2+) ions. The results of these studies thus expand the general application scope of tacn-based IMAC resins for use in the capture and purification of tagged recombinant proteins.


Assuntos
Compostos Aza/química , Cromatografia de Afinidade/métodos , Proteínas de Fluorescência Verde/química , Piperidinas/química , Proteínas Recombinantes/isolamento & purificação , Compostos Aza/metabolismo , Quelantes/química , Quelantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/isolamento & purificação , Histidina/química , Ferro/química , Piperidinas/metabolismo , Ligação Proteica , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA