RESUMO
Skeletal muscle fibrosis is defined as the excessive accumulation of extracellular matrix (ECM) components and is a hallmark of muscular dystrophies. Fibro-adipogenic progenitors (FAPs) are the main source of ECM, and thus have been strongly implicated in fibrogenesis. In skeletal muscle fibrotic models, including muscular dystrophies, FAPs undergo dysregulations in terms of proliferation, differentiation, and apoptosis, however few studies have explored the impact of FAPs migration. Here, we studied fibroblast and FAPs migration and identified lysophosphatidic acid (LPA), a signaling lipid central to skeletal muscle fibrogenesis, as a significant migration inductor. We identified LPA receptor 1 (LPA1) mediated signaling as crucial for this effect through a mechanism dependent on the Hippo pathway, another pathway implicated in fibrosis across diverse tissues. This cross-talk favors the activation of the Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), leading to increased expression of fibrosis-associated genes. This study reveals the role of YAP in LPA-mediated fibrotic responses as inhibition of YAP transcriptional coactivator activity hinders LPA-induced migration in fibroblasts and FAPs. Moreover, we found that FAPs derived from the mdx4cv mice, a murine model of Duchenne muscular dystrophy, display a heightened migratory phenotype due to enhanced LPA signaling compared to wild-type FAPs. Remarkably, we found that the inhibition of LPA1 or YAP transcriptional coactivator activity in mdx4cv FAPs reverts this phenotype. In summary, the identified LPA-LPA1-YAP pathway emerges as a critical driver of skeletal muscle FAPs migration and provides insights into potential novel targets to mitigate fibrosis in muscular dystrophies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Fibroblastos , Fibrose , Lisofosfolipídeos , Músculo Esquelético , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Proteínas de Sinalização YAP , Lisofosfolipídeos/metabolismo , Animais , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Camundongos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Via de Sinalização Hippo , Camundongos Endogâmicos mdx , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Adipogenia/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologiaRESUMO
Female carriers of Duchenne Muscular Dystrophy (DMD) carry a heterozygous pathogenic variant in the dystrophin gene and can transmit pathogenic variants to their offspring. DMD is an X-linked recessive disease that affects up to 19.8 in every 100,000 male births. Those carriers with symptoms can be referred to as women with dystrophinopathy. Even among asymptomatic carriers, cardiac involvement can be verified in between 2.5% and 75% through echocardiography. The most commonly affected wall of the left ventricle is the inferolateral, with myocardial fibrosis detected by cardiac nuclear resonance. Therefore, screening is recommended for these women carriers due to the risk of cardiomyopathy. There is a lack of longitudinal studies on the evolution of these carriers. In this article, data on clinical presentation, cardiac assessment for female patients with dystrophinopathy and DMD carriers, and approaches for these patients are discussed.
Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Feminino , Distrofina/genética , Mães , Cardiopatias/etiologia , Criança , Ecocardiografia , HeterozigotoRESUMO
INTRODUCTION: Uncaria tomentosa (Willd. ex Roem. & Schult.) DC. (Rubiaceae) or UT is a medicinal plant with antiviral, antimutagenic, anti-inflammatory and antioxidant properties. Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by mutations in the dystrophin gene; this deficiency leads to sarcolemma instability, inflammation, muscle degeneration and fibrosis. OBJECTIVE: Considering the importance of inflammation to dystrophy progression and the anti-inflammatory activity of UT, in the present study we evaluated whether oral administration of UT extract would ameliorate dystrophy in the mdx mice, a DMD model. METHODS: Eight-week-old male mdx mice were submitted to 200 mg/kg body weight daily UT oral administration for 6 weeks. General histopathology was analysed, and muscle tumor necrosis factor α, transforming growth factor-ß, myostatin and osteopontin transcript levels were assessed. The ability of mice to sustain limb tension to oppose their gravitational force was measured. Data were analysed with the unpaired Student's t-test. RESULTS: Morphologically, both untreated and UT-treated animals exhibited internalised nuclei, increased endomysial connective tissue and variations in muscle fibre diameters. Body weight and muscle strength were significantly reduced in the UT-treated animals. Blood creatine kinase was higher in UT-treated compared to untreated animals. In tibialis anterior, myostatin, transcript was more highly expressed in the UT-treated while in the diaphragm muscle, transforming growth factor-ß transcripts were less expressed in the UT-treated. CONCLUSION: While previous studies identified anti-inflammatory, antiproliferative and anticarcinogenic UT effects, the extract indicates worsening of dystrophic muscles phenotype after short-term treatment in mdx mice.
Assuntos
Animais , Camundongos , Unha-de-Gato , Distrofia Muscular de Duchenne , Camundongos Endogâmicos mdx , Força MuscularRESUMO
Dystrophin Dp71 is the major product of the Duchenne muscular dystrophy (DMD) gene in the brain, and its loss in DMD patients and mouse models leads to cognitive impairments. Dp71 is expressed as a range of proteins generated by alternative splicing of exons 71 to 74 and 78, classified in the main Dp71d and Dp71f groups that contain specific C-terminal ends. However, it is unknown whether each isoform has a specific role in distinct cell types, brain regions, and/or stages of brain development. In the present study, we characterized the expression of Dp71 isoforms during fetal (E10.5, E15.5) and postnatal (P1, P7, P14, P21 and P60) mouse and rat brain development. We finely quantified the expression of several Dp71 transcripts by RT-PCR and cloning assays in samples from whole-brain and distinct brain structures. The following Dp71 transcripts were detected: Dp71d, Dp71d∆71, Dp71d∆74, Dp71d∆71,74, Dp71d∆71-74, Dp71f, Dp71f∆71, Dp71f∆74, Dp71f∆71,74, and Dp71fΔ71-74. We found that the Dp71f isoform is the main transcript expressed at E10.5 (> 80%), while its expression is then progressively reduced and replaced by the expression of isoforms of the Dp71d group from E15.5 to postnatal and adult ages. This major finding was confirmed by third-generation nanopore sequencing. In addition, we found that the level of expression of specific Dp71 isoforms varies as a function of postnatal stages and brain structure. Our results suggest that Dp71 isoforms have different and complementary roles during embryonic and postnatal brain development, likely taking part in a variety of maturation processes in distinct cell types.
RESUMO
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
RESUMO
The emergence of therapies acting on specific molecular targets for Duchenne and Becker muscular dystrophies (DBMD) led to expanded access of diagnostic DMD analysis. However, it is unclear how much of these advances have also improved healthcare and access to genetic testing for women at-risk of being carriers. This study evaluates the process of genetic counseling and empowerment of genetic information by women from DBMD families. We carried out a cross-sectional study between February and June 2022 in Brazil. The online survey with items regarding sociodemographic data; family history; access to health services; reproductive decisions; and the Genomic Outcome Scale was answered by 123 women recruited from a rare diseases reference service and a nationwide patient advocacy group. Genetic counseling was reported by 77/123 (62.6%) of women and 53.7% reported having performed genetic analysis of DMD. Although the majority knew about the risks for carriers of developing heart disease and muscle weakness, only 35% of potential carriers have had cardiac studies performed at least once in their lives. Country region, type of kinship, number of affected males in the family, age, notion of genetic risk, education level, and participation in advocacy groups were the main factors associated with adequate healthcare access to women and empowerment of genetic information. Education to health professionals and policies to expand access to carrier genetic testing, whether public policies or regulation of pharmaceutical companies' diagnostic programs, is paramount to improve the care of families with DBMD in Brazil.
RESUMO
The muscle is the principal tissue that is capable to transform potential energy into kinetic energy. This process is due to the transformation of chemical energy into mechanical energy to enhance the movements and all the daily activities. However, muscular tissues can be affected by some pathologies associated with genetic alterations that affect the expression of proteins. As the muscle is a highly organized structure in which most of the signaling pathways and proteins are related to one another, pathologies may overlap. Duchenne muscular dystrophy (DMD) is one of the most severe muscle pathologies triggering degeneration and muscle necrosis. Several mathematical models have been developed to predict muscle response to different scenarios and pathologies. The aim of this review is to describe DMD and Becker muscular dystrophy in terms of cellular behavior and molecular disorders and to present an overview of the computational models implemented to understand muscle behavior with the aim of improving regenerative therapy.
Assuntos
Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Simulação por Computador , Modelos BiológicosRESUMO
Resumo Fundamento: Distrofia Muscular de Duchenne (DMD) é uma doença neuromuscular hereditária rara. O acometimento cardíaco inicial pode ser assintomático. Portanto, a avaliação por métodos não invasivos pode auxiliar sua abordagem. Objetivos: Analisar o eletrocardiograma (ECG) e a variabilidade da frequência cardíaca (VFC) do grupo com DMD, e comparar com a do grupo controle pareado por idade. Métodos: Estudo prospectivo com 27 pacientes masculinos com DMD (idade de 11,9 anos) que foram submetidos à avaliação clínica, ECG, ecocardiograma e Holter. ECG (aumento de 200%) foi avaliado por dois observadores independentes. VFC foi feita no domínio do tempo (24 h) e da frequência na posição supina e sentada. O grupo saudável foi de nove pacientes (11,0 anos). Um valor de p < 0,05 foi considerado estatisticamente significante. Resultados: A média da fração de ejeção (FE) foi de 60% (34 a 71%). O coeficiente de Kappa para as medidas do ECG variou de 0,64 a 1,00. Foram verificados aumento da relação R/S em V1 em 25,9%, onda Q patológica em 29,6% e QRS fragmentado em 22,2% em regiões inferior/lateral alta, este com correlação negativa com FE (p = 0,006). Houve baixa VFC, sem influência de nenhuma variável, inclusive tratamento. Com a mudança da posição, houve aumento da FC (p = 0,004), porém não houve alteração da VFC. A relação LF/HF foi de 2,7 na DMD e de 0,7 no controle (p = 0,002). Conclusões: Nos participantes com DMD, as ondas R proeminentes em V1 e alterações nas regiões inferior/lateral alta ocorreram em quase 30% dos casos. Houve menor tônus vagal sem influência das variáveis idade, fração de ejeção, dispersão do QT e tratamento. Apesar do aumento da FC, não houve resposta adequada da VFC com a mudança de posição.
Abstract Background: Duchenne Muscular Dystrophy (DMD) is a rare inherited neuromuscular disease. At first, cardiac involvement may be asymptomatic. Therefore, assessing patients using non-invasive methods can help detect any changes. Objectives: Analyze the electrocardiogram (ECG) test and heart rate variability (HRV) of the DMD group and compare the information with that of the age-matched control group. Methods: A prospective study with 27 male patients with DMD (11.9 years old), who underwent clinical evaluation, ECG, echocardiogram, and Holter monitoring. ECG (200% increase) was assessed by two independent observers. HRV was measured over time (24 h) and in the frequency domain, in the supine and sitting positions. The healthy group consisted of nine patients (11.0 years old). A value of p < 0.05 was considered statistically significant. Results: The mean ejection fraction (EF) was 60% (34 to 71%). The Kappa coefficient for ECG measurements ranged from 0.64 to 1.00. An increase in the R/S ratio in V1 was observed in 25.9% of the subjects, pathological Q wave in 29.6%, and fragmented QRS in 22.2% in inferior/high lateral regions, with a negative correlation with EF (p = 0.006). There was low HRV, without the influence of any variable, including treatment. With the change in position, there was an increase in HR (p = 0.004), but there was no change in HRV. The LF/HF ratio was 2.7 in the DMD group and 0.7 in the control group (p = 0.002). Conclusions: In DMD subjects, prominent R waves in V1 and changes in the inferior/high lateral regions occurred in almost 30% of the cases. Lower vagal tone was observed without the influence of the variables age, ejection fraction, QT dispersion, and treatment. Despite the increase in HR, there was no adequate HRV response to the change in position.
RESUMO
Abstract Introduction: Duchenne muscular dystrophy (DMD) is a recessive genetic disease linked to the X chromosome, leading to progressive muscle tissue loss. Initially, there is difficulty getting up from the floor and an increased frequency of falls. Maintaining ambulation as long as possible is essential, and the use of ankle-foot orthosis (AFO) has been investigated as an ally in this process. Objective: To verify the prescription and use of an AFO for ambulant boys with DMD. Methods: Information was collected using the medical records of 181 patients with DMD from the Neuropediatric Service of the Instituto de Puericultura e Pediatria Martagão Gesteira of the Universidade Federal do Rio de Janeiro. Variables used were: age at the first medical appointment, age at first symptoms, age at loss of independent gait, time between the first symptoms and loss of gait, prescription of orthosis, time of use, and surgical intervention in the lower limbs. Results: The orthosis was prescribed for 63.5% of patients and used by 38.1%. The range of orthosis time was 2 to 4 years (62.3%). The night sleep period was the most prescribed for orthosis use, with 67.2%. Patients who used the orthosis for a longer time were older at gait loss. However, the children who arrived earlier for the first appointment had a higher frequency of orthosis prescriptions and later loss of gait. Conclusion: The use of AFO can help maintain ambulation for longer in boys with DMD.
Resumo Introdução: A distrofia muscular de Duchenne (DMD) é uma doença genética recessiva ligada ao cromossomo X, que cursa com a perda progressiva do tecido muscular. Inicialmente, observa-se dificuldade para levantar do chão e aumento dafrequência de quedas. A manutenção da deambulação pelo maior tempo possível é importante e o uso de órtese tornozelo-pé (OTP) tem sido investigado como aliado nesse processo. Objetivo: Verificar a prescrição e uso de OTP para meninos deambulantes com DMD. Métodos: As informações foram coletadas dos prontuários de 181 pacientes com DMD do Serviço de Neuropediatria do Instituto de Puericultura e Pediatria Martagão Gesteira, da Universidade Federal do Rio de Janeiro. As variáveis utilizadas foram: idade na primeira consulta, idade aos primeiros sintomas, idade na perda da marcha independente, tempo entre os primeiros sintomas e a perda da marcha, prescrição de órtese, tempo de uso e intervenção cirúrgica nos membros inferiores. Resultados: A órtese foi prescrita para 63,5% dos pacientes e utilizada por 38,1%. A variação do tempo de uso foi de 2 a 4 anos (62,3%). O período noturno foi o mais prescrito para uso da órtese, com 67,2%. Os pacientes que a usaram por mais tempo apresentaram maiores idades na perda da marcha. Crianças que chegaram mais precocemente à primeira consulta tiveram maior frequência de prescrição de órtese e perda da marcha mais tardiamente. Conclusão: O uso de OTP pode ajudar a manter a deambulação por mais tempo em meninos com DMD.
RESUMO
Dystrophinopathies are muscle diseases caused by pathogenic variants in DMD, the largest gene described in humans, representing a spectrum of diseases ranging from asymptomatic creatine phosphokinase elevation to severe Duchenne muscular dystrophy (DMD). Several therapeutic strategies are currently in use or under development, each targeting different pathogenic variants. However, little is known about the genetic profiles of northeast Brazilian patients with dystrophinopathies. We describe the spectrum of pathogenic DMD variants in a single center in northeast Brazil. This is an observational, cross-sectional study carried out through molecular-genetic analysis of male patients diagnosed with dystrophinopathies using Multiplex Ligation-dependent Probe Amplification (MLPA) followed by Next-Generation Sequencing (NGS)-based strategies. A total of 94 male patients were evaluated. Deletions (43.6%) and duplications (10.6%) were the most recurring patterns of pathogenic variants. However, small variants were present in 47.1% of patients, most of them nonsense variants (27.6%). This is the largest South American single-center case series of dystrophinopathies to date. We found a higher frequency of treatment-amenable nonsense single-nucleotide variants than most previous studies. These findings may have implications for diagnostic strategies in less-known populations, as a higher frequency of nonsense variants may mean a higher possibility of treating patients with disease-modifying drugs.
RESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKα and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.
Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Hipóxia/metabolismo , Autofagia , RNA Mensageiro/metabolismoRESUMO
A Distrofia Muscular de Duchenne (DMD) é uma doença neuromuscular progressiva recessiva causada por mutações genéticas ligadas ao cromossomo X. Além do enfraquecimento muscular progressivo, a condição é associada a alterações neuropsicológicas. O objetivo deste estudo foi realizar uma revisão sistematizada da temática, para investigar os aspectos cognitivos e comportamentais associados à DMD pela literatura, nos últimos dez anos (2011-2021). Realizou-se uma revisão integrativa da literatura, com o propósito de sintetizar e analisar o conhecimento sobre o tema no campo científico, sendo efetuada busca nas bases de dados e motores de busca Science Direct, SciELO, PubMed e BVS. Após consideração dos critérios de inclusão e exclusão, foram selecionados 29 artigos para análise. Os resultados endossaram que alterações cognitivas e do neurodesenvolvimento, bem como de problemas comportamentais parecem ser mais prováveis na DMD, em comparação com a população geral. Verificou-se escassez de estudos empíricos brasileiros e a necessidade de avaliar e intervir nos âmbitos neuropsicológico e psicossocial, de forma precoce, contínua e multidisciplinar, no intuito de atender às necessidades desse grupo.
Duchenne Muscular Dystrophy (DMD) is a recessive progressive neuromuscular disease caused by X-linked genetic mutations. In addition to progressive muscle weakness, the condition is associated with neuropsychological alterations. The aim of this study was to perform a systematic review about the theme, to investigate the cognitive and behavioral aspects associated with DMD in the literature, over the last ten years (2011-2021). An integrative literature review was carried out, with the purpose of synthesizing and analyzing the knowledge on the subject in the scientific field, with a search in the databases and search engines Science Direct, SciELO, PubMed and BVS. After considering the inclusion and exclusion criteria, 29 articles were selected for analysis. The results endorsed that cognitive and neurodevelopmental alterations and behavioral problems seem to be more likely in DMD, when compared to the general population. There was a lack of brazilian empirical studies and the need to assess and intervene in the neuropsychological and psychosocial spheres was observed, in an early, continuous and multidisciplinary way, in order to meet the needs of this group.
La distrofia muscular de Duchenne (DMD) es una enfermedad neuromuscular progresiva recesiva causada por mutaciones genéticas ligadas al cromosoma X. Además de la debilidad muscular progresiva, la afección se asocia con cambios neuropsicológicos. El objetivo de este estudio fue realizar una revisión sistemática del tema, para investigar los aspectos cognitivos y conductuales asociados a la DMD en la literatura, en los últimos diez años (2011-2021). Se realizó una revisión integradora de la literatura, con el propósito de sintetizar y analizar el conocimiento sobre el tema en el campo científico, mediante una búsqueda en las bases de datos y motores de búsqueda Science Direct, SciELO, PubMed y BVS. Después de considerar los criterios de inclusión y exclusión, se seleccionaron 29 artículos para su análisis. Los resultados respaldaron que alteraciones cognitivas y del neurodesarrollo, así como problemas del comportamiento parecen ser más probables en la DMD en comparación con la población general. Se observó la escasez de estudios empíricos brasileños, así como la necesidad de evaluar e intervenir en los ámbitos neuropsicológico y psicosocial, de forma precoz, continua y multidisciplinar, para atender las necesidades de esta población.
Assuntos
Transtornos Cognitivos , Distrofia Muscular de Duchenne , Transtornos Mentais , Deficiências da AprendizagemRESUMO
Oxidative stress (OS) plays an essential role in the pathophysiology of Duchenne muscular dystrophy (DMD). However, the actors that regulate OS need to be better studied. We aimed to evaluate whether NFE2-like bZIP transcription factor 2 (Nrf2), glutathione, malondialdehyde (MDA), and protein carbonyl concentrations change according to the disease severity in DMD patients. Moreover, we assessed whether OS correlated with muscle injury, clinical characteristics, physical activity, and antioxidant food consumption (AFC). A total of 28 DMD patients participated in this study. OS markers, metabolic indicators, and enzymatic markers of muscle injury were measured in circulation. Muscle injury was measured with clinical scales, and physical activity and AFC were evaluated with questionnaires. Nrf2 concentration was lower (p ≤ 0.01), and malondialdehyde concentration was higher (p < 0.05) in non-ambulatory patients than in ambulatory patients. Nrf2 correlated with age (rho = -0.387), Vignos scale (rho = -0.328), GMFCS scale (rho = -0.399), and Brooke scale scores (rho = -0.371) (p < 0.05). MDA correlated with Vignos (rho = 0.317) and Brooke scale scores (rho = 0.414) (p ≤ 0.05). In conclusion, DMD patients with the worst muscle function had more significant oxidative damage and lower antioxidant function than DMD patients with better muscle function.
RESUMO
Abstract Objective: To analyze the underlying components of reduced maximal static inspiratory (MIP) and expiratory (MEP) pressures in subjects with Duchenne muscular dystrophy. Methods: Forty-three subjects were assessed based on routine pulmonary function tests. MIP and MEP were measured the subjects performed maximal expirations and inspirations using a snorkel mouthpiece. Lung volumes were measured us ing the helium dilution technique. Results: The mean age was 13 years (range, 7-20 years). Median total lung capacity (TLC) and residual volume (RV) were 78.0 (49.0-94.0) and 27.0 (19.7-30.1) of the predicted values re spectively. The RV/TLC relationship was 35.3% (28.1-47.7). Thirty-five subjects had a TLC below the lower limit of normal, while 31 had an RV/TLC ratio above the upper limit of normal. The median (IQR) MIP and MEP values were -53.0 (-65.5 to -41.8) and 58.0 (41.5-74.8) cmH2O respectively. MIP and MEP in percent of the predicted values (predicted TLC and RV) were 42.6 (33.3-50.8) and 33.7 (23.9-44.5). MIP in percent of the RV reached for Group A (7-11 years old) was higher (p 0.025) while MEP in percent of the TLC reached for Group B (12-16 years) and C (17-20 years) were higher too (0.031). Conclusions: In subjects with Duchenne muscular dystrophy, the intrinsic weakness of respiratory muscles and mechanical disadvantage lead to inadequate maximal static pressure generation. Maximal static pressures should be interpreted cautiously as they overestimate respiratory muscle weakness when compared to predicted values obtained at TLC and RV. Our results provide additional data supporting absolute values use rather than predicted values.
Resumen Objetivo: Analizar los componentes subyacentes de las presiones inspiratorias (MIP) y espiratorias (MEP) es táticas máximas reducidas en sujetos con distrofia de Duchenne (DMD). Métodos: Se evaluaron 43 pacientes mediante pruebas de función pulmonar rutinarias. MIP y MEP fueron medidas a inspiración y espiración máximas. Los volúmenes pulmonares se midieron mediante dilución de helio. Resultados: Edad media 13 años (rango 7-20 años). La capacidad pulmonar total (TLC) y el volumen residual (RV) fueron 78.0% (49.0-94.0) y 27.0% (19.7- 30.1) de los valores predichos. El RV/TLC fue de 35.3% (28.1-47.7). Treinta y cinco sujetos tenían una TLC por debajo del límite inferior de normalidad, 31 tenían una RV/TLC por encima del límite superior de la normalidad. MIP y MEP fueron -53.0 (-65.5 a -41.8) y 58.0 (41.5-74.8) cmH2O, mientras que en % de los predichos (TLC y RV predichos) fueron 42.6 (33.3-50.8) y 33.7 (23.9-44.5). MIP en % del RV alcanzado (Grupo A 7-11 años) fue mayor (p 0.025), y MEP en % de la TLC alcanzada Grupo B (12-16 años) y C (17-20 años), también fue mayor (0.031). Conclusiones: En sujetos con DMD, debilidad intrínseca de los músculos respiratorios y desventaja mecánica conducen a generación de presión estática máxima inadecuada. Las mismas deben interpretarse con cautela, ya que sobrestiman la debilidad de los músculos respiratorios si se las compara con las tablas de valores predichos obtenidos a TLC y RV. Nuestros resultados proporcionan datos adicionales que respaldan la utilización de valores absolutos en lugar de los predichos.
RESUMO
OBJECTIVE: To analyze the underlying components of reduced maximal static inspiratory (MIP) and expiratory (MEP) pressures in subjects with Duchenne muscular dystrophy. METHODS: Forty-three subjects were assessed based on routine pulmonary function tests. MIP and MEP were measured the subjects performed maximal expirations and inspirations using a snorkel mouthpiece. Lung volumes were measured using the helium dilution technique. RESULTS: The mean age was 13 years (range, 7-20 years). Median total lung capacity (TLC) and residual volume (RV) were 78.0 (49.0-94.0) and 27.0 (19.7-30.1) of the predicted values respectively. The RV/TLC relationship was 35.3% (28.1-47.7). Thirty-five subjects had a TLC below the lower limit of normal, while 31 had an RV/TLC ratio above the upper limit of normal. The median (IQR) MIP and MEP values were -53.0 (-65.5 to -41.8) and 58.0 (41.5-74.8) cmH2O respectively. MIP and MEP in percent of the predicted values (predicted TLC and RV) were 42.6 (33.3-50.8) and 33.7 (23.9-44.5). MIP in percent of the RV reached for Group A (7-11 years old) was higher (p 0.025) while MEP in percent of the TLC reached for Group B (12-16 years) and C (17-20 years) were higher too (0.031). CONCLUSIONS: In subjects with Duchenne muscular dystrophy, the intrinsic weakness of respiratory muscles and mechanical disadvantage lead to inadequate maximal static pressure generation. Maximal static pressures should be interpreted cautiously as they overestimate respiratory muscle weakness when compared to predicted values obtained at TLC and RV. Our results provide additional data supporting absolute values use rather than predicted values.
OBJETIVO: Analizar los componentes subyacentes de las presiones inspiratorias (MIP) y espiratorias (MEP) estáticas máximas reducidas en sujetos con distrofia de Duchenne (DMD). Métodos: Se evaluaron 43 pacientes mediante pruebas de función pulmonar rutinarias. MIP y MEP fueron medidas a inspiración y espiración máximas. Los volúmenes pulmonares se midieron mediante dilución de helio. RESULTADOS: Edad media 13 años (rango 7-20 años). La capacidad pulmonar total (TLC) y el volumen residual (RV) fueron 78.0% (49.0-94.0) y 27.0% (19.7- 30.1) de los valores predichos. El RV/TLC fue de 35.3% (28.1-47.7). Treinta y cinco sujetos tenían una TLC por debajo del límite inferior de normalidad, 31 tenían una RV/TLC por encima del límite superior de la normalidad. MIP y MEP fueron -53.0 (-65.5 a -41.8) y 58.0 (41.5-74.8) cmH2O, mientras que en % de los predichos (TLC y RV predichos) fueron 42.6 (33.3-50.8) y 33.7 (23.9-44.5). MIP en % del RV alcanzado (Grupo A 7-11 años) fue mayor (p 0.025), y MEP en % de la TLC alcanzada Grupo B (12-16 años) y C (17-20 años), también fue mayor (0.031). CONCLUSIONES: En sujetos con DMD, debilidad intrínseca de los músculos respiratorios y desventaja mecánica conducen a generación de presión estática máxima inadecuada. Las mismas deben interpretarse con cautela, ya que sobrestiman la debilidad de los músculos respiratorios si se las compara con las tablas de valores predichos obtenidos a TLC y RV. Nuestros resultados proporcionan datos adicionales que respaldan la utilización de valores absolutos en lugar de los predichos.
Assuntos
Distrofia Muscular de Duchenne , Humanos , Adolescente , Criança , Distrofia Muscular de Duchenne/complicações , Testes de Função Respiratória , Músculos Respiratórios , Debilidade Muscular/etiologiaRESUMO
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of muscular dystrophy. The mdx mouse is one of the most widely used experimental models to understand aspects of the biology of dystrophic skeletal muscles and the mechanisms of DMD. Oxidative stress and apoptosis are present in early stages of the disease in mdx mice. The high production of reactive oxygen species (ROS) causes activation of apoptotic death regulatory proteins due to DNA damage and breakdown of nuclear and mitochondrial membranes. The quadriceps (QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreasing the production of reactive oxygen species (ROS). The present study aimed to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of mdx mice, cilostazol treatment decreased ROS production (-74%), the number of lipofuscin granules (-47%), lipid peroxidation (-11%), and the number of apoptotic cells (-66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action in the QUA muscle of mdx mice.
Assuntos
Distrofia Muscular de Duchenne , Músculo Quadríceps , Camundongos , Animais , Camundongos Endogâmicos mdx , Espécies Reativas de Oxigênio/metabolismo , Cilostazol/farmacologia , Cilostazol/metabolismo , Músculo Quadríceps/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo , ApoptoseRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/ LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKA and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.
Assuntos
Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Pluripotentes Induzidas , Atrofia/metabolismo , Atrofia/patologia , Autofagia , RNA Mensageiro/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Hipóxia/metabolismoRESUMO
Introduction: Our objective was to identify recent CPGs for the diagnosis and management of DMD and summarize their characteristics and reliability. Methods: We conducted a scoping review of CPGs using MEDLINE, the Turning Research Into Practice (TRIP) database, Google Scholar, guidelines created by organizations, and other repositories to identify CPGs published in the last 5 years. Our protocol was drafted using the Preferred Reporting Items for Systematic Reviews and Meta-analyses for scoping reviews. To assess the reliability of the CPGs, we used all the domains included in the Appraisal of Guidelines Research and Evaluation II. Results: We selected three CPGs published or updated between 2015 and 2020. All the guidelines showed good or adequate methodological rigor but presented pitfalls in stakeholder involvement and applicability domains. Recommendations were coherent across CPGs on steroid treatment, except for minor differences in dosing regimens. However, the recommendations were different for new drugs. Discussion: There is a need for current and reliable CPGs that develop broad topics on the management of DMD and consider the challenges of developing recommendations for RDs.
RESUMO
Dystrophin Dp71 is the most abundant product of the Duchenne muscular dystrophy gene in the nervous system, and mutations impairing its function have been associated with the neurodevelopmental symptoms present in a third of DMD patients. Dp71 is required for the clustering of neurotransmitter receptors and the neuronal differentiation of cultured cells; nonetheless, its precise role in neuronal cells remains to be poorly understood. In this study, we analyzed the effect of two pathogenic DMD gene point mutations on the Dp71 function in neurons. We engineered C272Y and E299del mutations to express GFP-tagged Dp71 protein variants in N1E-115 and SH-SY5Y neuronal cells. Unexpectedly, the ectopic expression of Dp71 mutants resulted in protein aggregation, which may be mechanistically caused by the effect of the mutations on Dp71 structure, as predicted by protein modeling and molecular dynamics simulations. Interestingly, Dp71 mutant variants acquired a dominant negative function that, in turn, dramatically impaired the distribution of different Dp71 protein partners, including ß-dystroglycan, nuclear lamins A/C and B1, the high-mobility group (HMG)-containing protein (BRAF35) and the BRAF35-family-member inhibitor of BRAF35 (iBRAF). Further analysis of Dp71 mutants provided evidence showing a role for Dp71 in modulating both heterochromatin marker H3K9me2 organization and the neuronal genes' expression, via its interaction with iBRAF and BRAF5.
Assuntos
Distrofina , Neuroblastoma , Distroglicanas/genética , Distrofina/genética , Heterocromatina , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Laminas/genética , Neurônios/metabolismo , Lâmina Nuclear/metabolismo , Mutação Puntual , Agregados Proteicos , Receptores de Neurotransmissores/genéticaRESUMO
Duchenne muscular dystrophy (DMD) is an X-linked inherited disorder. Patients present with decreased bone mineral density (BMD) due to glucocorticoid therapy and progressive muscle weakness. Bone remodeling allows bone volume and structure to be maintained and controlled by local and systemic factors. These include the receptor activator of the nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, a determining pathway in the balance between bone formation and resorption. Disruptions in this complex, caused by factors such as glucocorticoids, can affect bone metabolism. The extensive action of the RANK/RANKL/OPG pathway suggests an influence on dystrophic muscle pathophysiology. This review aimed to highlight some aspects of the RANK/RANKL/OPG system, the effect of glucocorticoids on this pathway, and the pathophysiology of the patient with DMD.
La distrofia muscular de Duchenne (DMD) es un trastorno hereditario ligado al cromosoma X. Los pacientes presentan una disminución de la densidad mineral ósea (DMO) debido a los efectos adversos del tratamiento con glucocorticoides y a la debilidad muscular progresiva. El remodelado óseo permite mantener el volumen y la estructura ósea, proceso controlado por factores locales y sistémicos. Entre ellos destaca el sistema del receptor activador del factor nuclear-kB (RANK), su ligando natural RANKL (RANKL) y la osteoprotegerina (OPG), una vía determinante en el equilibrio entre la resorción y formación ósea. Las alteraciones en este complejo, originadas por factores como los glucocorticoides, pueden afectar el metabolismo óseo. La amplia acción de RANKL y OPG ha sugerido una influencia en la fisiopatología de la DMD. El objetivo de esta revisión fue destacar algunos aspectos del sistema RANK/RANKL/OPG, el efecto de los glucocorticoides en esta vía y la fisiopatología del paciente con DMD.