Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37887861

RESUMO

This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on anti-CD3-coated plates for 5 days. The cultured splenic T-cells were challenged with a hypertonic salt solution (0, 20, or 40 mM) in the absence or presence of IL-6 (0, 20, or 60 ng/mL), TGF-ß (0, 5, or 15 ng/mL), or IL-23 (0, 10, or 30 ng/mL), and analyzed via ELISA, flow cytometry, and immunofluorescence. The hypertonic salt solution potentiated IL-17A production, as well as the differentiation of Th17 cells via IL-6/TGF-ß/IL-23, exclusively in SS rats. However, it did not affect IL-10 production or the differentiation of Treg cells in any of the groups. Furthermore, it potentiated the signal of RORγt in IL-6-treated splenic T-cells from SS rats. To summarize, cultured splenic T-cells exhibited enhanced inflammatory responses on exposure to a hypertonic salt solution in SS rats only, which indicated that sodium chloride and inflammatory cytokines synergistically drove the induction of pathogenic Th17 cells and the development of hypertension in this group only.

2.
Hypertens Res ; 46(12): 2705-2717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845397

RESUMO

Congestive heart failure produces fluid volume overload, central and renal venous pressure elevation, and consequently renal congestion, which results in worsening renal function. Pericyte detachment and pericyte-myofibroblast transition (PMT) were linked to renal interstitial fibrosis. Dahl salt-sensitive hypertensive (DahlS) rats are a non-surgical renal congestion model. The relation, however, between renal interstitial damage, pericyte morphology, and PMT in the renal congestion of DahlS rats has not been reported. DahlS rats (8-week-old) were fed normal salt (NS, 0.4% NaCl) or high salt (HS, 4% NaCl), and the left kidney was decapsulated to reduce renal interstitial hydrostatic pressure (RIHP) at 9 weeks old. One week after capsulotomy, both kidneys were analyzed by molecular and histological techniques. Renal pericyte structure was assessed in the body donors with/without venous stasis. Markers of tubulointerstitial damage, interstitial fibrosis, and PMT were upregulated in the right non-decapsulated kidney of DahlS rats fed HS. Renal tubular injury and fibrosis were detected in the HS diet groups in histological analysis. Pericyte detachment was observed in the right non-decapsulated kidney of DahlS rats fed HS by low vacuum-scanning electron microscopy. Decapsulation in DahlS rats fed HS attenuated these findings. Also, renal pericytes detached from the vascular wall in patients with heart failure. These results suggest that pericyte detachment and PMT induced by increased RIHP are responsible for tubulointerstitial injury and fibrosis in DahlS rats and humans with renal congestion. Renal venous congestion and subsequent physiological changes could be therapeutic targets for renal damage in cardiorenal syndrome.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Ratos , Animais , Ratos Endogâmicos Dahl , Pericitos/patologia , Cloreto de Sódio , Rim , Insuficiência Cardíaca/etiologia , Cloreto de Sódio na Dieta , Fibrose , Pressão Sanguínea
3.
Hypertens Res ; 46(9): 2168-2178, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463980

RESUMO

High-salt intake is known to induce pathogenic T helper (Th) 17 cells and hypertension, but contrary to what is known, causes hypertension only in salt-sensitive (SS) individuals. Thus, we hypothesized that Th cell polarity determines salt sensitivity and hypertension development. Cultured splenic T cells from Dahl SS and salt-resistant (SR) rats subjected to hypertonic salt solutions were evaluated via ELISA, flow cytometry, immunocytochemistry and RT-qPCR. Seven-week-old SS and SR rats were fed a chow (CD) or high-salt diet (HSD) for 4 weeks, with weekly measurements of systolic blood pressure. The relaxation response of the aorta rings to the cumulative addition of acetylcholine was measured ex vivo. In these experimental animals, the Th cell polarity (Th17 and T regulatory [Treg]), the expression of Th17- or Treg-related genes, and the enrichment of the transcription factors RORγt and FOXP3 on the target gene promoter regions were determined via flow cytometry, RT-qPCR, and chromatin immunoprecipitation. Hypertonic salt solution induced Th17 and Treg cell differentiation in cultured splenic T cells isolated from SS and SR rats, respectively. HSD induced hypertension, endothelial dysfunction and proinflammatory Th17 cell differentiation only in SS rats. The enrichment of RORγt on the promoter regions of Il17a and Il23r increased their expression only in SS rats. Regardless of HSD, SR rats remained normotensive with Treg polarity, causing high Treg-related gene expressions (Il10, Cd25 and Foxp3). This study demonstrated that Th cell polarity determines salt sensitivity and drives hypertension development. SR rats were protected from HSD-associated hypertension via anti-inflammatory Treg polarity.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Ratos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Polaridade Celular , Ratos Endogâmicos Dahl , Cloreto de Sódio , Pressão Sanguínea/fisiologia , Fatores de Transcrição Forkhead
4.
Am J Physiol Renal Physiol ; 325(2): F177-F187, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318990

RESUMO

High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.


Assuntos
Hipertensão , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Ratos , Ratos Endogâmicos Dahl , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Pressão Sanguínea/fisiologia , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Eletrólitos/metabolismo
5.
Biomedicines ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36672619

RESUMO

The genetic and molecular basis of developing high blood pressure and renal disease are not well known. Resp18mutant Dahl salt-sensitive (SS-Resp18mutant) rats fed a 2% NaCl diet for six weeks have high blood pressure, increased renal fibrosis, and decreased mean survival time. Impairment of the dopaminergic system also leads to hypertension that involves renal and non-renal mechanisms. Deletion of any of the five dopamine receptors may lead to salt-sensitive hypertension. Therefore, we investigated the interaction between Resp18 and renal dopamine in SS-Resp18mutant and Dahl salt-sensitive (SS) rats. We found that SS-Resp18mutant rats had vascular dysfunction, as evidenced by a decrease in vasorelaxation in response to sodium nitroprusside. The pressure-natriuresis curve in SS-Resp18mutant rats was shifted down and to the right of SS rats. SS-Resp18mutant rats had decreased glomerular filtration rate and dopamine receptor subtypes, D1R and D5R. Renal dopamine levels were decreased, but urinary dopamine levels were increased, which may be the consequence of increased renal dopamine production, followed by secretion into the tubular lumen. The increased renal dopamine production in SS-Resp18mutant rats in vivo was substantiated by the increased dopamine production in renal proximal tubule cells treated with L-DOPA. Overall, our study provides evidence that targeted disruption of the Resp18 locus in the SS rat dysregulates the renal dopaminergic system.

6.
Plant Foods Hum Nutr ; 77(3): 373-382, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705768

RESUMO

Hypertension is one of the main factors of cardiovascular disease worldwide and is strongly related to the overall mortality. High salt intake is a major risk factors for hypertension. Identifying functional foods that can help prevent mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable nutraceutical and scientific interest. Dietary Momordica charantia may be an alternative approach to avoid salt-induced hypertension. Dahl salt-sensitive (DSS) rats were used to determine whether Momordica charantia water extracts (ME) exerts anti-hypertensive effects in the present study. ME gavage could significantly prevented the increase of blood pressure, blood urea nitrogen, creatinine, and urine protein-to-creatinine ratio of DSS rats. Metabolomics analysis indicated that high-salt diet induced abnormal amino acid metabolism was related to nitric oxide (NO) deficiency, but ME gavage could upregulate the activities of nitric oxide synthase, aspartate aminotransferase, argininosuccinate lyase, argininosuccinate synthase and restore endogenous synthesis of arginine and NO. Meanwhile, renal function was improved after ME gavage. Citrulline, as one of the important component in ME, could attenuate salt-induced hypertension by increasing endogenous synthesis of arginine and NO. Antioxidants in ME, such as phenolic compound, may avoid high-salt induced oxidative stress in DSS rats, which may be another mechanism by which ME prevented blood pressure increase. Thus, the present study indicated that feeding Momordica charantia could avoid high-salt-induced hypertension in DSS rats.


Assuntos
Hipertensão , Momordica charantia , Animais , Arginina/efeitos adversos , Pressão Sanguínea , Creatinina , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Medicina Tradicional Chinesa , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562955

RESUMO

The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.


Assuntos
Glicosídeos Cardíacos , Disfunção Cognitiva , Hipertensão , Animais , Pressão Sanguínea , Bufanolídeos , Glicosídeos Cardíacos/farmacologia , Disfunção Cognitiva/etiologia , Masculino , Análise de Onda de Pulso , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Remodelação Vascular
8.
Am J Physiol Renal Physiol ; 322(6): F692-F707, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466690

RESUMO

Na+-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na+ channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension. Administration of dapagliflozin (Dapa) at 2 mg/kg/day via drinking water for 3 wk blunted the development of salt-induced hypertension as evidenced by lower blood pressure and a left shift of the pressure natriuresis curve. Urinary flow rate, glucose excretion, and Na+- and Cl--to-creatinine ratios increased in Dapa-treated compared with vehicle-treated rats. To define the contribution of the RAAS, we measured various hormones. Despite apparent effects on Na+- and Cl--to-creatinine ratios, Dapa treatment did not affect RAAS metabolites. Subsequently, we assessed the effects of Dapa on renal Na+ channels and transporters using RT-PCR, Western blot analysis, and patch clamp. Neither mRNA nor protein expression levels of renal transporters (SGLT2, Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter 2, Na+-Cl- cotransporter, and α-, ß-, and γ-epithelial Na+ channel subunits) changed significantly between groups. Furthermore, electrophysiological experiments did not reveal any difference in Dapa treatment on the conductance and activity of epithelial Na+ channels. Our data suggest that SGLT2 inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the RAAS or the expression or activity of the main Na+ channels and transporters.NEW & NOTEWORTHY The present study indicates that Na+-glucose cotransporter-2 (SGLT2) inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development and magnitude of salt-induced hypertension. Chronic inhibition of SGLT2 increases glucose and Na+ excretion without secondary effects on the expression and function of other Na+ transporters and channels along the nephron and hormone levels in the renin-angiotensin-aldosterone system. These data provide novel insights into the effects of SGLT2 inhibitors and their potential use in hypertension.


Assuntos
Hipertensão , Néfrons , Sistema Renina-Angiotensina , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio , Animais , Pressão Sanguínea/efeitos dos fármacos , Creatinina/metabolismo , Glucose/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Ratos , Ratos Endogâmicos Dahl , Sistema Renina-Angiotensina/efeitos dos fármacos , Cloreto de Sódio na Dieta/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
9.
Br J Pharmacol ; 179(12): 3007-3023, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935131

RESUMO

BACKGROUND AND PURPOSE: Preeclampsia, characterized by hypertension, proteinuria and restriction of fetal growth, is one of the leading causes of maternal and perinatal mortality. So far, there is no effective pharmacological therapy for preeclampsia. The present study was conducted to investigate the effects of supplementation with l-citrulline in Dahl salt-sensitive rats, a model of superimposed preeclampsia. EXPERIMENTAL APPROACH: Parental Dahl salt-sensitive rats were treated with l-citrulline (2.5 g·L-1 in drinking water) from the day of mating to the end of lactation period. Blood pressure was monitored throughout pregnancy and markers of preeclampsia were assessed. Endothelial function of the pregnant Dahl salt-sensitive rats was assessed by wire myograph. KEY RESULTS: In Dahl salt-sensitive rats, l-citrulline supplementation significantly reduced maternal blood pressure, proteinuria and levels of circulating soluble fms-like tyrosine kinase 1. l-Citrulline improved maternal endothelial function by augmenting the production of nitric oxide in the aorta and improving endothelium-derived hyperpolarizing factor-mediated vasorelaxation in resistance arteries. l-Citrulline supplementation improved placental insufficiency and fetal growth, which were associated with an enhancement of angiogenesis and reduction of fibrosis and senescence in the placentas. In addition, l-citrulline down-regulated genes involved in the TLR4 and NF-κB signalling pathways. CONCLUSION AND IMPLICATIONS: This study shows that l-citrulline supplementation reduced gestational hypertension and improved placentation and fetal growth in a rat model of superimposed preeclampsia. l-Citrulline supplementation may provide an effective and safe therapeutic strategy for preeclampsia that benefits both the mother and the fetus.


Assuntos
Pré-Eclâmpsia , Animais , Fatores Biológicos , Citrulina/metabolismo , Citrulina/farmacologia , Citrulina/uso terapêutico , Feminino , Humanos , Masculino , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Gravidez , Proteinúria/complicações , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Ratos Endogâmicos Dahl
10.
Life Sci ; 270: 119134, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513395

RESUMO

AIMS: Salt-sensitive hypertension is a risk factor for cardiovascular disease. Previous studies have shown that insufficient arginine in the kidney caused by metabolic imbalance is an important factor in salt-sensitive hypertension. Whether the high nitrogen content of histidine can affect the balance of nitrogen metabolism in Dahl salt-sensitive (SS) rats. This article aimed to study the effects of oral histidine on salt-sensitive hypertension, kidney damage and metabolic patterns of high-salt diet in SS rats. MAIN METHODS: Adult rats were divided into four groups, and blood pressure was measured using a non-invasive tail-cuff system. Gas chromatography-mass spectrometry analyzed metabolites in serum and kidney tissues. KEY FINDINGS: High-salt diet significantly increased the blood pressure of rats and aggravated kidney damage. Of note, histidine can attenuate salt-sensitive hypertension and kidney damage by improving metabolic pattern, reducing Reactive Oxygen Species (ROS) and increasing nitric oxide levels in SS rats. SIGNIFICANCE: These results suggest that histidine could be a potential adjuvant to prevent and control salt-sensitive hypertension.


Assuntos
Histidina/farmacologia , Hipertensão/tratamento farmacológico , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Dieta , Histidina/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos
11.
J Mol Med (Berl) ; 98(9): 1287-1299, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32748067

RESUMO

Preeclampsia is a common medical condition during pregnancy and a major cause of maternal and prenatal mortality. The present study was conducted to investigate the effects of maternal treatment with pentaerythritol tetranitrate (PETN) in Dahl salt-sensitive rats (DSSR), a model of superimposed preeclampsia. F0 parental DSSR were treated with PETN (50 mg/kg) from the time point of mating to the end of lactation. Maternal PETN treatment improved fetal growth and had no effect on blood pressure in DSSR offspring fed with normal chow or high-salt diet. Upon high-fat diet (HFD) feeding, offspring from PETN-treated mother showed improved glucose tolerance despite similar weight gain. Unexpectedly, maternal PETN treatment significantly potentiated the HFD-induced blood pressure elevation in male DSSR offspring. Endothelium-derived hyperpolarization factor (EDHF)-mediated vasodilation was similar between NCD-fed and HFD-fed control offspring but was markedly reduced in HFD-fed PETN offspring. EDHF genes were downregulated in the vasculature of HFD-fed PETN offspring, which was associated with epigenetic changes in histone modifications. In conclusion, maternal PETN treatment in DSSR shows both beneficial and unfavorable effects. It improves fetal growth and ameliorates glucose tolerance in the offspring. Although maternal PETN treatment has no effect on blood pressure in offspring fed with normal chow or high-salt diet, the offspring is at higher risk to develop HFD-induced hypertension. PETN may potentiate the blood pressure response to HFD by epigenetic modifications of EDHF genes. KEY MESSAGES: The core findings of this article suggest that maternal PETN treatment of DSSR, a rat model of a spontaneous superimposed preeclampsia, leads to • Improvement of fetal growth; • No changes of maternal blood pressure or markers of preeclampsia; • Amelioration of HFD-induced glucose intolerance in adult offspring; • No changes in blood pressure development of the offspring on normal chow or high salt-diet; • Potentiation of blood pressure elevation of the offspring on HFD.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Tetranitrato de Pentaeritritol/farmacologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/prevenção & controle , Animais , Biomarcadores , Pressão Sanguínea , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Exposição Materna , Tetranitrato de Pentaeritritol/administração & dosagem , Gravidez , Ratos , Ratos Endogâmicos Dahl , Vasodilatadores/farmacologia
12.
Biomolecules ; 10(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075042

RESUMO

Aberrant production of hydrogen sulfide (H2S) has been linked to preeclampsia. We hypothesized that sodium thiosulfate (STS), a H2S donor, reduces hypertension and proteinuria, and diminishes fetal growth restriction in the Dahl salt-sensitive (S) rat, a spontaneous model of superimposed preeclampsia. In addition to a control group (n = 13), two groups received STS via drinking water at a dose of 2 g (n = 9) or 3 g per kg body weight per day (n = 8) from gestational day (GD) 10 to 20. Uterine artery resistance index was measured (GD18), urinary protein excretion rate was determined (GD19), and blood pressure and fetal outcomes were evaluated (GD20). At 2 g, STS had no effect on preeclamptic symptoms or fetal outcome. At 3 g, STS reduced maternal hypertension (121.8 ± 3.0 vs. 136.3 ± 2.9), but increased proteinuria (89 ± 15 vs. 56 ± 5 mg/24h), and relative kidney weight (0.86 ± 0.04 vs. 0.73 ± 0.02%). Fetal/placental weight ratio was reduced (3.83 ± 0.07 vs. 4.31 ± 0.08) without affecting litter size. No differences in uterine artery flow or renal histological damage were noted across treatment groups. While these data suggest a promising antihypertensive effect that could imply prolongation of preeclamptic pregnancies, the unfavorable effects on proteinuria, kidney weight, and fetal/placental weight ratio implies that clinical implementation of STS is contra-indicated until safety for mother and child can be verified.


Assuntos
Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Tiossulfatos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Placenta/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Proteinúria/metabolismo , Ratos , Ratos Endogâmicos Dahl , Tiossulfatos/metabolismo , Artéria Uterina/metabolismo
13.
Int J Urol ; 26(8): 839-846, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257672

RESUMO

OBJECTIVES: To study the promotive effect of salt-induced hypertension on crystal deposition and urolithiasis using a salt-sensitive rat hypertension model. METHODS: Hyperoxaluria and hypercalciuria were induced in male Dahl salt-sensitive rats with administration of ethylene glycol and alfacalcidol. Hypertension was induced by a high-salt diet. Eplerenone, a selective mineralocorticoid receptor antagonist, was given. Blood and urine were collected to evaluate renal function, electrolytes and the blood renin-angiotensin-aldosterone system. Renal calcium content was also evaluated. Histological examination, transcriptome analysis with DNA microarray and semiquantitative reverse transcriptase polymerase chain reaction were carried out. RESULTS: A high-salt diet increased crystal deposition in Dahl salt-sensitive rats with hypertension, and eplerenone administration significantly suppressed it. The mRNA expression profile was associated with crystal formation, growth, adhesion and cellular injury, and it was regulated in the group exposed to a high-salt diet and ethylene glycol. CONCLUSIONS: A high-salt diet has a promotive effect on salt-sensitive hypertension and urolithiasis. This promotive effect can be prevented by eplerenone administration. Hence, salt-sensitive hypertension has promotive effects on crystal deposition in Dahl salt-sensitive rats.


Assuntos
Hipertensão/etiologia , Cloreto de Sódio na Dieta/efeitos adversos , Urolitíase/etiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cálcio/análise , Cálcio/metabolismo , Modelos Animais de Doenças , Eplerenona/administração & dosagem , Etilenoglicol/toxicidade , Humanos , Hidroxicolecalciferóis/toxicidade , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Ratos , Ratos Endogâmicos Dahl , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Urolitíase/fisiopatologia , Urolitíase/prevenção & controle
14.
Hypertens Res ; 42(11): 1672-1682, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31235845

RESUMO

Fumarase insufficiencies can increase reactive oxygen species (ROS). This study will further dissect the imbalance of redox metabolism and the mechanism of ROS production using proteomic technology in fumarase knockdown HK-2 cells. The contribution of fumarase was further confirmed by supplementation of fumarate and malate in Dahl salt-sensitive rats. Proteomic analysis indicated that fumarase knockdown in HK-2 cells changed the expression or activity of NADPH oxidase (NOX), mitochondrial respiratory chain Complex I and III, ATP synthase subunits, and α-oxoglutarate dehydrogenase (OGDH). Meanwhile, the activities of key antioxidant enzymes, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase, increased significantly. The apparent activation of antioxidant defense appeared insufficient as the glutathione and GSH/GSSG ratio were decreased significantly. Dahl salt-sensitive rats exhibited changes in redox metabolism similar to HK-2 cells with fumarase knockdown. Supplementation with fumarate and malate increased and decreased, respectively, blood pressure and H2O2 and malondialdehyde in salt-sensitive rats. These results indicated that insufficient fumarase activity increased ROS by regulating NOX, Complex I and III, ATPase alpha, and OGDH and the imbalance of glutathione metabolism, which may be one of the main reasons for salt-sensitive hypertension. Malate may be a potentially effective drug for the prevention and treatment of salt-sensitive hypertension.


Assuntos
Fumarato Hidratase/metabolismo , Hipertensão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Oxirredução , Proteoma , Ratos Endogâmicos Dahl
15.
Clin Sci (Lond) ; 132(17): 1999-2001, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30220653

RESUMO

The roles of the kidney are well defined, if there is a progressive loss in renal function, the kidney is no longer able to perform the listed tasks and chronic kidney disease (CKD) persists. In both clinical and experimental studies, NaHCO3 supplementation has been shown to improve glomerular filtration rate (GFR) as well as halt the progression toward end-stage renal disease (ESRD). In an article recently published in Clinical Science (vol 132 (11) 1179-1197), Ray et al. presented an intriguing and timely study, which investigates the mechanisms involved in the protection that follows oral NaHCO3 ingestion. Here we comment on their research findings.


Assuntos
Insuficiência Renal Crônica , Bicarbonato de Sódio , Animais , Taxa de Filtração Glomerular , Glomérulos Renais , Proteinúria , Ratos , Ratos Endogâmicos Dahl
16.
Amino Acids ; 50(10): 1407-1414, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30009324

RESUMO

Genetic background and high-salt diet are considered key factors contributing to the development of hypertension and its associated metabolic disorders. Metabolomics is an emerging powerful tool to analyze the low-molecular weight metabolites in plasma and tissue. This study integrated metabolomics and correlation network analysis to investigate the metabolic profiles of plasma and muscle of Dahl salt-sensitive (SS) rats and SS.13BN rats (control) under normal and high-salt diet. The hub metabolites, which could play important roles in the metabolic changes, were identified by correlation network analysis. The results of the network analysis were further confirmed by pathway analysis and enzyme activity analysis. The results indicated a higher amino acid levels in both plasma and muscle of SS rats fed with high-salt diet. Alanine was found as a hub metabolite with the highest score of three centrality indices and also as the significant differential metabolite in plasma of SS rats after high-salt diet. Valine and lysine were found as hub metabolites and differential metabolites in muscle of SS rats after high-salt diet. Amino acid levels increased in both plasma and muscle of SS rats fed with a high salt diet. Moreover, alanine in plasma and valine and lysine in muscle as hub metabolites could play important roles in the response to high-salt diet.


Assuntos
Aminoácidos/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Aminoácidos/sangue , Animais , Humanos , Hipertensão/sangue , Masculino , Músculos/metabolismo , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/sangue
17.
Hypertension ; 72(2): 511-521, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941515

RESUMO

The influence of adenosine receptors on blood pressure in salt-sensitive hypertension is unknown. Here, we examined the effects of salt diets on arterial blood pressures (radiotelemetry) in female and male Dahl salt-sensitive wild-type versus female and male Dahl salt-sensitive A1, A2A, or A2B receptor knockouts (A1KOs, A2AKOs, and A2BKOs, respectively). At baseline, all rats were on a 0.3% salt diet; then separate groups were switched to either 4% or 8% salt diet for 2 weeks. Compared with wild-types, baseline pressures were not affected by knockout of A1 or A2B receptors; yet, mean, systolic, and diastolic pressures were significantly (P<0.01) higher in A2AKOs versus wild-types, an effect independent of sex. During the second week on a 4% salt diet, mean, systolic, and diastolic blood pressures (mm Hg, mean±SEM) in female A1KOs (176±5, 209±5, and 147±4, respectively) and A2BKOs (166±8, 198±9, and 139±8, respectively) were significantly lower (P<0.001) than wild-type on a 4% salt diet (202±4, 240±5, and 172±3, respectively). Male A1KOs and A2BKOs were not protected against 4% salt diet-induced hypertension. This female advantage was overwhelmed by an 8% salt diet. Female and male A2AKOs were more salt sensitive, a phenotype that was apparent in male A2AKOs on 4% and 8% salt diets and in females on 8% salt diet. Female A1KOs and A2BKOs were less susceptible to salt-induced stroke and experienced improved survival. Adenosine receptors influence blood pressure and survival in salt-sensitive rats, and the impact of deleting adenosine receptors on blood pressure and survival depends on salt diet and sex.


Assuntos
Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , RNA/genética , Receptores Purinérgicos P1/genética , Cloreto de Sódio na Dieta/farmacologia , Animais , Dieta Hipossódica , Modelos Animais de Doenças , Feminino , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Receptores Purinérgicos P1/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Nutr Biochem ; 56: 133-141, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567533

RESUMO

High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP+, NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats.


Assuntos
Córtex Renal/fisiopatologia , Medula Renal/fisiopatologia , Cloreto de Sódio na Dieta/efeitos adversos , Ração Animal , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Hipertensão/metabolismo , Córtex Renal/metabolismo , Medula Renal/metabolismo , NADP/metabolismo , Estresse Oxidativo , Oxigênio/química , Via de Pentose Fosfato , Fenótipo , Ratos , Ratos Endogâmicos Dahl
19.
J Cereb Blood Flow Metab ; 38(11): 1993-2005, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28782443

RESUMO

Mid-life hypertension and cerebral hypoperfusion may be preclinical abnormalities in people who later develop Alzheimer's disease. Although accumulation of amyloid-beta (Aß) is characteristic of Alzheimer's disease and is associated with upregulation of the vasoconstrictor peptide endothelin-1 within the brain, it is unclear how this affects systemic arterial pressure. We have investigated whether infusion of Aß40 into ventricular cerebrospinal fluid modulates blood pressure in the Dahl salt-sensitive rat. The Dahl salt-sensitive rat develops hypertension if given a high-salt diet. Intracerebroventricular infusion of Aß induced a progressive rise in blood pressure in rats with pre-existing hypertension produced by a high-salt diet ( p < 0.0001), but no change in blood pressure in normotensive rats. The elevation in arterial pressure in high-salt rats was associated with an increase in low frequency spectral density in systolic blood pressure, suggesting autonomic imbalance, and reduced cardiac baroreflex gain. Our results demonstrate the potential for intracerebral Aß to exacerbate hypertension, through modulation of autonomic activity. Present findings raise the possibility that mid-life hypertension in people who subsequently develop Alzheimer's disease may in some cases be a physiological response to reduced cerebral perfusion complicating the accumulation of Aß within the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/farmacologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Hipertensão/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos Dahl
20.
Kidney Blood Press Res ; 42(6): 951-960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29179201

RESUMO

BACKGROUND/AIMS: Altered pressure natriuresis is an important mechanism of hypertension, but it remains elusive at the molecular level. We hypothesized that in the kidney, tight junctions (TJs) may have a role in pressure natriuresis because paracellular NaCl transport affects interstitial hydrostatic pressure. METHODS: To assess the association of salt-sensitive hypertension with altered renal TJ protein expression, Dahl salt-sensitive (SS) and salt-resistant (SR) rats were put on an 8% NaCl-containing rodent diet for 4 weeks. Systolic blood pressure (SBP) and urine NaCl excretion were measured weekly, and kidneys were harvested for immunoblotting and quantitative PCR analysis at the end of the animal experiments. RESULTS: SBP was significantly higher in SS rats than in SR rats during the first to fourth weeks of the animal experiments. During the first and second week, urinary NaCl excretion was significantly lower in SS rats as compared with SR rats. However, the difference between the two groups vanished at the third and fourth weeks. In the kidney, claudin-4 protein and mRNA were significantly increased in SS rats as compared with SR rats. On the other hand, occludin protein and mRNA were significantly decreased in SS rats as compared with SR rats. The expression of claudin-2, claudin-7, and claudin-8 did not vary significantly between the two groups. CONCLUSIONS: In SS rats, SS hypertension was associated with differential changes in renal TJ protein expression. Both upregulation of claudin-4 and downregulation of occludin might increase paracellular NaCl transport in the kidney, resulting in impaired pressure natriuresis in SS rats.


Assuntos
Cloreto de Sódio na Dieta/farmacologia , Proteínas de Junções Íntimas/metabolismo , Animais , Pressão Sanguínea , Claudinas/genética , Regulação da Expressão Gênica , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Ocludina/genética , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio/urina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...