Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38720156

RESUMO

Plant-mediated preparation of silver nanoparticles (AgNPs) is thought to be a more economical and environmentally benign process in comparison to physical and chemical synthesis methods. In the present study, the aqueous leaf extract of Dalbergia sissoo was prepared and utilized to reduce silver ion (Ag+) during the green synthesis of silver nanoparticles (DL-AgNPs). The formation of DL-AgNPs was verified using UV-Vis spectra, exhibiting the surface plasmon resonance (SPR) band at around 450 nm. FT-IR analysis revealed the kinds of phytochemicals that serve as reducing and capping agents while DL-AgNPs are being synthesized. Analysis of scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HR-TEM) images verified the development of spherical and oval-shaped DL-AgNPs, with sizes ranging from 10 to 25 nm. The stability and particle size distribution of synthesized DL-AgNPs were ensured by zeta potential and DLS (dynamic light scattering) investigations. Additionally, X-ray diffraction (XRD) analysis confirmed the crystalline nature of DL-AgNPs. In antioxidant experiments, DL-AgNPs demonstrated significant scavenging capacities of DPPH and ABTS radicals with EC50 values of 51.32 and 33.32 µg/mL, respectively. The antibacterial activity of DL-AgNPs was shown to be significant against harmful bacteria, with a maximum zone of inhibition (21.5 ± 0.86 mm) against Staphylococcus aureus. Furthermore, DL-AgNPs exhibited effective catalytic activity to degrade environment-polluting dyes (methylene blue, methyl orange, and Congo red) and toxic chemicals (p-nitrophenol). The results of all these studies suggested that DL-AgNPs made from the leaf extract of Dalbergia sissoo have merit for application in the environmental and biomedical fields.

2.
Cell Biochem Biophys ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740667

RESUMO

Diabetes mellitus is a serious and complex metabolic disorder characterized by hyperglycemia. In recent years natural products has gained much more interest by researchers as alternative sources for diabetes treatment. Though many potential agents are identified so far but their clinical utility is limited because of their adverse effects. Therefore, there is a keen interest in discovering natural compounds to treat diabetes efficiently with less side effects. Dalbergia latifolia is well explored because of its diverse pharmacological activities including diabetes. Therefore, the present research work aimed to identify and isolate the potential antidiabetic agents from the heart wood of Dalbergia latifolia. We successfully extracted DGN and ISG from the heartwood and evaluated their antidiabetic potential both in-vivo and in-vitro. Alpha amylase activity inhibition of ISG and DGN was found to be 99.05 ± 8.54% (IC50 = 0.6025 µg/mL) and 84.68 ± 5.2% (IC50 = 0.0216 µg/mL) respectively. Glucose uptake assay revealed DGN (158%) promoted maximum uptake than ISG (77%) over control. In vivo anti diabetic activity was evaluated by inducing diabetes in SD rats with the help of HFD and STZ (35 mg/kg body weight). After the continuous administration of DGN (5 mg/kg, 10 mg/kg) and ISG (5 mg/kg, 10 mg/kg) for 14 days, we observed the reduction in the blood glucose levels, body weight, total cholesterol, low density lipoprotein, very low-density lipoprotein, blood urea, serum creatinine, serum glutamate oxaloacetic transaminase, serum glutamate pyruvate transaminase and alkaline phosphatase levels than vehicle group indicates the potency of ISG and DGN against diabetes.

3.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812239

RESUMO

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Metabolômica , Microcirculação , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Microcirculação/efeitos dos fármacos , Dalbergia/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Miocárdio/metabolismo , Vasos Coronários/fisiopatologia , Humanos
4.
Plant Dis ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775673

RESUMO

Dalbergia odorifera T. Chen (Family: Fabaceae) is a national level II protected plant in China, with extremely high economic value and medical properties (Zhao et al. 2020). In June 2023, an unknown leaf spot was found in a garden land of Pingxiang city, Guangxi, China, and approximately 80% of the plants covered an area of 500 m2 displayed similar symptoms. The spots were grey to white, 4~6 mm in diameter (n=30) with black pycnida on the spots surface (Fig S1, A-D). Multiple disease spots were observed on a single leaf. The pycnida on the lesion were picked and mashed, to make a conidia suspension using sterile water. The conidial solution was then spread onto a potato dextrose agar (PDA) plate containing streptomycin, with 10 mg of streptomycin per 100 mL, and incubated for 3 days at 28°C with a 12 hour photoperiod. Three isolates (GXPX01, GXPX02 and GXPX03) were obtained by re-culturing the colonies on fresh PDA plates. The colony on PDA were white with aerial mycelia (Fig S1, E-F). Black conidiomata developed at 28°C with a 12 hour photoperiod in 20 days (Fig S1, G-H). Alpha conidia were 4.2~6.4 µm × 1.8~2.6 µm (average =5.1 × 2.3 µm, n = 30), mostly bi-guttulate, hyaline, ellipsoid, apex bluntly rounded, base obtuse to subtruncate, smooth (Fig S1, I). Beta conidia were 15.1~33.5 µm × 1~1.8 µm (average = 24.5 × 1.5 µm, n = 30), filiform, hyaline, curved or hamate, aseptate, base subtruncate (Fig S1, J). Morphological characteristics of the three isolates matched those of Diaporthe spp.(Gomes et al. 2013). The rDNA internal transcribed spacer (ITS) region, the translation elongation factor 1-α (TEF1), the calmodulin (CAL), the histone H3 (HIS) and the ß-tubulin (TUB2) genes of the three isolates were amplified using the primer pairs ITS4/ITS5, EF1-728F/EF1-986R, CAL-228F/CAL2Rd, CYLH3F/H3-1B, and T1 /CYLTUB1R, respectively (Crous et al. 2004, Sun et al. 2021). The sequences were all deposited in GenBank (accession numbers OR437511 to OR437513 for ITS, OR454965 to OR454967 for TEF1, OR454968 to OR454970 for CAL, OR454971 to OR454973 for TUB2, OR454974 to OR454976 for H3). Sequences had 98.36% to 100% homology with the corresponding sequences of known Diaporthe tectonendophytica strains MFLUCC 13-0471 in the NCBI database. Phylogenetic analysis was based on combined ITS, TEF1, TUB2 and CAL sequences data using MEGA 11 software to construct phylogenetic tree with Maximum Likelihood (Doilom et al. 2017). In the phylogenetic tree, the combined sequences attributed the three isolates to the D. tectonendophytica (Fig S2). The pathogenicity was tested on leaves of 1.5-year-old D. odorifera seedlings. Three leaves were wounded with a sterile needle and individually inoculated with a 5 mm mycelial disk of PDA culture from each isolate. Sterile PDA disks inoculated leaves as a control. The test was repeated three times. The inoculated plants were placed in a greenhouse at 25℃ and 90% humidity, with a photoperiod of 12 hours. Five days after inoculation, necrotic lesions appeared on inoculated leaves and symptoms from all three isolates were the same as those form natural infections ( Fig S1, K-N), whereas all the control remained symptomless (Fig S1, P). The pathogen was reisolated from the inoculated leaves and again identified as D. tectonendophytica, with the same methodology used for the initial identification. D. tectonendophytica was reported to cause plant diseases, such as stem gray blight of red-fleshed dragon fruit (Hylocereus polyrhizus) (Rahim et al. 2021), leaf spots disease on Elaeagnus conferta and Pometia pinnata (Sun et al. 2021). To our knowledge, this is the first report of D. ctonendophytica causing leaf spot disease on D. odorifera.

5.
BMC Genomics ; 25(1): 372, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627613

RESUMO

BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.


Assuntos
Dalbergia , RNA Longo não Codificante , Madeira/genética , Madeira/metabolismo , Dalbergia/genética , Dalbergia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Processamento Alternativo , Isoformas de Proteínas/genética , Terpenos/metabolismo
6.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611863

RESUMO

Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.


Assuntos
Dalbergia , Óleos Voláteis , Masculino , Humanos , Feminino , Som , Ansiedade , Eletroencefalografia , Óleos Voláteis/farmacologia
7.
J Chromatogr A ; 1722: 464852, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581974

RESUMO

Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 µL extraction solvent, 60 s extraction time, 50 µL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Microextração em Fase Líquida , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Dalbergia/química , Limite de Detecção , Acetonitrilas/química , Reprodutibilidade dos Testes
8.
BMC Plant Biol ; 24(1): 315, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654191

RESUMO

BACKGROUND: Dalbergia odorifera is a rare and precious rosewood specie, which is valued for its amber tones, abstract figural patterns, and impermeability to water and insects. However, the information on genetic diversity and marker-assisted selection breeding of D. odorifera is still limited. Simple sequence repeat (SSR) markers are an ideal tool for genetic diversity analysis and marker-assisted molecular breeding for complex traits. RESULTS: Here, we have developed SSR markers within candidate genes and used them to explore the genetic diversity among D. odorifera germplasm resources. A total of 635 SSR loci were identified. The proportions of mono-, di- and tri-nucleotide repeat motifs were 52.28%, 22.99% and 21.42%, respectively. From these, a total of 114 SSR primers were synthesized, of which 24 SSR markers displayed polymorphism (polymorphic information content (PIC) > 0.25). Subsequently, these polymorphic markers were used for the genetic diversity analysis of 106 D. odorifera individuals from 11 natural populations. According to the genetic diversity analysis of D. odorifera natural populations, the average observed heterozygosity (Ho) was 0.500, the average expected heterozygosity (He) was 0.524, and the average Shannon's information index (I) was 0.946. These indicated that the natural populations had moderate genetic diversity. AMOVA analysis showed that 5% of the total variation was within the individuals of a population, whereas 95% of the variation was among the individuals of the populations, indicating a high degree of genetic variation between populations. On the basis of their genetic structures, these populations could be divided into four groups. CONCLUSIONS: Our study provides important experimental resources for genetic studies and assists in the program of molecular breeding of D. odorifera wood formation.


Assuntos
Dalbergia , Repetições de Microssatélites , Repetições de Microssatélites/genética , Dalbergia/genética , Polimorfismo Genético , Marcadores Genéticos , Variação Genética , Filogenia
9.
J Pharm Biomed Anal ; 242: 116017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387125

RESUMO

Dalbergia odorifera (DO) is a precious rosewood species in Southern Asia, and its heartwood is used in China as an official plant for invigorating blood circulation and eliminating stasis. This study aims to evaluate the efficacy of DO on atherosclerosis (AS), and further explore its active components and potential mechanisms. The apolipoprotein-E (ApoE)-deficient mice fed a high-fat diet were used as model animals, and the pathological changes in mice with or without DO treatment were compared to evaluate the pharmacodynamics of DO on AS. The mechanisms were preliminarily expounded by combining with metabolomics and network pharmacology. Moreover, the bioactive components and targets were assessed by cell experiments and molecular docking, respectively. Our findings suggested that DO significantly modulated blood lipid levels and alleviated intimal hyperplasia in atherosclerotic-lesioned mice, and the mechanisms may involve the regulation of 18 metabolites that changed during the progression of AS, thus affecting 3 major metabolic pathways and 3 major signaling pathways. Moreover, the interactions between 16 compounds with anti-proliferative effect and hub targets in the 3 signaling pathways were verified using molecular docking. Collectively, our findings preliminarily support the therapeutic effect of DO in atherosclerosis, meanwhile explore the active constituents and potential pharmacological mechanisms, which is conducive to its reasonable exploitation and utilization.


Assuntos
Aterosclerose , Dalbergia , Medicamentos de Ervas Chinesas , Animais , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Aterosclerose/tratamento farmacológico , Apolipoproteínas E , Metabolômica
10.
J Sep Sci ; 47(1): e2300614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066409

RESUMO

The purpose of this research was to investigate the cardioprotective effects and pharmacokinetics of Dalbergia odorifera flavonoids. The cardioprotective effects were detected by hematoxylin-eosin staining histopathological observations and the detection of myocardial enzymes by kits in serum, peroxidation and antioxidant levels and ATPase activities by kits in the homogenate supernatant, and antioxidant and apoptosis-related protein expression in heart tissue by immunohistochemistry. The pharmacokinetics parameters of the flavonoids in rat plasma were investigated by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Molecular docking of the compounds absorbed by the blood with specific proteins was carried out. D. odorifera flavonoids significantly reduced the levels of creatinine kinase, alanine transaminase, nitric oxide, and Hydrogen peroxide, elevated the levels of glutathione, superoxide dismutase, and ATPase, significantly reduced the pathological degree of heart tissue and had obvious anti-myocardial ischemia efficacy. Nine out of the 17 flavonoids were detected in rat plasma. The peak concentration and the area under the plasma concentration-time curve values of 3'-O-methylviolanone and sativanone were significantly higher than those of other ingredients. The peak time of most flavonoids (except for Genistein and Pruneion) was lower than 2 h, while the half-life of elimination of the nine flavonoids ranged from 3.32 to 21.5 h. The molecular docking results showed that daidzein, dalbergin, formononetin, and genistein had the potential to bind to the target proteins. The results of the study provide an important basis for understanding the cardioprotective effects and clinical application of D. odorifera.


Assuntos
Dalbergia , Flavonoides , Ratos , Animais , Flavonoides/farmacologia , Flavonoides/química , Dalbergia/química , Simulação de Acoplamento Molecular , Genisteína , Antioxidantes/farmacologia , Adenosina Trifosfatases
11.
Acta Pharmaceutica Sinica ; (12): 418-423, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016651

RESUMO

Twelve compounds were isolated from the ethyl acetate fraction of the 80% aqueous ethanol extract of the roots and stems of Dalbergia rimosa Roxb. by silica gel, MCI, Sephadex LH-20 column chromatography, and semi-preparative HPLC. Their structures were identified by spectral analysis such as UV, IR, MS, 1D/2D NMR and by comparison with literature information as dalbergiquinol A (1), dalbergiquinol B (2), R-(-)-3′-hydroxy-2,4,5-trimethoxydalbergiquinol (3), neokhriol A (4), mucronulatol (5), (3R)-7,2′,3′-trihydroxy-4′-methoxy-isoflavane (6), isomucronulatol (7), (3S)-violanone (8), 3′-O-methylviolanone (9), eryvarin M (10), (±)-α,3,4,2′,4′-pentahydroxydihydrochalcone (11) and (-)-butin (12). Compound 1 and 2 are new compounds, and compounds 3-12 were isolated from this plant for the first time. Compounds 1, 2, 4, 6, 8, 11, 12 showed good scavenging effect on DPPH free radical.

12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003420

RESUMO

ObjectiveTo screen the differential markers by analyzing volatile components in Dalbergia odorifera and its counterfeits, in order to provide reference for authentication of D. odorifera. MethodThe volatile components in D. odorifera and its counterfeits were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the GC conditions were heated by procedure(the initial temperature of the column was 50 ℃, the retention time was 1 min, and then the temperature was raised to 300 ℃ at 10 ℃ for 10 min), the carrier gas was helium, and the flow rate was 1.0 mL·min-1, the split ratio was 10∶1, and the injection volume was 1 mL. The MS conditions used electron bombardment ionization(EI) with the scanning range of m/z 35-550. The compound species were identified by database matching, the relative content of each component was calculated by the peak area normalization method, and principal component analysis(PCA), orthogonal partial least squares-discrimination analysis(OPLS-DA) and cluster analysis were performed on the detection results by SIMCA 14.1 software, and the differential components of D. odorifera and its counterfeits were screened out according to the variable importance in the projection(VIP) value>2 and P<0.05. ResultA total of 26, 17, 8, 22, 24 and 7 volatile components were identified from D. odorifera, D. bariensis, D. latifolia, D. benthamii, D. pinnata and D. cochinchinensis, respectively. Among them, there were 11 unique volatile components of D. odorifera, 6 unique volatile components of D. bariensis, 3 unique volatile components of D. latifolia, 6 unique volatile components of D. benthamii, 8 unique volatile components of D. pinnata, 4 unique volatile components of D. cochinchinensis. The PCA results showed that, except for D. latifolia and D. cochinchinensis, which could not be clearly distinguished, D. odorifera and other counterfeits could be distributed in a certain area, respectively. The OPLS-DA results showed that D. odorifera and its five counterfeits were clustered into one group each, indicating significant differences in volatile components between D. odorifera and its counterfeits. Finally, a total of 31 differential markers of volatile components between D. odoriferae and its counterfeits were screened. ConclusionHS-GC-MS combined with SIMCA 14.1 software can systematically elucidate the volatile differential components between D. odorifera and its counterfeits, which is suitable for rapid identification of them.

13.
BMC Plant Biol ; 23(1): 559, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957552

RESUMO

BACKGROUND: The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. RESULTS: Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. CONCLUSION: Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells.


Assuntos
Dalbergia , Dalbergia/metabolismo , Xilema/metabolismo , Madeira/metabolismo , Água/metabolismo , Amido/metabolismo
14.
BMC Plant Biol ; 23(1): 546, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936056

RESUMO

BACKGROUND: Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS: Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS: The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.


Assuntos
Código de Barras de DNA Taxonômico , Dalbergia , Código de Barras de DNA Taxonômico/métodos , Dalbergia/genética , DNA de Plantas/genética , Análise de Sequência de DNA
15.
Front Plant Sci ; 14: 1134806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908834

RESUMO

Plant immunity includes enemy recognition, signal transduction, and defensive response against pathogens. We experimented to identify the genes that contribute resistance against dieback disease to Dalbergia sissoo, an economically important timber tree. In this study, we investigated the role of three differentially expressed genes identified in the dieback-induced transcriptome in Dalbergia sissoo. The transcriptome was probed using DOP-rtPCR analysis. The identified RGAs were characterized in silico as the contributors of disease resistance that switch on under dieback stress. Their predicted fingerprints revealed involvement in stress response. Ds-DbRCaG-02-Rga.a, Ds-DbRCaG-04-Rga.b, and Ds-DbRCaG-06-Rga.c showed structural homology with the Transthyretin-52 domain, EAL associated YkuI_C domain, and Src homology-3 domain respectively, which are the attributes of signaling proteins possessing a role in regulating immune responses in plants. Based on in-silico structural and functional characterization, they were predicted to have a role in immune response regulation in D. sissoo.

16.
Plant Dis ; 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807094

RESUMO

Dalbergia odorifera (Family: Fabaceae) is a national second-grade protected tree in China with high medicinal and economic value (Zhao et al., 2020). In July, 2022, a leaves spot disease on D. odorifera with typical anthracnose symptoms was observed in plantations in Haikou (110.319153°E, 19.072900°N), Dongfang (108.630297°E, 19.103838°N) and Qiongzhong (109.704460°E, 19.088440°N), Hainan Province, China. Disease incidence was 7.5% (n = 50 plants). Early symptoms of infected leaves were small and round dark brown spots, which developed into larger irregular necrotic lesions and leaves withered. Leaf tissues (5×5 mm) at the disease-health junction of spots from 19 leaves were sterilized with 2.5% sodium hypochlorite for 1 min, and rinsed with sterile distilled water three times. These sterilized tissues were placed on potato dextrose agar (PDA) and incubated at 28 ℃ for 5 d. 7 strains of fungi with similar morphology were isolated, and 3 single-hyphal isolates (HHL01, HHL02 and HHL03) from each location were selected for further study. Colonies on PDA were fluffy orange-yellow mycelium. Conidia were aseptate, cylindrical, smooth-walled, straight, hyaline with both ends bluntly rounded, 11.82 to 15.77 × 3.87 to 6.71 µm (n = 100; average = 13.75 × 5.52 µm). Appressoria formed on slides, measured 5.54 to 10.64 × 4.19 to 7.41 µm (n = 30; average = 8.06 × 5.97 µm) were brown to black, elliptical to irregular. For molecular biological identification, the genomic DNA of three isolates was extracted by fungal genomic DNA extraction kit (Tiangen Biotech (Beijing) Co., Ltd.). The partial sequences of internal transcribed spacer region (ITS; ITS1/ITS4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; GDF1/GDR1), actin (ACT; ACT512F/ACT783R), ß-tubulin (TUB2; TI/Bt2b) and calmodulin (CAL; CL1C/CL2C) were amplified and sequenced by Sangon Biotech (Shanghai) Co., Ltd (Carbone and Kohn, 1999; Weir et al., 2012). The sequences were deposited as GenBank Accession Nos. OR018110-OR018112 (ITS); OR050529-OR050537 (GAPDH, ACT and CAL) and OR192168-OR192170 (TUB). BLASTn results showed these sequences were more than 99% identity with the strain of C. karstii CORCK1 (GenBank Accession Nos. HM585406, HM585387, HM581991, HM585424 and HM582010, respectively). Multi-locus phylogenetic tree of Colletotrichum spp. showed that those three isolates were sister to C. karstii based on the maximum likelihood and bayesian inference methods. To verify pathogenicity, 2 mL spore suspension (1 × 106conidia/ml) of the isolates was sprayed on each leaves of 1-year-old D. odorifera plants, and sterile distilled water was similarly sprayed on other leaves as a negative control. The plants were incubated in a greenhouse under 90% ± 5% RH at 28 °C. Light brown small round necrotic patches developed 3 days after inoculation, while the control was asymptomatic. Photographs were taken on the fifth day after inoculation. The fungi were re-isolated from the diseased leaves and identified by morphological characterization and molecular identification, fulfilling Koch's postulates. C. karstii has been reported causing leaf rot of Carissa grandiflora in Spain (Garcia-Lopez et al., 2021), and anthracnose caused by C.tropicale was reported on D. odorifera (Yi et al., 2023). To our knowledge, this is the first report of Dalbergia odorifera leaf spot disease caused by Colletotrichum karstii. This finding provides an important basis for further research on the control of the disease.

17.
Front Plant Sci ; 14: 1212967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810393

RESUMO

Dalbergia cultrata Pierre Graham ex Benth (D. cultrata) is a precious rosewood tree species that grows in the tropical and subtropical regions of Asia. In this study, we used PacBio long-reading sequencing technology and Hi-C assistance to sequence and assemble the reference genome of D. cultrata. We generated 171.47 Gb PacBio long reads and 72.43 Gb Hi-C data and yielded an assembly of 10 pseudochromosomes with a total size of 690.99 Mb and Scaffold N50 of 65.76 Mb. The analysis of specific genes revealed that the triterpenoids represented by lupeol may play an important role in D. cultrata's potential medicinal value. Using the new reference genome, we analyzed the resequencing of 19 Dalbergia accessions and found that D. cultrata and D. cochinchinensis have the latest genetic relationship. Transcriptome sequencing of D. cultrata leaves grown under cold stress revealed that MYB transcription factor and E3 ubiquitin ligase may be playing an important role in the cold response of D. cultrata. Genome resources and identified genetic variation, especially those genes related to the biosynthesis of phytochemicals and cold stress response, will be helpful for the introduction, domestication, utilization, and further breeding of Dalbergia species.

19.
Fitoterapia ; 170: 105663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652268

RESUMO

A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.


Assuntos
Dalbergia , Estrutura Molecular , Dalbergia/química , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética
20.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569814

RESUMO

R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.


Assuntos
Dalbergia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Dalbergia/genética , Genes myb , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...