Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biology (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508343

RESUMO

Endophytic microbes are a ubiquitous group of plant-associated communities that colonize the intercellular or intracellular host tissues while providing numerous beneficial effects to the plants. All the plant species are thought to be associated with endophytes, majorly constituted with bacteria and fungi. During the last two decades, there has been a considerable movement toward the study of endophytes associated with coffee plants. In this review, the main consideration is given to address the coffee-associated endophytic bacteria and fungi, particularly their action on plant growth promotion and the biocontrol of pests. In addition, we sought to identify and analyze the gaps in the available research. Additionally, the potential of endophytes to improve the quality of coffee seeds is briefly discussed. Even though there are limited studies on the subject, the potentiality of coffee endophytes in plant growth promotion through enhancing nitrogen fixation, availability of minerals, nutrient absorption, secretion of phytohormones, and other bioactive metabolites has been well recognized. Further, the antagonistic effect against various coffee pathogenic bacteria, fungi, nematodes, and also insect pests leads to the protection of the crop. Furthermore, it is recognized that endophytes enhance the sensory characteristics of coffee as a new field of study.

2.
Pak J Biol Sci ; 26(12): 600-606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38334152

RESUMO

<b>Background and Objective:</b> An increase in the consumption of robusta coffee resulted in an increase in waste from coffee, one of the coffee wastes, namely coffee bean skins or cascara. Robusta coffee cascara contains 1-1.3 g of caffeine which causes side effects, such as insomnia and seizures etc. So this research aims to reduce the caffeine content in cascara by using <i>Bacillus subtilis</i>. Using optimum conditions and capabilities. <b>Materials and Methods:</b> The experiment was conducted from May to August, 2022 in the Pharmacy Laboratory, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Indonesia. Before optimizing, cascara was extracted using the ultrasonic assisted extraction (UAE) method, validated by the High-Performance Liquid Chromatography (HPLC) method to determine caffeine content and a paired sample t-test was performed using Statistical Package for the Social Sciences (SPSS). <b>Results:</b> It showed that in validating the HPLC method, the wavelength of caffeine in cascara was 272 nm. The mobile phase was a mixture of methanol-water (adjust orthophosphate). The pH (2.4) (45:55), obtained the optimum decaffeination conditions at the concentration of bacteria <i>Bacillus subtilis</i> 6% and a long incubation time of 24 hrs resulted in a decrease in caffeine content of 51.3843±0.2503%. <b>Conclusion:</b> The results of the paired sample t-test indicate that the concentration of bacteria <i>Bacillus subtilis</i> and incubation time significantly influence caffeine levels.


Assuntos
Cafeína , Coffea , Cafeína/análise , Coffea/química , Bacillus subtilis , Indonésia
3.
Foods ; 11(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36429218

RESUMO

Adsorption is an important technology for the separation of different tea components. The adsorption behavior of L-theanine onto adsorbents was comprehensively studied in this paper. Among tested adsorbents, cation exchange resin ZGSPC106Na and D001SD were suitable for separating L-theanine, PVPP and PA-6 for catechins and macroporous resin HPD-400 for caffeine. Adsorption of L-theanine onto the cation resins was significantly influenced by the acidity, contact time and temperature. The adsorption behavior could be described by the pseudo-second-order rate equation and fitted to Langmuir and Freundlich models. ZGSPC106Na exhibited higher adsorption capacity, while D001SD showed higher adsorption selectivity. These might be attributed to the distinctive structure of the two resins and different ionization of the adsorbates. A method for simultaneous preparation of decaffeinated polyphenols, caffeine-enriched extract and decaffeinated L-theanine was established through successive separation on the columns fulfilled with PA-6, HPD-400 and D001SD, respectively.

4.
J Oleo Sci ; 71(10): 1541-1550, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089402

RESUMO

Coffee is a beverage that is consumed worldwide, and the demand for decaffeinated coffee has increased in recent years. This study aimed to investigate the effect of roasting conditions on the concentration of physiologically active compounds in coffee beans with and without supercritical CO2 decaffeination treatment. Decaffeination treatment markedly reduced caffeine concentration and slightly reduced trigonelline concentration in the coffee beans, whereas the concentrations of chlorogenic acids (chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid) were largely unchanged. Roasting was performed using a hot-air coffee roaster machine and the coffee beans were treated at different peak temperatures (125-250℃), different hold times at the peak temperature (120-240 s), and different temperature increase times to reach the peak temperature (60-180 s). Roasting conditions such as long hold and long temperature rise times at high temperatures (≥ 225℃) significantly degraded coffee compounds except for caffeine, with similar degradation rates between non-decaffeinated and decaffeinated coffee beans. In contrast, the L* value of decaffeinated coffee decreased with less thermal history compared to that of non-decaffeinated coffee. This allowed for the complete roasting of decaffeinated coffee with a lower thermal history compared to those of non-decaffeinated counterparts, suppressing the degradation of several coffee compounds. For example, comparing the similar L* values between coffee beans with and without decaffeination treatment, it was found that the former tended to contain more chlorogenic acid. Generally, decaffeination results in the loss of physiologically active compounds along with caffeine, which is a major concern. However, this study showed that appropriate control of decaffeination and roasting conditions can limit the degradation of several valuable coffee compounds, such as trigonelline and chlorogenic acid.


Assuntos
Coffea , Cafeína/análise , Dióxido de Carbono , Ácido Clorogênico , Manipulação de Alimentos/métodos , Temperatura Alta , Sementes/química
5.
Foods ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267349

RESUMO

Coffee silverskin (CS), a by-product obtained by the coffee industry after the roasting process, is scientifically known to be a source of fiber and polyphenols, which could contribute to human health. In this work, the production of CS-enriched biscuits is proposed, where the CS from Arabica and Robusta type and a decaffeinated blend of the two were used at three different levels as a replacement for wheat flour. The biscuits were analyzed for their physicochemical properties, consumer acceptability, and the bioaccessibility of polyphenols after in vitro digestion was estimated in order to identify the formulation most appreciated by consumers and most promising in terms of nutritional and biofunctional potential. From the results, CS-based biscuits represent an interesting possibility to create a more sustainable coffee chain, thanks to the valorization of the silverskin, especially if a decaffeinated CS is considered. In fact, a 4% replacement of the wheat flour with decaffeinated CS is able to give a final product with a high content of accessible polyphenols and a biscuit appreciated by the consumer.

6.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335174

RESUMO

Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples.


Assuntos
Café , Microextração em Fase Sólida , Cafeína , Quimiometria , Aprendizado de Máquina
7.
Food Chem ; 383: 132399, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35168041

RESUMO

Plant-derived polyphenols have emerged as molecular building blocks for biomedical architectures. However, the isolation of polyphenols from other components requires labor-intensive procedures, which increases costs and often raises environmental concerns. Here, we suggest that decaffeination can be a convenient and cost-effective method for enhancing the antibacterial performance of polyphenol-rich tea extracts. As a demonstration, we compared the properties of a nano-thin coating made of decaffeinated (dGT coating) and raw green tea extract (GT coating). The dGT coating exhibited enhanced antibacterial performance with regard to bacterial killing and prevention of bacterial attachment compared with the GT coating. Moreover, the chemical reactivity of the dGT coating was further utilized for secondary modifications, which enhanced the overall antibacterial performance of the modified surface. Given its intrinsic low toxicity, we envision that the developed antibacterial coating is ready for the next steps toward application in real clinical settings.


Assuntos
Polifenóis , Chá , Antibacterianos/farmacologia , Antioxidantes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Chá/química
8.
Foods ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37431017

RESUMO

The supercritical CO2-based decaffeination (SCD) method can be used to prepare decaffeinated tea, but its overall effect on the phytochemicals, volatiles, and sensory qualities of green and black teas is still unclear, and its suitability to prepare decaffeinated green and black teas still needs to be compared. This study revealed the effect of SCD on phytochemicals, volatiles, and sensory qualities in black and green tea prepared from the same tea leaves, and compared the suitability of preparing decaffeinated green and black teas using SCD. The results showed that the SCD could remove 98.2 and 97.1% of the caffeine in green and black tea, respectively. However, it can cause further losses of phytochemicals in green and black teas, specifically the loss of epigallocatechin gallate, epigallocatechin, epicatechin gallate, and gallocatechin gallate in green tea and the loss of theanine and arginine in green and black teas. After the decaffeination, both green and black teas lost some volatiles but also generated new volatiles. Especially, the fruit/flower-like aroma, ocimene, linalyl acetate, geranyl acetate, and D-limonene, were generated in the decaffeinated black tea, while herbal/green-like aroma, ß-cyclocitral, 2-ethylhexanol, and safranal, were generated in the decaffeinated green tea. The overall acceptance of decaffeinated green tea decreased due to the substantial reduction in bitterness and astringency, while the overall acceptance of decaffeinated black tea significantly increased. Therefore, SCD is more suitable for the preparation of decaffeinated black tea.

9.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199752

RESUMO

Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson's, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 µg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.


Assuntos
Cafeína/análise , Ácido Clorogênico/análise , Coffea/química , Virus da Influenza A Subtipo H5N1/enzimologia , Cloreto de Metileno/farmacologia , Neuraminidase/antagonistas & inibidores , Cafeína/efeitos adversos , Cafeína/farmacologia , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Cromatografia Líquida de Alta Pressão , Coffea/efeitos dos fármacos , Manipulação de Alimentos , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Extração em Fase Sólida , Proteínas Virais/antagonistas & inibidores
10.
J Food Sci Technol ; 56(11): 5009-5016, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31741525

RESUMO

In the present study, two extraction methods, hot water extraction and ethyl acetate extraction were used to decaffeinate fresh green tea leaf (Camellia assamica) collected from four parts of Assam, NE-India. Both type of extraction methods have significant effect on the antioxidant activity of decaffeinated green tea. Amongst the four samples, Dhekiajuli sample have highest antioxidant activity and total polyphenol as well as flavonoid contents. During hot water extraction (100 °C for 3 min), in decaffeinated green tea, the antioxidant activity decreases to 996.1 ± 26.12 mM TE/g green tea and 1165 ± 31.25 mM TE/g green tea from 1403.07 ± 70.15 mM TE/g and 1587.1 ± 79.355 mM TE/g green tea as observed for caffeinated green tea by DPPH and FRAP assay respectively. Again more antioxidant activity (ranges from 996.1 ± 15.8 to 1421.3 ± 71.06 mM TE/g) was recorded for ethyl acetate extracts compared to hot water extracts of samples. However, the loss in antioxidant activity, due to decaffeination of green tea in our study was minimize by using herbal plant extract, Hibiscus sabdariffa along with the tea extract which shows a synergistic effect.

11.
J Food Sci Technol ; 55(4): 1407-1415, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606755

RESUMO

In this pilot-scale study supercritical carbon dioxide (SCCO2) extraction technique was used for decaffeination of black tea. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO2 flow rate (1, 2, 3 L/min) and modifier quantity (0, 2.5, 5 mol%) were selected as extraction parameters. Three-level and five-factor response surface methodology experimental design with a Box-Behnken type was employed to generate 46 different processing conditions. 100% of caffeine from black tea was removed under two different extraction conditions; one of which was consist of 375 bar pressure, 62.5 °C temperature, 300 min extraction time, 2 L/min CO2 flow rate and 5 mol% modifier concentration and the other was composed of same temperature, pressure and extraction time conditions with 3 L/min CO2 flow rate and 2.5 mol% modifier concentration. Results showed that extraction time, pressure, CO2 flow rate and modifier quantity had great impact on decaffeination yield.

12.
J Food Sci Technol ; 54(7): 2186-2192, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28720978

RESUMO

The lack of aroma and natural taste is a critical problem in production and consumption of instant green teas. A method to prepare instant green teas high in-natural-aroma and low-caffeine by the novel column chromatographic extraction with gradient elution is reported. This method simultaneously extracted aroma (or volatile) and non-aroma compounds from green tea. Green tea was loaded into columns with 2.0-fold of petroleum ether (PE): ethanol (8:2). After standing for 3 h until the aroma compounds dissolved, the column was sequentially eluted with 3.0-fold 40% ethanol and 3.5-fold water. The eluant was collected together and automatically separated into PE and ethanol aqueous phases. The aroma extracts was obtained by vacuum-evaporation of PE phase at 45 °C. The ethanol aqueous phase was vacuum-concentrated to aqueous and partially or fully decaffeinated with 4% or 9% charcoal at 70 °C. A regular instant green tea with epigallocatechin-3-gallate: caffeine of 3.5:1 and a low-caffeine instant green tea (less than 1% caffeine) with excellent aroma and taste were prepared, by combining the aroma and non-aroma extracts at a 1:10 ratio. This work provides a practical approach to solve the low-aroma and low-taste problems in the production of high quality instant green teas.

13.
Braz. arch. biol. technol ; 56(5): 829-836, Sept.-Oct. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-689811

RESUMO

The objective of this study was to evaluate the influence of integral and decaffeinated coffee brews (Coffea arabica L and C. canephora Pierre) on the metabolic parameters of rats fed with hyperlipidemic diet. Thirty male Wistar rats (initial weight of 270 g ± 20 g) were used in the study, which were divided into six groups five each. The treatments were normal diet, hyperlipidemic diet, hyperlipidemic diet associated with integral coffee arabica or canephora brews (7.2 mL/kg/day) and hyperlipidemic diet associated to decaffeinated arabica, or canephora brews, using the same dosage. After 41 days, performance analyses were conducted.The rats were then euthanized and the carcasses were used for the analysis of dried ether extract and crude protein. Fractions of adipose tissue were processed for histological analysis. There was a reduction in weight gain and accumulation of lipids in the carcasses, lower diameter of adipocytes and a lower relative weight of the liver and kidneys of rats fed with hyperlipidemic diet associated with integral coffee brew. Integral coffee brew reduced the obesity in the rats receiving hyperlipidemic diet, but the same effect did not occur with the decaffeinated types.

14.
Rev. bras. farmacogn ; 23(3): 506-512, May-June 2013. tab
Artigo em Inglês | LILACS | ID: lil-676288

RESUMO

Decaffeination and roasting affects the composition of the chlorogenic acids in coffee, which have antioxidant potential. The aim of this study was to evaluate the effects of coffee decaffeination on the in vivo antioxidant activity and the prevention of liver damage. The Wistar rats received intraperitoneal doses of carbon tetrachloride and daily doses of Arabica coffee brews (whole and decaffeinated, both green and roasted) by gavage for fifteen days. The activity of liver marker enzymes aspartate aminotransferase, alanine aminotransferase and serum albumin were measured as well as the quantification of the thiobarbituric acid reactive species and the content of liver total lipids. Aspartate aminotransferase and alanine aminotransferase are good indicators of liver damage: the results showed that all studied coffee brews decreased the activity of aspartate aminotransferase and alanine aminotransferase, and liver levels of thiobarbituric acid reactive species and total lipids. The compounds presents in coffee brews are able to decrease the hepatic lipid peroxidation induced by carbon tetrachloride, making a significant hepatoprotective effect, in accordance with the liver function tests. The coffee brews are hepatoprotective regardless of the decaffeination process and our results suggest a better protection against liver damage for the roasted coffee brews compared with green coffee brews.

15.
Foods ; 2(4): 462-477, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-28239130

RESUMO

Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO2) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO2 extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO2 extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO2 extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

16.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469450

RESUMO

Various microorganisms including bacteria, yeast and fungi can degrade caffeine. There are few publications about caffeine degradation pathway in filamentous fungi, mainly by solid-state fermentation (SSF). Studies were carried out on degradation of caffeine and their metabolites by filamentous fungi in SSF using coffee husk as substrate. The purpose of this work was to investigate the caffeine degradation pathway by Rhizopus delemar in packed bed column fermenter and to compare this degradation metabolism with glass flasks fermentation. The methylxanthines were quantified by HPLC analysis. The experiments were realized with the optimized conditions in previous experiments: pH 6.5, 28ºC, inoculation rate 10(6) spores/g substrate, aeration rate 60 mL/min and initial moisture 73%. Under these conditions, after 72 hous of fermentation was achieved only 0.19% of caffeine and 0.014% of theophylline in the coffee husk. The strain proved to be able for caffeine and theophylline degradation by SSF in packed bed column bioreactor.


Diversos microrganismos incluindo bactérias, fungos e leveduras são capazes de assimilar a cafeína de meios sintéticos ou de resíduos de café. Existem poucos trabalhos sobre a via de degradação da cafeína em fungos filamentosos, principalmente por fermentação no estado sólido (FES). Estudos de degradação da cafeína por fungos filamentosos em FES usando casca de café como substrato vêm sendo realizados. O objetivo deste trabalho foi investigar a via de degradação da cafeína por Rhizopus delemar em biorreator de colunas aeradas e comparar este metabolismo de degradação com o da fermentação em frascos de vidro. As metilxantinas foram quantificadas por análises em HPLC. Os experimentos foram realizados com as condições otimizadas previamente: pH 6,5, 28ºC, 10(6) espores/g substrato, vazão de ar 60 mL/min e 73% de umidade inicial. Após 90 horas de fermentação, 65% da cafeína foi reduzida, resultando 0,19% de cafeína e 0,014% de teofilina na casca de café. Esta cepa provou ter habilidade para degradar cafeína e teofilina por FES em biorreator de colunas.

17.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469497

RESUMO

Various microorganisms including bacteria, yeast and fungi can degrade caffeine. There are few publications about caffeine degradation pathway in filamentous fungi, mainly by solid-state fermentation (SSF). Studies were carried out on degradation of caffeine and their metabolites by filamentous fungi in SSF using coffee husk as substrate. The purpose of this work was to investigate the caffeine degradation pathway by Rhizopus delemar in packed bed column fermenter and to compare this degradation metabolism with glass flasks fermentation. The methylxanthines were quantified by HPLC analysis. The experiments were realized with the optimized conditions in previous experiments: pH 6.5, 28ºC, inoculation rate 10(6) spores/g substrate, aeration rate 60 mL/min and initial moisture 73%. Under these conditions, after 72 hous of fermentation was achieved only 0.19% of caffeine and 0.014% of theophylline in the coffee husk. The strain proved to be able for caffeine and theophylline degradation by SSF in packed bed column bioreactor.


Diversos microrganismos incluindo bactérias, fungos e leveduras são capazes de assimilar a cafeína de meios sintéticos ou de resíduos de café. Existem poucos trabalhos sobre a via de degradação da cafeína em fungos filamentosos, principalmente por fermentação no estado sólido (FES). Estudos de degradação da cafeína por fungos filamentosos em FES usando casca de café como substrato vêm sendo realizados. O objetivo deste trabalho foi investigar a via de degradação da cafeína por Rhizopus delemar em biorreator de colunas aeradas e comparar este metabolismo de degradação com o da fermentação em frascos de vidro. As metilxantinas foram quantificadas por análises em HPLC. Os experimentos foram realizados com as condições otimizadas previamente: pH 6,5, 28ºC, 10(6) espores/g substrato, vazão de ar 60 mL/min e 73% de umidade inicial. Após 90 horas de fermentação, 65% da cafeína foi reduzida, resultando 0,19% de cafeína e 0,014% de teofilina na casca de café. Esta cepa provou ter habilidade para degradar cafeína e teofilina por FES em biorreator de colunas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...