Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Pollut ; 357: 124418, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908673

RESUMO

Polystyrene nanoparticles (PS NPs) released from plastic products have been demonstrated to pose a threat to leaf litter decomposition in streams. Given the multitrophic systems of species interactions, the effects of PS NPs through different exposure routes on ecosystem functioning remain unclear. Especially dietary exposure, a frequently overlooked pathway leading to toxicity, deserves more attention. A microcosm experiment was conducted in this study to assess the effects of waterborne and dietary exposure to PS NPs on the litter-based food chain involving leaves, microbial decomposers, and detritivores (river snails). Compared to waterborne contamination, dietary contamination resulted in lower microbial enzyme activities and a significantly higher decrease in the lipid content of leaves. For river snails, their antioxidant activity was significantly increased by 20.21%-69.93%, and their leaf consumption rate was significantly reduced by 16.60% through the dietary route due to the lower lipid content of leaves. Besides, the significantly decreased nutritional quality of river snails would negatively influence their palatability to predators. The findings of this study indicate that dietary exposure to PS NPs significantly impacts microbial and detritivore activities, thus affecting their functions in the detritus food chain as well as nutrient cycling.

2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731903

RESUMO

To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture (PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the species. We also corroborated the results obtained using transcriptomics data from genetically heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.


Assuntos
Perfilação da Expressão Gênica , Oligoquetos , Transcriptoma , Animais , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Oligoquetos/genética , Oligoquetos/enzimologia , Digestão/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
3.
Environ Pollut ; 349: 123930, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615838

RESUMO

Microplastics, pervasive pollutants in aquatic environments, have been primarily studied for their impact on marine ecosystems. However, their effects on freshwater systems, particularly in forested phytotelmata habitats, remain understudied in Subtropical systems. This research examines the influence of varying microplastic concentrations (0.0, 200, 2,000, 20,000, and 200,000 ppm) on leaf litter breakdown of Inga vera (in bags of 10 and 0.05 mm mesh) and the naturally associated invertebrate community occurring in forested phytotelmata. The study employs an experimental design with microplastic concentration treatments in artificial microcosms (buckets with 800 mL of rainwater) arranged in an area of Atlantic Rain Forest native vegetation of Subtropical systems. The results indicate that elevated concentrations of microplastics may enhance leaf litter breakdown (6-8%), irrespective of the bag mesh, attributed to heightened decomposer activity and biofilm formation. Consequently, this contributes to increased invertebrate richness (33-37%) and greater shredder abundance (21-37%). Indicator analysis revealed that Culicidae, Stratiomyidae, Chironomidae, Empididae, Planorbidae, and Ceratopogonidae were indicative of some microplastic concentrations. These findings underscore the significance of accounting for microplastics when evaluating the taxonomic and trophic characteristics of invertebrate communities, as well as the leaf breakdown process in Subtropical systems.


Assuntos
Invertebrados , Microplásticos , Folhas de Planta , Poluentes Químicos da Água , Folhas de Planta/metabolismo , Folhas de Planta/química , Microplásticos/toxicidade , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Invertebrados/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental/métodos , Biodegradação Ambiental
4.
Ecol Evol ; 14(3): e10959, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450324

RESUMO

The effect of mixing litter on decomposition has received considerable attention in terrestrial and aquatic (but rarely in both) ecosystems, with a striking lack of consensus in the obtained results. We studied the decomposition of a mixture of poplar and alder in three terrestrial: aquatic exposures to determine (1) if the effect of mixing litter on mass loss, associated decomposers (fungal biomass, sporulation rates, and richness), and detritivores (abundance, biomass, and richness of invertebrate shredders) differs between the stream (fully aquatic exposure) and when litter is exposed to a period of terrestrial exposure prior to immersion and (2) the effect of the mixture across exposure scenarios. The effect of the mixture was additive on mass loss and synergistic on decomposers and detritivores across exposure scenarios. Within scenarios, mass loss and decomposers showed synergistic effects only in the fully aquatic exposure, detritivores showed synergistic effects only when the period of terrestrial was shorter than the period of aquatic exposure, and when the period of terrestrial was equal to the period of aquatic exposure the effect of the mixture was additive on mass loss, decomposers, and detritivores. The species-specific effects also differed among exposure scenarios. Alder affected poplar only when there was a period of terrestrial exposure, with increased sporulation rates and fungal richness in exposure 25:75, and increased mass loss in exposure 50:50. Poplar affected alder only under fully aquatic exposure, with increased mass loss. In conclusion, the synergistic effects of the mixture changed with a period of terrestrial exposure prior to immersion. These results provide a cross-boundary perspective on the effect of mixing litter, showing a legacy effect of exposure to terrestrial decomposition on the fate of plant litter in aquatic ecosystems and highlighting the importance of also assessing the effect of mixing litter on the associated biota and not only on mass loss.

5.
Oecologia ; 204(3): 491-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265599

RESUMO

Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.


Assuntos
Ecossistema , Florestas , Árvores , Isótopos de Carbono/análise , Tamanho Corporal
6.
Biodivers Data J ; 11: e105111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901679

RESUMO

Background: Peatland ecosystems are defined by soils with sufficient under-decomposed organic layer, called peat, formed under anoxic conditions. Peatlands are widespread around the world, with several highly paludified regions, one of which is the Western Siberian Plain. Peatlands store large amounts of carbon and are important in their intact state to counteract climate change, as well as for a variety of other ecosystem functions. From the practical aspect, these ecosystems are used as a source of peat for fuel, peat-based fertilisers and growing media, berries and Sphagnum plantations. Fungi are the key part of the decomposer community of peatlands, playing a critical role in the aerobic decomposition in the upper peat layer. The community of peatland fungi is adapted to decomposition of peat and dead parts of Sphagnum in wet acidic conditions; they form specific mycorrhizal associations with a variety of plants. Thus, the research of fungal diversity of peatlands is important for several reasons: 1) adding knowledge of peatland fungal diversity to local or global biodiversity databases; 2) studying carbon cycling in peatlands; 3) using peat and peatlands for different applications, such as cultivation of Sphagnum with regards to some parasitic species of fungi and 4) peatland restoration and conservation, to mention a few. New information: The community of macromycetes of the raised bog "Mukhrino" in Western Siberia was studied using plot-based monitoring throughout a 9-year observation period. The revealed species diversity is represented by approximately 500 specimens in the Fungarium of Yugra State University collection. Selected specimens were used for barcoding of the ITS region to reveal a total of 95 species from 33 genera and three classes. The barcoding effort confirmed morphological identifications for most specimens and identified a number of cryptic species and several potentially new taxa. Based on regular all-season observations, we describe the phenology of the community sporophore production. The quantitative community structure, based on sporophores, revealed a difference in abundance between species by four orders of magnitude, with rare species representing nearly half of the species list. The inter-annual fruiting abundance varied several times by the total number of sporophores per year. To make the comparisons with global studies, we created an open access database of literature-based observations of fungi in peatlands, based on about 120 published papers (comprising about 1300 species) and compared our species list with this database.As a result, the study created an accurate representation of taxonomic and quantitative structure of the community of macromycetes in raised bogs in the region. The raw data of plot-based counts was published as a sampling-event dataset and the sequenced specimens with the sequence information as an DNA-derived extension dataset in GBIF.

7.
Microb Ecol ; 86(4): 2674-2686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37505287

RESUMO

Heterotrophic microbial decomposers colonize submerged leaf litter in close spatial proximity to periphytic algae that exude labile organic carbon during photosynthesis. These exudates are conjectured to affect microbial decomposers' abundance, resulting in a stimulated (positive priming) or reduced (negative priming) leaf litter decomposition. Yet, the occurrence, direction, and intensity of priming associated with leaf material of differing recalcitrance remains poorly tested. To assess priming, we submerged leaf litter of differing recalcitrance (Alnus glutinosa [alder; less recalcitrant] and Fagus sylvatica [beech; more recalcitrant]) in microcosms and quantified bacterial, fungal, and diatom abundance as well as leaf litter decomposition over 30 days in absence and presence of light. Diatoms did not affect beech decomposition but reduced alder decomposition by 20% and alder-associated fungal abundance by 40% in the treatments including all microbial groups and light, thus showing negative priming. These results suggest that alder-associated heterotrophs acquired energy from diatom exudates rather than from leaf litter. Moreover, it is suggested that these heterotrophs have channeled energy to alternative (reproductive) pathways that may modify energy and nutrient availability for the remaining food web and result in carbon pools protected from decomposition in light-exposed stream sections.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fungos/metabolismo , Rios , Folhas de Planta/microbiologia , Carbono/metabolismo , Ecossistema
8.
Sci Total Environ ; 891: 164569, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269992

RESUMO

Soil salinization is a severe environmental problem that restricts plant productivity and ecosystem functioning. Straw amendment could increase the fertility of saline soils by improving microbial activity and carbon sequestration, however, the adaptation and ecological preference of potential fungal decomposers after straw addition under varied soil salinities remains elusive. Here, a soil microcosm study was conducted by incorporating wheat and maize straws into soils with a range of salinities, respectively. We showed that the amendment of straws increased MBC, SOC, DOC and NH4+-N contents by 75.0 %, 17.2 %, 88.3 % and 230.9 %, respectively, but decreased NO3--N content by 79.0 %, irrespective of soil salinity, with intensified connections among these parameters after straw addition. Although soil salinity had a more profound effect on both fungal α- and ß-diversity, straw amendment also significantly reduced fungal Shannon diversity and changed community composition, especially for severe saline soil. Complexity of the fungal co-occurrence network was specifically strengthened after straw addition, with average degree increasing from 11.9 in the control to 22.0 and 22.7 in wheat and maize straw treatments, respectively. Intriguingly, there was very little overlap among the straw-enriched ASVs (Amplicon Sequence Variants) in each saline soil, indicating the soil-specific involvement of potential fungal decomposers. Particularly, fungal species belonging to Cephalotrichum and unclassified Sordariales were the most responsive to straw addition in severe saline soil, whereas light saline soil supported the enrichment of Coprinus and Schizothecium species after straw addition. Together, our study provides a new insight on the common and specific responses of soil chemical and biological characteristics at different salinity levels under straw management, which will help guide precise microbial-based strategies to boost straw decomposition in future agricultural practice and environmental management of saline-alkali lands.


Assuntos
Ecossistema , Solo , Solo/química , Salinidade , Agricultura , Zea mays/química , Triticum , Microbiologia do Solo
9.
Sci Total Environ ; 860: 160190, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36402317

RESUMO

Decomposition rates of litter mixtures reflect the combined effects of litter species diversity, litter quality, decomposers, their interactions with each other and with the environment. The outcomes of those interactions remain ambiguous and past studies have reported conflicting results (e.g., litter mixture richness effects). To date, how litter diversity and soil fauna interactions shape litter mixture decomposition remains poorly understood. Through a sixteen month long common garden litter decomposition experiment, we tested these interaction effects using litterbags of three mesh sizes (micromesh, mesomesh, and macromesh) to disentangle the contributions of different fauna groups categorized by their size at Wuhan botanical garden (subtropical climate). We examined the decomposition of five single commonly available species litters and their full 26 mixtures combination spanning from 2 to 5 species. In total, 2325 litterbags were incubated at the setup of the experiment and partly harvested after 1, 3, 6, 9, and 16 months after exposure to evaluate the mass loss and the combined effects of soil fauna and litter diversity. We predicted that litter mixture effects should increase with increased litter quality dissimilarity, and soil fauna should enhance litter (both single species litter and litter mixtures) decomposition rate. Litter mass loss ranged from 26.9 % to 87.3 %. Soil fauna access to litterbags accelerated mass loss by 29.8 % on average. The contribution of soil mesofauna did not differ from that of soil meso- and macrofauna. Incubation duration and its interactions with litter quality dissimilarities together with soil fauna determined the litter mixture effect. Furthermore, the litter mixture effect weakened as the decomposition progresses. Faunal contribution was broadly additive to the positive mixture effect irrespective of litter species richness or litter dissimilarity. This implies that combining the dissimilarity of mixture species and contributions of different soil fauna provides a more comprehensive understanding of mixed litter decomposition.


Assuntos
Ecossistema , Folhas de Planta , Solo , Jardinagem , Cidades
10.
Ecotoxicology ; 31(9): 1450-1461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36319919

RESUMO

The use of pesticides to protect crops often affects non-target organisms vital to ecosystem functioning. A functional soil mesofauna is important for decomposition and nutrient cycling processes in agricultural soils, which generally have low biodiversity. To assess pesticide effects on natural soil communities we enclosed intact soil cores in situ in an agricultural field in 5 cm wide mesocosms. We used two types of mesh lids on the mesocosms, allowing or preventing migration of mesofauna. The mesocosms were exposed to the insecticide imidacloprid (0, 0.1, 1, and 10 mg/kg dry soil) and left in the field for 20 days. Overall, regardless of lid type, mesocosm enclosure did not affect springtail or mite abundances during the experiment when compared with undisturbed soil. Imidacloprid exposure reduced the abundance of both surface- and soil-living springtails in a concentration-dependent manner, by 65-90% at the two highest concentrations, and 21-23% at 0.1 mg/kg, a concentration found in some agricultural soils after pesticide application. Surface-living springtails were more affected by imidacloprid exposure than soil-living ones. In contrast, neither predatory nor saprotrophic mites showed imidacloprid-dependent changes in abundance, concurring with previous findings indicating that mites are generally less sensitive to neonicotinoids than other soil organisms. The possibility to migrate did not affect the springtail or mite abundance responses to imidacloprid. We show that under realistic exposure concentrations in the field, soil arthropod community composition and abundance can be substantially altered in an organism-dependent manner, thus affecting the soil community diversity.


Assuntos
Ácaros , Praguicidas , Animais , Praguicidas/toxicidade , Ecossistema , Neonicotinoides/toxicidade , Solo
11.
Oecologia ; 200(3-4): 479-490, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36329313

RESUMO

Litter decomposition is a central ecosystem function because dead plant biomass plays a critical role in carbon storage, the nitrogen (N) cycle, and as food/habitat for animals and microorganisms. In the face of global change, interactions between organisms that participate in litter decomposition are likely to change due to species loss and N pollution. To understand how these global change factors may interact to alter litter decomposition, we manipulated the detritivore community and N concentrations in a coastal salt marsh for 2 years. We chose to manipulate densities of a dominant, detritivorous snail (Melampus bidentatus) because its population size is expected to decline due to climate change, yet its impact on litter decomposition has not been tested in the field. We measured litter decomposition rates, detritivore densities, and the N concentrations of sediment and litter. We found that endogenous N enrichment (N added live plants before decomposition), exogenous N enrichment (N added to decomposing plants) and higher densities of Melampus increased litter decomposition rates. Linear mixed models further revealed that snails, other detritivores, and soil NH4+ were the best predictors of litter mass loss in the middle stages of decomposition. Notably, exogenous N added to litter already enriched with N further increased mass loss but did not increase litter %N. Our study reveals how global change in the form species loss and N pollution can have palpable impacts on carbon cycling and ecosystem function.


Assuntos
Gastrópodes , Áreas Alagadas , Animais , Nitrogênio , Ecossistema , Poluição Ambiental , Carbono
12.
MethodsX ; 9: 101841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147451

RESUMO

The article presents protocols for determining the biological activity of kerosene-contaminated soils in terms of two indicators, i.e. cellulolytic activity and biological consumption of oxygen. A method for determining the cellulolytic activity of soils is based on measuring the rate of cellulose decomposition in situ. Model test objects (linen fragments 10 × 20 cm weighing 4-6 g) were put in the root layer of soil. A month later, the linen was removed from soil and its weight loss was measured. Cellulolytic activity was estimated by the weight loss of readily hydrolysable organic matter (RHOM) per day (mg/g RHOM per day). The method for determining the biological consumption of oxygen of water was adapted for soils. The indicator characterizes the ability of microorganisms to oxidize organic substances using oxygen for 5 days. The analytic procedure includes taking a soil sample, preparing the suspension (the ratio of soil to distilled water is at least 1:10) and after 5 days measuring the concentration of unspent dissolved oxygen using the oxygen meter. The proposed methods give reproducible and reliable results on the biochemical activity of soil microorganisms in a wide range of soils, e.g. Retisols, Arenosols and Histosols, including those under hydrocarbon pollution.

13.
Vavilovskii Zhurnal Genet Selektsii ; 26(5): 449-457, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36128566

RESUMO

Bacteria play a key role in biogeochemical cycles in natural and anthropogenic ecosystems. In river ecosystems, bacteria intensively colonize silt sediments. Microorganisms are essential for energy conversion, biogeochemical nutrient cycling, pollutant degradation, and biotransformation of organic matter; therefore, bottom sediments can be a source of metabolically diverse microorganisms, including those with promise for industrial biotechnologies. The aim of this work was to isolate and study pure cultures of microorganisms - producers of industrially important enzymes and decomposers of organic matter - from bottom sediments of the Ob River. Pork fat and diesel fuel were used as substrates to obtain enrichment and pure cultures for selective cultivation of bacteria with lipolytic and hydrocarbon-oxidizing activity. A total of 21 pure cultures were isolated. The phylogenetic position of the obtained bacterial isolates was determined based on the analysis of 16S rRNA gene sequences. The strains isolated on selective media belonged to representatives of the genera Pseudomonas and Aeromonas (Gammaproteobacteria), and the genus Microvirgula (Betaproteobacteria). The ability of strains to grow on culture media containing pork fat, olive oil and diesel fuel was analyzed. The lipolytic activity of the isolates was evidenced by cultivation on a diagnostic medium containing 1 % tributyrin. The phylogenetic and metabolic diversity of the cultivated non-pathogenic bacterial strains with lipolytic and oil-oxidizing activity revealed in the study indicates the biotechnological potential of the isolates. The most promising strains were M. aerodenitrificans sp. LM1 and P. lini sp. KGS5K3, which not only exhibited lipolytic activity on the diagnostic medium with tributyrin in a wide temperature range, but also utilized diesel fuel, pork fat and olive oil.

14.
Ecol Evol ; 12(6): e9020, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784088

RESUMO

Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter- and intraseasonal variations and frequency of extreme climatic events (i.e., droughts and floods), which have evident consequences for aboveground biodiversity. However, until today, there have been no studies on how land use affects seasonal variations below ground in tropical ecosystems, which may be more buffered against climatic variation. Here, we analyzed seasonal variations in soil parameters, basal respiration, microbial communities, and abundances of soil invertebrates along with microclimatic conditions in rainforest and monocultures of oil palm and rubber in Sumatra, Indonesia. About 75% (20 out of 26) of the measured litter and soil, microbial, and animal parameters varied with season, with seasonal changes in 50% of the parameters depending on land use. Land use affected seasonal variations in microbial indicators associated with carbon availability and cycling rate. The magnitude of seasonal variations in microbial parameters in the soil of monocultures was almost 40% higher than in the soil of rainforest. Measured parameters were associated with short-term climatic conditions (3-day period air humidity) in plantations, but not in rainforest, confirming a reduced soil buffering ability in plantations. Overall, our findings suggest that land use temporally shifts and increases the magnitude of seasonal variations of the belowground ecosystem compartment, with microbial communities responding most strongly. The increased seasonal variations in soil biota in plantations likely translate into more pronounced fluctuations in essential ecosystem functions such as nutrient cycling and carbon sequestration, and these ramifications ultimately may compromise the stability of tropical ecosystems in the long term. As the observed seasonal dynamics is likely to increase with both local and global climate change, these shifts need closer attention for the long-term sustainable management of plantation systems in the tropics.

15.
Glob Chang Biol ; 28(8): 2779-2789, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064621

RESUMO

Unraveling the biogeographic pattern of soil fungal decomposers along temperature gradients-in smooth linearity or an abrupt jump-can help us connect the global carbon cycle to global warming. Through a standardized global field survey, we identify the existence of temperature thresholds that control the global distribution of soil fungal decomposers, leading to abrupt reductions in their proportion (i.e., the relative abundance in the fungal community) immediately after crossing particular air and soil temperature thresholds. For example, small increases over the mean annual temperature threshold of ~9°C result in abrupt reductions in their proportion, paralleling a similar temperature threshold for soil carbon content. We further find that the proportion of soil fungal decomposers is more sensitive to temperature increases under arid conditions. Given the positive correlation between the global distributions of fungal decomposers and soil heterotrophic respiration, the reported temperature-driven abrupt reductions in fungal decomposers could further suppress their driven soil decomposition processes and reduce carbon fluxes from soils to the atmosphere with implications for climate change feedback. This work not only advances the current knowledge on the global distribution of soil fungal decomposers, but also highlights that small changes in temperature around certain thresholds can lead to potential unexpected consequences in global carbon cycling under projected climate change.


Assuntos
Microbiologia do Solo , Solo , Carbono , Ciclo do Carbono , Ecossistema , Temperatura
16.
Ecology ; 102(10): e03471, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260739

RESUMO

Fungi produce a variety of extracellular enzymes, making recalcitrant substrates bioavailable. Thus, fungi are central for the decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species' performances, so-called net diversity effects (NDEs). We used fungal species-specific biomolecular tools to target fungal-fungal and fungal-bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 d of incubation. Fungal community data were used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In the presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria-induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria-free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity-ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co-occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies.


Assuntos
Ecossistema , Fungos , Bactérias/genética , Biodiversidade , Folhas de Planta , Rios
17.
FEMS Microbiol Ecol ; 97(8)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34185048

RESUMO

Animals are an essential part of the ecosystem, and their carcasses are the nutrient patches or hotspots where nutrients accumulate for a long time. After death, the physical and chemical properties undergo alterations inside the carcass. The animal carcass is decomposed by many decomposers such as bacteria, fungi, microeukaryotes and insects. The role of microbial symbionts in living organisms is well explored and studied, but there is a scarcity of knowledge and research related to their role in decomposing animal carcasses. Microbes play an important role in carcass decomposition. The origins of microbial communities associated with a carcass, including the internal and external microbiome, are discussed in this review. The succession and methods used for the detection and exploration of decomposition-associated microbial communities have been briefly described. Also, the applications of carcass-associated microbial taxa have been outlined. This review is intended to understand the dynamics of microbial communities associated with the carcass and pave the way to estimate postmortem interval and its role in recycling nutrients.


Assuntos
Microbiota , Animais , Bactérias , Fungos , Insetos , Nutrientes
18.
J Hazard Mater ; 414: 125553, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030410

RESUMO

The environmental biodegradability profile of graphene related materials (GRMs) is important to know in order to predict whether these materials will accumulate in soil or will be transformed by primary decomposers. In this study, few-layer graphene (FLG) was exposed to living and devitalized axenic cultures of two white-rot basidiomycetes (Bjerkandera adusta and Phanerochaete chrysosporium) and one soil saprotrophic ascomycete (Morchella esculenta) with or without lignin, for a period of four months. Over this time, the increase of fungal biomass and presence of H2O2 and oxidizing enzymes [laccase/peroxidase and lignin peroxidase (LiP)] in growth media was assessed by gravimetric and spectrophotometric measurements, respectively. Raman spectroscopy and transmission electron microscopy (TEM) were used to compare the structure of FLG before and after incubation. All of the test fungi decreased pH in growth media and released H2O2 and laccase/peroxidase, but only basidiomycetes released LiP. Independent of growth media composition all fungi were found to be capable to oxidize FLG to a graphene oxide-like material, including M. esculenta, which released only laccase/peroxidase, i.e. the most common enzymes among primary decomposers. These findings suggest that FLG involuntarily released into terrestrial environments would likely be oxidized by soil microflora.


Assuntos
Grafite , Madeira , Ascomicetos , Biodegradação Ambiental , Coriolaceae , Fungos/metabolismo , Peróxido de Hidrogênio , Lacase/metabolismo , Lignina/metabolismo , Oxirredução , Peroxidases/metabolismo
19.
Sci Total Environ ; 783: 147013, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33872895

RESUMO

Human activities have greatly extended and intensified freshwater salinization, which threatens the structure and functioning of streams and rivers. Research on salt effects on in-stream processes has been strongly biased towards chronic salinization at constant levels. The aim of this study was to assess microbial mediated decomposition of two leaf species contrasting in quality (alder and oak) and associated descriptors, during salt-pulsed contamination (salinization period) and after cessation of salt additions (recovery period). Leaves were incubated in a mountain stream (central Portugal) longitudinally divided over 22 m. Half of the stream (salinized half) was subjected to daily short-term sharp salinity increases (conductivity up to ~48 mS cm-1) during 7 days while the other half (control half) was used as control. During the salinization period, salt exposure negatively affected mass loss and microbial respiration rate of alder (high-quality resource) while effects on fungal sporulation rate were independent of leaf quality. Fungal biomass was not impacted. After the recovery period, mass loss and respiration rate in both leaf species were similar between experimental stream halves. Fungal biomass associated with oak was enhanced and sporulation rate of alder, maintained in the previously salinized half, remained depressed. These results point out that the effects of salt pulses may be more deleterious in streams exclusively lined by high (vs. low) quality riparian trees as a result of a less efficient microbial-mediated leaf processing, and a reduced contribution to the conidial pool, even beyond the salinization period.


Assuntos
Alnus , Rios , Fungos , Humanos , Folhas de Planta , Portugal , Salinidade
20.
Fungal Biol ; 125(4): 257-259, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766303

RESUMO

Like other cells, fungal hyphae show exquisite sensitivity to their environment. This reactiveness is demonstrated at many levels, from changes in the form of the hypha resulting from alterations in patterns of exocytosis, to membrane excitation, and mechanisms of wound repair. Growing hyphae detect ridges on surfaces and respond to restrictions in their physical space. These are expressions of cellular consciousness. Fungal mycelia show decision-making and alter their developmental patterns in response to interactions with other organisms. Mycelia may even be capable of spatial recognition and learning coupled with a facility for short-term memory. Now is a fruitful time to recognize the study of fungal ethology as a distinctive discipline within mycology.


Assuntos
Hifas , Fungos , Micélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...