Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
HNO ; 2024 Jul 01.
Artigo em Alemão | MEDLINE | ID: mdl-38951143

RESUMO

Scuba diving and other modes of device-supported diving are popular activities that can be especially demanding and hazardous for people with preexisting physical conditions. Due to the high ambient pressure, the temperature differences, and potential unpredictable events, which have manifold effects on the organism, diving carries a high risk of life-threatening disease. A special risk is present if the body does not readily equalize air pressure changes. Therefore, prior to diving, all divers should undergo detailed education regarding the physical principles of the sport as well as specific physical examination. Consultation of an otolaryngologist is of exceptional relevance because many otorhinolaryngologic diseases can lead to (usually temporary) unfitness to dive. The role of the modern otorhinolaryngologist trained in diving medicine is to correctly advise the patient and restore fitness for diving via conservative or invasive methods.

2.
Diagnostics (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928708

RESUMO

A blood component analysis is an early step for evaluating inflammatory disorders, but it can be unfeasible in some settings. This pilot study assessed whether extracellular vesicle (EV) changes in perspiration are parallel to those occurring in blood as an alternative or complementary option to diagnose an inflammatory response. In parallel studies, EVs were analyzed in perspiration and blood obtained before and after five self-contained underwater breathing apparatus (SCUBA) divers at the National Aquarium in Baltimore performed a dive to 3.98 m of sea water for 40 min, and five non-divers performed an exercise routine at ambient atmospheric pressure. The results demonstrated that microparticles (MPs) are present in perspiration, their numbers increase in the blood in response to SCUBA diving, and the interleukin (IL)-1ß content increases. In contrast, while blood-borne MPs became elevated in response to terrestrial exercise, no statistically significant increases occurred in perspiration, and there were no changes in IL-1ß. There were no statistically significant elevations in the exosomes in perspiration or blood in response to SCUBA diving and few changes following terrestrial exercise. These findings suggest that an MP perspiration analysis could be a non-invasive method for detecting inflammatory responses that can occur due to the oxidative stress associated with SCUBA diving.

3.
J Clin Med ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892877

RESUMO

Background: Temporomandibular disease (TMD) is commonly seen, and divers also experience pain in the temporomandibular joint (TMJ) or masticatory muscles. This article aims to provide a tool for diving physicians or medical professionals involved in diving medicine since jaw pain among divers is a pertinent subject and can be challenging to evaluate without some background in dentistry or maxillofacial surgery. Method: A basic algorithm was developed to provide a tool to differentiate jaw pains experienced by divers. Three brief case studies were developed, and five diving physicians were tasked with diagnosing the cases using the algorithm. Additionally, simple exercises and massage techniques that can benefit patients with TMD, particularly immediately after diving, are outlined. Results: All five diving physicians successfully diagnosed the cases using the algorithm. However, three of them were unable to diagnose the first case (disc luxation) without consulting the algorithm. Nevertheless, all physicians acknowledged the utility of the algorithm. Conclusions: Jaw pain in divers can stem from diverse causes, but effective treatment options exist. Our study findings provide valuable insights to assist diving physicians in making accurate diagnoses and guiding appropriate patient management, which may include referrals to specialists such as dentists, maxillofacial surgeons, or orthodontists.

4.
J Cardiothorac Surg ; 19(1): 316, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824529

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is increasingly being used for critically ill patients with cardiopulmonary failure. Air in the ECMO circuit is an emergency, a rare but fatal complication. CASE PRESENTATION: We introduce a case of a 76-year-old female who suffered from cardiac arrest complicated with severe trauma and was administered veno-arterial extracorporeal membrane oxygenation. In managing the patient with ECMO, air entered the ECMO circuit, which had not come out nor was folded or broken. Although the ECMO flow was quickly re-established, the patient died 6 h after initiating ECMO therapy. CONCLUSIONS: In this case report, the reason for the complication is drainage insufficiency. This phenomenon is similar to decompression sickness. Understanding this complication is very helpful for educating the ECMO team for preventing this rare but devastating complication of fatal decompression sickness in patients on ECMO.


Assuntos
Doença da Descompressão , Oxigenação por Membrana Extracorpórea , Parada Cardíaca , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Feminino , Idoso , Evolução Fatal , Parada Cardíaca/terapia , Parada Cardíaca/etiologia , Doença da Descompressão/terapia
5.
Exp Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923893

RESUMO

Eccentric upper-body exercise performed 24 h prior to high-altitude decompression has previously been shown to aggravate venous gas emboli (VGE) load. Yet, it is unclear whether increasing the muscle mass recruited (i.e., upper vs. whole-body) during eccentric exercise would exacerbate the decompression strain. Accordingly, this study aimed to investigate whether the total muscle mass recruited during eccentric exercise influences the decompression strain. Eleven male participants were exposed to a simulated altitude of 24,000 ft for 90 min on three separate occasions. Twenty-four hours before each exposure, participants performed one of the following protocols: (i) eccentric whole-body exercise (ECCw; squats and arm-cycling exercise), (ii) eccentric upper-body exercise (ECCu; arm-cycling), or (iii) no exercise (control). Delayed onset muscle soreness (DOMS) and isometric strength were evaluated before and after each exercise intervention. VGE load was evaluated at rest and after knee- and arm-flex provocations using the 6-graded Eftedal-Brubakk scale. Knee extensor (-20 ± 14%, P = 0.001) but not elbow flexor (-12 ± 18%, P = 0.152) isometric strength was reduced 24 h after ECCw. ECCu reduced elbow flexor isometric strength at 24 h post-exercise (-18 ± 10%, P < 0.001). Elbow flexor DOMS was higher in the ECCu (median 6) compared with ECCw (5, P = 0.035). VGE scores were higher following arm-flex provocations in the ECCu (median (range), 3 (0-4)) compared with ECCw (2 (0-3), P = 0.039) and control (0 (0-2), P = 0.011), and in ECCw compared with control (P = 0.023). VGE were detected earlier in ECCu (13 ± 20 min) compared with control (60 ± 38 min, P = 0.021), while no differences were noted between ECCw (18 ± 30 min) and control or ECCu. Eccentric exercise increased the decompression strain compared with control. The VGE load varied depending on the body region but not the total muscle mass recruited. HIGHLIGHTS: What is the central question of this study? Does exercise-induced muscle damage (EIMD) resulting from eccentric exercise influence the presence of venous gas emboli (VGE) during a 90 min continuous exposure at 24,000 ft? What is the main finding and its importance? EIMD led to an earlier manifestation and greater VGE load compared with control. However, the decompression strain was dependent on the body region but not the total muscle mass recruited.

6.
Emerg Med Clin North Am ; 42(3): 551-563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925774

RESUMO

The evaluation and care of an injured scuba diver requires an understanding of the different types of underwater activities that may be deemed scuba diving. Such activities may range from the complex (eg, commercial or technical diving) all the way up to basic recreational scuba or snorkeling. A thorough physical examination should be completed as early as possible with a focus on specific areas at risk for injury and etiology, such as a detailed cardiopulmonary, skin, and neurologic examination. Serial reassessments and supportive care are as equally important as consultation with a dive medicine expert, especially one with hyperbaric capabilities.


Assuntos
Mergulho , Mergulho/lesões , Mergulho/efeitos adversos , Humanos , Acidentes , Exame Físico
7.
Diving Hyperb Med ; 54(2): 127-132, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870955

RESUMO

We report a compressed air worker who had diffuse cutaneous decompression sickness with pain in his left shoulder and visual disturbance characteristic of migraine aura after only his third hyperbaric exposure. The maximum pressure was 253 kPa gauge with oxygen decompression using the Swanscombe Oxygen Decompression Table. He was found to have a very large right-to-left shunt across a 9 mm atrial septal defect. He had transcatheter closure of the defect but had some residual shunting with release of a Valsalva manoeuvre. Thirty-two other tunnel workers undertook the same pressure profile and activities in the same working conditions during the maintenance of a tunnel boring machine for a total of 233 similar exposures and were unaffected. As far as we are aware this is the first report of shunt-mediated decompression sickness in a hyperbaric tunnel worker in the United Kingdom and the second case reported worldwide. These cases suggest that shunt-mediated decompression sickness should be considered to be an occupational risk in modern compressed air working. A right-to-left shunt in a compressed air worker should be managed in accordance with established clinical guidance for divers.


Assuntos
Doença da Descompressão , Comunicação Interatrial , Doenças Profissionais , Humanos , Doença da Descompressão/etiologia , Doença da Descompressão/terapia , Masculino , Comunicação Interatrial/cirurgia , Doenças Profissionais/etiologia , Ar Comprimido/efeitos adversos , Adulto , Oxigenoterapia Hiperbárica/métodos , Manobra de Valsalva , Pessoa de Meia-Idade , Mergulho/efeitos adversos
8.
Front Med (Lausanne) ; 11: 1347465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784237

RESUMO

Background: Recreational divers who have experienced Spinal Decompression Sickness (DCS) often aspire to return to their diving activities. Traditionally, it is recommended to observe a waiting period of several months before contemplating a return to unrestricted diving, particularly when clinical symptoms are absent, spinal cord Magnetic Resonance Imaging shows no anomalies, and the evaluation for Patent Foramen Ovale (PFO) returns negative results. Methods: This article presents a compelling case study involving a 51-year-old recreational scuba diver who encountered two episodes of spinal decompression illness within a two-year timeframe. Notably, the search for a PFO produced negative results. The primary objective of this article is to underscore the critical importance of a meticulously planned approach to resuming diving after DCS incidents, emphasizing the potential for recurrence and the essential preventive measures. Conclusion: We delve into the intricate decision-making process for returning to diving, emphasizing the significance of clinical evaluations, PFO assessments, spinal cord Magnetic Resonance Imaging, and the absence of clinical symptoms. By recognizing the risk of recurrence and the need for proactive prevention measures, we provide recommendations for both medical professionals and divers, with the ultimate goal of enhancing safety and informed decision-making within the diving community.

9.
Animals (Basel) ; 14(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731321

RESUMO

Osteolytic lesions in loggerhead sea turtles (Caretta caretta) during rehabilitation are attributed to multiple causes, including gas embolism, hypothermia, and osteomyelitis due to bacterial or fungal infection. This study reports the appearance of osteolytic lesions in a sub-adult loggerhead sea turtle with involvement of the right fore and hind flippers, visible swelling of the elbow and knee joints, and accompanied by lameness after 45 days of rehabilitation. Radiographs and computed tomography revealed multiple lytic bone lesions. This was the fourth rehabilitation admission of the turtle after being accidentally captured by trawler ships (bycatch) in 2019, 2020, 2022, and 2023. Potential causes were dysbaric osteonecrosis due to a past decompression sickness event and hypothermia with osteomyelitis from bacterial infection. Blood cultures and antibiotic susceptibility testing led to the isolation of Ewingella americana responsive to enrofloxacin. This study investigates extensive fore and hind flipper involvement in a sub-adult loggerhead turtle, aiming to determine causes and risk factors. The pathogenesis and significance of these lesions is discussed.

10.
Cureus ; 16(3): e56049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606242

RESUMO

Scuba diving has become a common and popular activity, and adverse events can occur following this activity. Among those events, intracranial hemorrhage is very rare, and only intracerebral hemorrhage and subarachnoid hemorrhage are reported. However, the occurrence of chronic subdural hematoma (CSDH), possibly as an adverse event following scuba diving, has not been described. A 49-year-old man with no significant medical history visited our hospital complaining of memory disturbance and aphasia. He had experienced a minor head trauma five months before and had gone scuba diving six times between the traumatic episode and the visit to our hospital. A brain computed tomography scan revealed a left CSDH. The patient underwent burr-hole surgery to remove the CSDH, and his symptoms resolved. We report the first case of CSDH possibly related to scuba diving. No recurrence of CSDH was observed at 28 months postoperatively.

11.
Undersea Hyperb Med ; 51(1): 41-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615352

RESUMO

Decompression sickness (DCS) is caused by abrupt changes in extracorporeal pressure with varying severity. Symptoms range from mild musculoskeletal pain to severe organ dysfunction and death, especially among patients with chronic underlying disease. Here, we report an unusual case of a 49-year-old man who experienced DCS after a dive to a depth of 38 meters. The patient's symptoms progressed, starting with mild physical discomfort that progressed to disturbance of consciousness on the second morning. During hospitalization, we identified that in addition to DCS, he had also developed diabetic ketoacidosis, septic shock, and rhabdomyolysis. After carefully balancing the benefits and risks, we decided to provide supportive treatment to sustain vital signs, including ventilation support, sugar-reducing therapy, fluid replacement, and anti-infection medications. We then administered delayed hyperbaric oxygen (HBO2) when his condition was stable. Ultimately, the patient recovered without any sequelae. This is the first case report of a diver suffering from DCS followed by diabetic ketoacidosis and septic shock. We have learned that when DCS and other critical illnesses are highly suspected, it is essential to assess the condition comprehensively and focus on the principal contradiction.


Assuntos
Doença da Descompressão , Diabetes Mellitus , Cetoacidose Diabética , Mergulho , Choque Séptico , Masculino , Humanos , Pessoa de Meia-Idade , Cetoacidose Diabética/complicações , Cetoacidose Diabética/terapia , Doença da Descompressão/complicações , Doença da Descompressão/diagnóstico , Choque Séptico/complicações , Choque Séptico/terapia , Progressão da Doença
12.
Undersea Hyperb Med ; 51(1): 71-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615356

RESUMO

Purpose: Ultrasound imaging is commonly used in decompression research to assess venous gas emboli (VGE) post-dive, with higher loads associated with increased decompression sickness risk. This work examines, for the first time in humans, the performance of a novel electrical impedance spectroscopy technology (I-VED), on possible detection of post-dive bubbles presence and arterial endothelial dysfunction that may be used as markers of decompression stress. Methods: I-VED signals were recorded in scuba divers who performed standardized pool dives before and at set time points after their dives at 35-minute intervals for about two hours. Two distinct frequency components of the obtained signals, Low-Pass Frequency-LPF: 0-0.5 Hz and Band-Pass Frequency-BPF: 0.5-10 Hz, are extracted and respectively compared to VGE presence and known flow-mediated dilation trends for the same dive profile for endothelial dysfunction. Results: Subjects with VGE counts above the median for all subjects were found to have an elevated average LPF compared to subjects with lower VGE counts, although this was not statistically significant (p=0.06), as well as significantly decreased BPF standard deviation post-dive compared to pre-dive (p=0.008). Conclusions: I-VED was used for the first time in humans and operated to provide qualitative in-vivo electrical impedance measurements that may contribute to the assessment of decompression stress. Compared to ultrasound imaging, the proposed method is less expensive, not operator-dependent and compatible with continuous monitoring and application of multiple probes. This study provided preliminary insights; further calibration and validation are necessary to determine I-VED sensitivity and specificity.


Assuntos
Embolia Aérea , Doenças Vasculares , Humanos , Impedância Elétrica , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Artérias , Descompressão
13.
BMC Genomics ; 25(1): 339, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575860

RESUMO

BACKGROUND: Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS: This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS: The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.


Assuntos
Fibrose Pulmonar , Animais , Humanos , Cetáceos/genética , Cetáceos/metabolismo , Pulmão/metabolismo , Mamíferos/metabolismo , Oxigênio/metabolismo
14.
Magn Reson Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651172

RESUMO

PURPOSE: To observe the growth and resolution of decompression gas bubbles in the spinal cord of live rats in real time using MRI. METHODS: We constructed an MRI-compatible pressure chamber system to visualize gas bubble dynamics in deep tissues in real time. The system pressurizes and depressurizes rodents inside an MRI scanner and monitors their respiratory rate, heart rate, and body temperature while providing gaseous anesthesia under pressure during the experiments. RESULTS: We observed the formation of decompression gas bubbles in the spinal cord of rats after compression to 7.1 bar absolute and rapid decompression inside the MRI scanner while maintaining continuous gaseous anesthesia and vital monitoring. CONCLUSION: We have shown the direct observation of decompression gas bubble formation in real time by MRI in live, anesthetized rats.

15.
Cureus ; 16(3): e56947, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665707

RESUMO

Humans, led by their eternal wish to explore the unknown, have always wanted to perfect their diving skills and conquer the sea world. The adverse conditions experienced by divers brought about medical problems and a new field of medicine. Diving medicine serves the identification, treatment, and precautions against illnesses that are related to diving activities. While the development of diving equipment is advancing, divers have had the chance to reach greater depths for a longer time. Along with this success, a novel medical condition under the term 'decompression illness' (DCI) was introduced. Although the history of hyperbaric medicine is very long, progress in the field of mechanics has offered great contributions to the management of the disease. The first attempt at DCI guidelines was made by the US Navy in 1944-1945 and resulted in the creation of hyperbaric treatment tables. These tools received international recognition, offering a major advance. Hyperbaric-Diving Medicine holds an important place in modern medical science nowadays with indications for various diseases. At the same time, there is great scientific interest and a lot of research in the use of hyperbaric oxygen for several medical disorders, demonstrating great potential.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38470517

RESUMO

OBJECTIVE: To discuss the link between inner ear decompression sickness and patent foramen ovale. MATERIALS AND METHODS: Monocentric and retrospective study on decompression sickness of the inner ear requiring hyperbaric chamber treatment, from 2014 to 2021. RESULTS: Sixty-one patients of inner ear decompression sickness were included in this study. Twenty-four patients had vestibular injuries, 28 cochlear injuries and 9 cochleo-vestibular injuries. Compression chamber treatment was given, using an oxygen-helium mixture with oxygen partial pressure (PIO2) limited to 2.8 atmosphere absolute (ATA). All vestibular accidents completely recovered without clinical sequelae. For cochlear accident only 10 out of 37 patients (27%) recovered completely. A right-left shunt (patent foramen oval or intra-pulmonary shunt) was found in 31.1% of patients with inner ear decompression sickness (p > 0.05). CONCLUSION: The presence of patent foramen oval in patients with inner ear decompression was not statistically significant in our study. Understanding of the pathophysiology of decompression illness and the physiology and anatomy of the labyrinth would suggest a mechanism of supersaturation with degassing in intra-labyrinthine liquids.

17.
Diving Hyperb Med ; 54(1): 39-46, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507908

RESUMO

Introduction: Diving injuries are influenced by a multitude of factors. Literature analysing the full chain of events in diving accidents influencing the occurrence of diving injuries is limited. A previously published 'chain of events analysis' (CEA) framework consists of five steps that may sequentially lead to a diving fatality. This study applied four of these steps to predominately non-lethal diving injuries and aims to determine the causes of diving injuries sustained by divers treated by the Diving Medical Centre of the Royal Netherlands Navy. Methods: This retrospective cohort study was performed on diving injuries treated by the Diving Medical Centre between 1966 and 2023. Baseline characteristics and information pertinent to all four steps of the reduced CEA model were extracted and recorded in a database. Results: A total of 288 cases met the inclusion criteria. In 111 cases, all four steps of the CEA model could be applied. Predisposing factors were identified in 261 (90%) cases, triggers in 142 (49%), disabling agents in 195 (68%), and 228 (79%) contained a (possible-) disabling condition. The sustained diving injury led to a fatality in seven cases (2%). The most frequent predisposing factor was health conditions (58%). Exertion (19%), primary diver errors (18%), and faulty equipment (17%) were the most frequently identified triggers. The ascent was the most frequent disabling agent (52%). Conclusions: The CEA framework was found to be a valuable tool in this analysis. Health factors present before diving were identified as the most frequent predisposing factors. Arterial gas emboli were the most lethal injury mechanism.


Assuntos
Doença da Descompressão , Mergulho , Embolia Aérea , Humanos , Mergulho/efeitos adversos , Mergulho/lesões , Países Baixos/epidemiologia , Estudos Retrospectivos , Acidentes , Doença da Descompressão/epidemiologia , Doença da Descompressão/etiologia , Doença da Descompressão/terapia
18.
Diving Hyperb Med ; 54(1Suppl): 1-53, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38537300

RESUMO

Decompression illness is a collective term for two maladies (decompression sickness [DCS] and arterial gas embolism [AGE]) that may arise during or after surfacing from compressed gas diving. Bubbles are the presumed primary vector of injury in both disorders, but the respective sources of bubbles are distinct. In DCS bubbles form primarily from inert gas that becomes dissolved in tissues over the course of a compressed gas dive. During and after ascent ('decompression'), if the pressure of this dissolved gas exceeds ambient pressure small bubbles may form in the extravascular space or in tissue blood vessels, thereafter passing into the venous circulation. In AGE, if compressed gas is trapped in the lungs during ascent, pulmonary barotrauma may introduce bubbles directly into the pulmonary veins and thence to the systemic arterial circulation. In both settings, bubbles may provoke ischaemic, inflammatory, and mechanical injury to tissues and their associated microcirculation. While AGE typically presents with stroke-like manifestations referrable to cerebral involvement, DCS can affect many organs including the brain, spinal cord, inner ear, musculoskeletal tissue, cardiopulmonary system and skin, and potential symptoms are protean in both nature and severity. This comprehensive overview addresses the pathophysiology, manifestations, prevention and treatment of both disorders.


Assuntos
Barotrauma , Doença da Descompressão , Mergulho , Embolia Aérea , Humanos , Doença da Descompressão/etiologia , Doença da Descompressão/terapia , Doença da Descompressão/diagnóstico , Mergulho/efeitos adversos , Mergulho/fisiologia , Barotrauma/etiologia , Embolia Aérea/etiologia , Embolia Aérea/terapia , Embolia Aérea/diagnóstico , Descompressão
20.
J Appl Physiol (1985) ; 136(4): 949-953, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420678

RESUMO

Decompression sickness (DCS) is caused by gaseous nitrogen dissolved in tissues forming bubbles during decompression. To date, no method exists to identify nitrogen within tissues, but with advances in positron-emission tomography (PET) technology, it may be possible to track gaseous radionuclides into tissues. We aimed to develop a method to track nitrogen movement in vivo and under hyperbaric pressure that could then be used to further our understanding of DCS using nitrogen-13 (13N2). A single anesthetized female Sprague-Dawley rat was exposed to 625 kPa, composed of air, isoflurane, and 13N2 for 10 min. The PET scanner recorded 13N2 during the hyperbaric exposure with energy windows of 250-750 keV. The PET showed an increase in 13N2 concentration in the lung, heart, and abdominal regions, which all reached a plateau after ∼4 min. This showed that it is possible to gain noninvasive in vivo measurements of nitrogen kinetics through the body while at hyperbaric pressures. Tissue samples showed radioactivity above background levels in the blood, brain, liver, femur, and thigh muscle when assessed using a γ counter. The method can be used to evaluate an array of challenges to our understanding of decompression physiology by quantifying nitrogen load through γ counts of 13N2, and signal intensity of the PET. Further development of the method will improve the specificity of the measured outcomes, and enable it to be used with larger mammals, including humans.NEW & NOTEWORTHY This article describes a method for the in vivo quantification and tracking of nitrogen through the mammalian body whilst exposed to hyperbaric pressure. The method has the potential to further our understanding of decompression sickness, and quantitatively evaluate the effectiveness of both the treatment and prevention of decompression sickness.


Assuntos
Doença da Descompressão , Mergulho , Oxigenoterapia Hiperbárica , Radioisótopos de Nitrogênio , Humanos , Ratos , Animais , Feminino , Nitrogênio , Doença da Descompressão/diagnóstico por imagem , Mergulho/fisiologia , Ratos Sprague-Dawley , Descompressão/efeitos adversos , Gases , Oxigenoterapia Hiperbárica/métodos , Tomografia por Emissão de Pósitrons , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...