Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Psychiatry Investig ; 21(6): 672-679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38960445

RESUMO

OBJECTIVE: Borderline personality disorder (BPD) is known to share characteristics with a variety of personality disorders (PDs) and exhibits diverse patterns of defense mechanisms. To enhance our understanding of BPD, it's crucial to shift our focus from traditional categorical diagnostics to the dimensional traits shared with other PDs, as the borderline personality organization (BPO) model suggests. This approach illuminates the nuanced spectrum of BPD characteristics, offering deeper insights into its complexity. While studies have investigated the comorbidity of BPD with other PDs, research exploring the relationship between various personality factors and defense mechanisms within BPD itself has been scarce. The present study was undertaken to investigate the complex interrelationships between various personality factors and defense styles in individuals diagnosed with BPD. METHODS: Using a network analysis approach, data from 227 patients diagnosed with BPD were examined using the Defense Style Questionnaire and Personality Disorder Questionnaire-4+ for assessment. RESULTS: Intricate connections were observed between personality factors and defense styles. Significant associations were identified between various personality factors and defense styles, with immature defense styles, such as maladaptive and image-distorting being particularly prominent in BPD in the centrality analysis. The maladaptive defense style had the highest expected influence centrality. Furthermore, the schizotypal, dependent, and narcissistic personality factors demonstrated relatively high centrality within the network. CONCLUSION: Network analysis can effectively delineate the complexity of various PDs and defense styles. These findings are expected to facilitate a deeper understanding of why BPD exhibits various levels of organization and presents with heterogeneous characteristics, consistent with the perspectives proposed by the BPO.

2.
Front Psychol ; 15: 1432170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988381

RESUMO

The Defense Mechanisms Rating Scales-Self Report-30 (DMRS-SR-30) was recently developed to add a self-report alternative to the assessment of defenses, reflecting their generally accepted hierarchical organization. In this study, we aimed to examine psychometric properties and factor structure of the Turkish language version of the DMRS-SR-30. The sample consisted of 1.002 participants who filled out a survey comprising the DMRS-SR-30, the Brief Symptom Inventory, and the Inventory of Personality Organization through Qualtrics. Confirmatory Factor Analysis indicated a three-factor structure (CFI = 0.89, RMSEA = 0.05) that confirms the DMRS theoretical frame with a relatively acceptable fit. Defensive categories and total scale scores showed good to excellent reliability (α values ranging from 0.64 to 0.89). Correlations between defenses, symptoms, and personality functioning demonstrated good convergent and discriminant validity. The individuals with clinically significant BSI scores (T-score ≥ 63) differed on the DMRS-SR-30 scores from the individuals in the non-clinical range. The Turkish version of the DMRS-SR-30 is a reliable and valid instrument to self-assess the hierarchy of defense mechanisms and overall defensive functioning. Moreover, the current study supports the validity of the tripartite model of defenses in a language and culture different from the origins of the DMRS and DMRS-SR-30.

3.
Front Microbiol ; 15: 1416628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989015

RESUMO

Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results: Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion: Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.

4.
Animals (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38929441

RESUMO

Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.

5.
J Plant Physiol ; 300: 154298, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924905

RESUMO

Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing Beauveria bassiana and Metarhizium spp. causing either negative or positive effects against the aphid Rhopalosiphum padi. Activities of six carbohydrate enzymes increased in plants showing biomass build-up after EPF inoculations. However, only aldolase activity showed positive correlation with R. padi numbers. Plants inoculated with M. robertsii hosted fewest aphids and showed increased activity of superoxide dismutase, implying a defense strategy of resistance towards herbivores. In M. brunneum-inoculated plants, hosting most R. padi, activities of catalase and glutathione reductase were increased suggesting enhanced detoxification responses towards aphids. However, M. brunneum simultaneously increased plant growth indicating that this isolate may cause the plant to tolerate herbivory. EPF seed inoculants may therefore mediate either tolerance or resistance towards biotic stress in plants in an isolate-dependent manner.


Assuntos
Afídeos , Beauveria , Herbivoria , Triticum , Animais , Triticum/microbiologia , Triticum/enzimologia , Afídeos/fisiologia , Beauveria/fisiologia , Metarhizium/fisiologia , Defesa das Plantas contra Herbivoria
6.
Appl Environ Microbiol ; : e0080724, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940562

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38933756

RESUMO

Background: The experience of several adverse childhood experiences (ACEs) has been shown to be associated with Post-Traumatic Stress Disorder (PTSD) and Disturbances in Self-Organization (DSO) symptoms among adolescents. Defense mechanisms and coping styles are psychological processes involved in the association of ACEs with PTSD and DSO symptoms. However, there is a lack of research on the joint association of these variables among Faroese adolescents. Aim: The aim of this study was to analyze the effect of exposure to ACEs on PTSD and DSO symptoms trough the indirect effect of defense mechanisms and coping styles in a sample of Faroese adolescents. Method: Six hundred and eighty-seven Faroese adolescents were recruited from 19 schools. Participants responded to validated self-report questionnaires. A multiple step mediation and a serial mediation methodology were conducted through structural equation modeling. Results: Exposure to ACEs was linked to PTSD and DSO symptoms through the indirect effect of immature defense mechanisms, emotional coping, and detachment coping. Exposure to ACEs was linked to PTSD symptoms through rational coping. Conclusions: The results suggest a mutual relationship between defense mechanisms and coping styles in coping with multiple adversity among adolescents.

8.
Front Plant Sci ; 15: 1385456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779063

RESUMO

Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.

9.
Plant Physiol Biochem ; 212: 108753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781637

RESUMO

Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.


Assuntos
Nanoestruturas , Plantas , Nanoestruturas/química , Plantas/metabolismo , Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Carbono/metabolismo , Nanotubos de Carbono , Fulerenos/farmacologia , Fulerenos/metabolismo , Grafite
10.
Life Sci ; 350: 122749, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38821215

RESUMO

Emergence of antimicrobial-resistant bacteria (AMR) is one of the health major problems worldwide. The scientists are looking for a novel method to treat infectious diseases. Phage therapy is considered a suitable approach for treating infectious diseases. However, there are different challenges in this way. Some biological aspects can probably influence on therapeutic results and further investigations are necessary to reach a successful phage therapy. Bacteriophage activity can influence by bacterial defense system. Bacterial extracellular vesicles (BEVs) are one of the bacterial defense mechanisms which can modify the results of bacteriophage activity. BEVs have the significant roles in the gene transferring, invasion, escape, and spreading of bacteriophages. In this review, the defense mechanisms of bacteria against bacteriophages, especially BEVs secretion, the hidden linkage of BEVs and bacteriophages, and its possible consequences on the bacteriophage activity as well phage therapy will be discussed.


Assuntos
Bactérias , Bacteriófagos , Vesículas Extracelulares , Terapia por Fagos , Bacteriófagos/fisiologia , Bactérias/virologia , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Animais
11.
Plant Physiol Biochem ; 210: 108641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663267

RESUMO

Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.


Assuntos
Manganês , Árvores , Manganês/metabolismo , Árvores/metabolismo , Florestas , Doenças das Plantas/imunologia , Animais
12.
Plant J ; 119(1): 84-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578218

RESUMO

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Assuntos
Fenilalanina , Folhas de Planta , Solanum lycopersicum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Manduca/fisiologia
13.
J Affect Disord ; 357: 42-50, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663554

RESUMO

BACKGROUND: This systematic review and meta-analysis aimed to address the limited generalizability of studies on defense mechanisms in depression by comparing depressive individuals with non-clinical controls (aim a) and examining changes throughout psychological interventions (aim b) (PROSPERO CRD42023442620). METHODS: We followed PRISMA 2020 guidelines, searching PubMed/Web of Science/(EBSCO)PsycINFO until 13/04/2023 for studies evaluating defense mechanisms with measures based on the hierarchical model in depressive patients versus non-clinical controls or throughout psychological intervention. We conducted random-effect meta-analyses for mature defenses/non-mature (neurotic/immature) defenses/overall defensive functioning (ODF), with standardized mean difference (SMD) as outcome measure metric. Meta-regression/sub-group/sensitivity analyses were conducted. Study quality was appraised using the Newcastle-Ottawa Scale (NOS), and certainty of evidence for aim b outcomes was evaluated using GRADE (Grading of Recommendations, Assessment, Development and Evaluations). RESULTS: 18 studies were included (mean NOS score = 5.56). Depressive patients used significantly more non-mature defenses than non-clinical controls (SMD = 0.74; k = 13). Non-clinical controls did not significantly differ in use of mature defenses compared to depressive patients (SMD = 0.33; k = 14). Significant moderators were publication year/NOS score/geographical distribution/mean age for non-mature defenses and NOS score/geographical distribution for mature defenses. Throughout psychological interventions, only ODF significantly increased (SMD = 0.55; k = 2) (GRADE = very low). LIMITATIONS: Quality of many studies was medium/sub-optimal, and longitudinal studies were scarce. CONCLUSION: Individuals with depressive disorders show a high use of non-mature defenses that could be assessed and targeted in psychological interventions, especially in younger patients.


Assuntos
Mecanismos de Defesa , Transtorno Depressivo , Humanos , Transtorno Depressivo/psicologia , Transtorno Depressivo/terapia
14.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592933

RESUMO

The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.

15.
Heliyon ; 10(7): e29140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601600

RESUMO

Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.

16.
Front Psychol ; 15: 1293150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605838

RESUMO

Studies have provided evidence for the effectiveness of intensive short-term dynamic psychotherapy (ISTDP) in treating medically unexplained symptoms (MUS). This study aimed to examine the effectiveness of ISTDP on individuals living with irritable bowel syndrome (IBS) in terms of, emotion regulation (ER) abilities, defense mechanisms, quality of life (QOL), and IBS symptoms. A total of 30 patients diagnosed with IBS were recruited and randomly assigned to either the intervention (n = 15) or control (n = 15) group. Pre- and post-treatment assessments were conducted, along with a follow-up assessment after ten weeks. Repeated measures analyses of variance were employed to analyze the data. The findings revealed that ISTDP led to significant improvements in ER, defense mechanisms, and QOL, as well as a reduction in the severity and frequency of IBS symptoms. These results provide further support for the efficacy of ISTDP as a treatment modality for individuals with IBS.

17.
Psychother Res ; : 1-17, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648578

RESUMO

OBJECTIVE: We investigated whether defense mechanisms in patients with borderline personality disorder (BPD) predict treatment response of dialectical behavior therapy (DBT) and whether they moderate outcome in different treatment lengths. METHOD: We analyzed a subsample of 60 outpatients with BPD, randomized into either 6 (n = 30) or 12 (n = 30) months of DBT. The average level of defensive adaptiveness, assessed with observer-rated overall defensive functioning (ODF) and "immature" (i.e., maladaptive) defenses were used as predictors and moderators of self-reported frequency of self-harm. We conducted a Generalized Linear Mixed Model (GLMM). RESULTS: A lower ODF at treatment onset predicted smaller reductions in self-harm, irrespective of treatment length (IRR = 0.92, 95% CI = [0.86, 0.99], p = .020). Lower order "immature" ("major image distorting") defenses showed significantly smaller (IRR = 1.13, 95% CI = [1.06, 1.21], p < .001) and higher order "immature" ("minor image distorting") defenses showed significantly larger (IRR = .91, 95% CI = [.85, .97], p = .006) reductions in self harm in the 6-month but not in the 12-month treatment. CONCLUSION: Even though the results have to be regarded as preliminary due to the small sample size, findings might indicate that patients with BPD and lower average defensive adaptiveness may benefit from individualized treatment plans including specific interventions targeting defense function.

18.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568247

RESUMO

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Assuntos
Interações Ervas-Drogas , Metais Pesados , Metais Pesados/toxicidade , Processamento de Proteína Pós-Traducional , Solo
19.
Microorganisms ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543583

RESUMO

Plant-microbe interactions play a crucial role in shaping plant health and survival. In recent years, the role of extracellular vesicles (EVs) in mediating intercellular communication between plants and microbes has emerged as an intriguing area of research. EVs serve as important carriers of bioactive molecules and genetic information, facilitating communication between cells and even between different organisms. Pathogenic bacteria leverage extracellular vesicles (EVs) to amplify their virulence, exploiting their cargo rich in toxins and virulence factors. Conversely, beneficial microbes initiate EV secretion to stimulate plant immune responses and nurture symbiotic relationships. The transfer of EV-packed small RNAs (sRNAs) has been demonstrated to facilitate the modulation of immune responses. Furthermore, harnessing the potential of EVs holds promise for the development of innovative diagnostic tools and sustainable crop protection strategies. This review highlights the biogenesis and functions of EVs in bacteria and their importance in plant defense, and paves the way for future research in this exciting field.

20.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...