Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118151, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588988

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a representative local medicinal herb produced in China, Vladimiriae Radix (VR) has been proven to exert hepatoprotective and choleretic effects, with particular therapeutic efficacy in cholestatic liver injury (CLI), as demonstrated by the VR extract (VRE). However, the quality markers (Q-markers) of VRE for the treatment of CLI remain unclear. AIM OF THE STUDY: A new strategy based on the core element of "efficacy" was proposed, using a combination of spectrum-effect relationship, pharmacokinetics, and molecular docking methods to select and confirm Q-markers of VRE. MATERIAL AND METHODS: First, the HPLC fingerprinting of 10 batches of VRE was studied, and the in vivo pharmacological index of anti-CLI in rats was determined. The spectrum-effect relationship was utilized as a screening method to identify the Q-markers of VRE. Secondly, Q-markers were used as VRE pharmacokinetic markers to measure their concentrations in normal and CLI rat plasma, and to analyze their disposition. Finally, molecular docking was utilized to predict the potential interaction between the identified Q-markers and crucial targets of CLI. RESULTS: The fingerprints of 10 batches of VRE was established. The in vivo pharmacological evaluation of rats showed that VRE had a significant therapeutic effect on CLI. The spectrum-effect correlation analysis showed that costunolide (COS) and dehydrocostus lactone (DEH) were the Q-markers of VRE anti-CLI. The pharmacokinetic results showed that AUC(0-t), Cmax, CLZ/F, and VZ/F of COS and DEH in CLI rats had significant differences (P < 0.01). They were effectively absorbed into the blood plasma of CLI rats, ensuring ideal bioavailability, and confirming their role as Q-markers. Molecular docking results showed that COS, DEH had good affinity with key targets (FXR, CAR, PXR, MAPK, TGR5, NRF2) for CLI treatment (Binding energy < -4.52 kcal mol-1), further verifying the correctness of Q-marker selection. CONCLUSIONS: In this study, through the combination of experimental and theoretical approaches from the aspects of pharmacodynamic expression, in vivo process rules, and interaction force prediction, the therapeutic effect of VRE and Q-markers (COS、DEH) were elucidated. Furthermore, a new idea based on the principle of "efficacy" was successfully proposed for screening and evaluating Q-markers.


Assuntos
Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Colestase/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Biomarcadores/sangue
2.
Phytomedicine ; 128: 155371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518649

RESUMO

BACKGROUND: Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE: The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS: The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS: DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION: This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.


Assuntos
Irinotecano , Lactonas , Antígeno 96 de Linfócito , Mucosite , Sesquiterpenos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Camundongos , Lactonas/farmacologia , Humanos , Antígeno 96 de Linfócito/metabolismo , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
3.
J Adv Res ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295877

RESUMO

INTRODUCTION: Dehydrocostus lactone (Dehy), a natural sesquiterpene lactone from Saussurea lappa Clarke, displays remarkable efficacy in treating cancer and gastrointestinal disorders. However, its anti-gastric cancer (GC) effect remains poorly understood. OBJECTIVES: Our study aimed to elucidate the anti-GC effect of Dehy and its putative mechanism. METHODS: The anti-GC effect was assessed with MTT, colony formation, wound healing and transwell invasion assays. Cell apoptosis rate was detected by Annexin V-FITC/PI binding assay. Network pharmacology analysis and XF substrate oxidation stress test explored the underlying mechanism and altered metabolic phenotype. Lipogenic enzyme expressions and neutral lipid pool were measured to evaluate cellular lipid synthesis and storage. Biolayer interferometry and molecular docking investigated the direct target of Dehy. Autophagosomes were observed by transmission electron microscopy and MDC staining, while the autophagic flux was detected by mRFP-GFP-LC3 transfection. The clinical significance of ACLY was confirmed by tissue microarrays. Patient-derived xenograft (PDX) models were adopted to detect the clinical therapeutic potential of Dehy. RESULTS: Dehy prominently suppressed GC progression both in vitro and in vivo. Mechanistically, Dehy down-regulated the lipogenic enzyme ACLY, thereby reducing fatty acid synthesis and lipid reservation. Moreover, IKKß was identified as the direct target of Dehy. Dehy inhibited the phosphorylation of IKKß, promoting the ubiquitination and degradation of ACLY, thereby resulting in lipid depletion. Subsequently, GC cells initiated autophagy to replenish the missing lipids, whereas Dehy impeded this cytoprotective mechanism by down-regulating LAMP1 and LAMP2 expressions, which disrupted lysosomal membrane functions, ultimately leading to apoptosis. Additionally, Dehy exhibited potential in GC clinical therapy as it enhanced the efficacy of 5-Fluorouracil in PDX models. CONCLUSIONS: Our work identified Dehy as a desirable agent for blunting abnormal lipid metabolism and highlighted its inhibitory effect on protective autophagy, suggesting the future development of Dehy as a novel therapeutic drug for GC.

4.
J Biochem Mol Toxicol ; 38(1): e23601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069819

RESUMO

Dysregulation of osteoblastic differentiation is an important risk factor of osteoporosis, the therapy of which is challenging. Dehydrocostus lactone (DHC), a sesquiterpene isolated from medicinal plants, has displayed anti-inflammatory and antitumor properties. In this study, we investigated the effects of DHC on osteoblastic differentiation and mineralization of MC3T3-E1 cells. Interestingly, we found that DHC increased the expression of marker genes of osteoblastic differentiation, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Additionally, DHC increased the expressions of collagen type I alpha 1 (Col1a1) and collagen type I alpha 2 (Col1a2). We also demonstrate that DHC increased ALP activity. Importantly, the Alizarin Red S staining assay revealed that DHC enhanced osteoblastic differentiation of MC3T3-E1 cells. Mechanistically, it is shown that DHC increased the expression of Runx-2, a central regulator of osteoblastic differentiation. Treatment with DHC also increased the levels of phosphorylated p38, and its blockage using its specific inhibitor SB203580 abolished the effects of DHC on runt-related transcription factor 2 (Runx-2) expression and osteoblastic differentiation, suggesting the involvement of p38. Based on these findings, we concluded that DHC might possess a capacity for the treatment of osteoporosis by promoting osteoblastic differentiation.


Assuntos
Colágeno Tipo I , Lactonas , Osteoporose , Sesquiterpenos , Humanos , Colágeno Tipo I/metabolismo , Transdução de Sinais , Diferenciação Celular , Fosfatase Alcalina/metabolismo , Osteogênese
5.
Korean J Physiol Pharmacol ; 27(6): 521-531, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884284

RESUMO

Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 µM, 19.7 ± 0.4 µM, and 24.5 ± 2.1 µM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.

6.
Int Immunopharmacol ; 124(Pt B): 111009, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820424

RESUMO

Ulcerative colitis (UC) is a difficult-to-cure and recurrent inflammatory bowel disease, and it is difficult to maintain long-term results with a single drug. Inspired by clinical medication in traditional Chinese medicine, we used berberine hydrochloride (BBH) and dehydrocostus lactone (DEH) in combination for the first time and focused on studying their mechanism of treating UC based on gut microbiota. Therefore, we evaluated the therapeutic effects of BBH and DEH on DSS-induced UC mice using ELISA, HE and AB-PAS staining, 16s rDNA amplicon sequencing technology, and fecal transplantation experiments (FMT). In this study, the combination of BBH and DEH significantly relieved symptoms, colonic inflammation, and intestinal barrier damage of DSS-induced UC mice, and they did not show antagonism. In addition, the co-administration of BBH and DEH altered the composition and function of gut microbiota, with BBH increasing the abundance of key beneficial bacterial genus Akkermansia and DEH aiming to enhance species diversity and supplying intestinal proteins to prevent overconsumption. Furthermore, our data showed that BBH and DEH improve the levels of short-chain fatty acids, which also proved the positive regulation of gut microbiota by BBH and DEH. Finally, the FMT confirmed the strong correlation between BBH, DEH, and the gut microbiota. In conclusion, the co-administration of BBH and DEH protected the intestinal barrier and reduced inflammatory damage by regulating gut microbiota, targeting the key beneficial bacterial genus Akkermansia, and maintaining a normal supply of intestinal proteins.


Assuntos
Berberina , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Berberina/uso terapêutico , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
AMB Express ; 13(1): 82, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540386

RESUMO

Candida albicans infections are threatening public health but there are only several antifungal drugs available. This study was to assess the effects of dehydrocostus lactone (DL) on the Candida albicans growth and biofilms Microdilution assays revealed that DL inhibits a panel of standard Candida species, including C. albicans, as well as 9 C. albicans clinical isolates. The morphological transition of C. albicans in RPMI-1640 medium and the adhesion to polystyrene surfaces can also be decreased by DL treatment, as evidenced by microscopic, metabolic activity and colony forming unit (CFU) counting assays. The XTT assay and microscopy inspection demonstrated that DL can inhibit the biofilms of C. albicans. Confocal microscopy following propidium iodide (PI) staining and DCFH-DA staining after DL treatment revealed that DL can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. N-acetyl-cysteine could mitigate the inhibitory effects of DL on growth, morphological transition and biofilm formation, further confirming that ROS production induced by DL contributes to its antifungal and antibiofilm effects. This study showed that DL demonstrated antifungal and antibiofilm activity against C. albicans. The antifungal mechanisms may involve membrane damage and ROS overproduction. This study shows the potential of DL to fight Candida infections.

8.
J Pharm Pharmacol ; 75(10): 1344-1356, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403268

RESUMO

OBJECTIVES: Dehydrocostus lactone (DHE), a sesquiterpene lactone, has been proven the significant inhibition of multiple cancer cells. However, there are limited reports on the activity of DHE in gastric cancer (GC). In this research, Network pharmacology predicted the anti-GC mechanism of DHE, and the prediction was verified by in-vitro experiments. METHODS: Network pharmacology confirmed the major effect signalling pathway of DHE in treating GC. Cell viability assay, colony formation assay, wound healing assay, cell migration and invasion assay, apoptosis assay, western blot and real-time quantitative polymerase chain reaction verified the mechanism of DHE in GC cell lines. KEY FINDINGS: The results showed that DHE inhibited the growth and metastasis of MGC803 and AGS GC cells. Mechanistically, the analysis results indicated that DHE significantly induced the apoptosis process by suppressing the PI3K/protein kinase B (Akt) signalling pathway, and inhibited epithelial-mesenchymal transition by suppressing the extracellular signal-regulated kinases (ERK)/MAPK signalling pathway. The Akt activator (SC79) inhibited DHE induced apoptosis, and DHE had similar effects with the ERK inhibitor (FR180204). CONCLUSIONS: All results suggested that DHE was a potential natural chemotherapeutic drug in GC treatment.

9.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375368

RESUMO

Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).


Assuntos
Neoplasias , Saussurea , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saussurea/química , Hexanos , Clorofórmio , Reprodutibilidade dos Testes
10.
J Ethnopharmacol ; 314: 116573, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142148

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastric cancer (GC) affects people's quality of life because of its high incidence rate and mortality. The Xianglian Pill (XLP) is a traditional Chinese medicine (TCM) prescription used to treat gastrointestinal (GI) diseases. Its anti-tumor effect has been found in recent years, but it's bioactive compounds and mechanism of action in treating GC are remain unknown. AIM OF THE STUDY: This study reveals the bioactive compounds and mechanisms of XLP in the treatment of GC through network pharmacology analysis and experimental verification. MATERIALS AND METHODS: The main compounds in XLP were searched and the active compounds with anti-GC activity were selected. Compounds targets and GC- related targets were predicted, and common targets were obtained. Subsequently, a protein-protein interaction (PPI) network of common targets is constructed, while GO and KEGG enrichment analyses were performed on common targets. Finally, the anti-GC effects of active compounds in XLP were verified in GC cell lines MGC-803 and HGC-27 by wound healing assay, cell cycle assay, cell apoptosis assay and western blotting (WB) assay. RESULTS: A total of 33 active compounds of XLP were obtained. MTT assay showed that dehydrocostus lactone (DHL) and berberrubine (BRB) had lower IC50 value in GC cells HGC-27 and MGC-803, and has a less inhibitory effect on normal gastric epithelial cells. Further, 73 common targets were obtained after the total target of DHL and BRB intersected with GC. Among them, CASP3, AKT1, SRC, STAT3,and CASP9 were the most associated genes in the PPI network. GO and KEGG enrichment analyses indicated that apoptosis played a major role in the biological processes and signaling pathways involved. Moreover, the in vitro experiment revealed that DHL and BRB inhibited GC cell viability via inducing cell cycle arrest at G2/M phase, and promoting cell apoptosis by up-regulating the caspase3 expression and down-regulating the expression of Bcl2/Bax. CONCLUSIONS: DHL and BRB are the two main anti-GC active compounds in XLP, and their mechanism is mainly to inhibit cell cycle and promote cell apoptosis.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Farmacologia em Rede , Qualidade de Vida , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
11.
Bull Exp Biol Med ; 174(3): 360-364, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36723745

RESUMO

We studied the effect of dehydrocostus lactone (DHL) on the biological characteristics of HepG2 human hepatocellular carcinoma cells. The inhibition of cell viability by different concentrations of DHL (10, 20, 40, 80, and 160 µmol/liter) was measured using MTT test. As the determined half-maximum inhibitory concentration (IC50) was 20.33 µmol/liter, DHL in a concentration of 20 µmol/liter was used in further experiments. Cell proliferation, migration, invasion ability, and apoptosis were assessed by Ki-67 immunofluorescence, Transwell assay, and TUNEL analysis. The level of p-AKT protein was determined by Western blotting. DHL significantly inhibited the viability, proliferation, migration, and invasion of HepG2 cells in comparison with the control group, and induced cells apoptosis. DHL down-regulated the expression of p-AKT protein in the HepG2 cells in comparison with the control group. PI3K/AKT signaling pathway activator 740Y-P could block the above-mentioned effects of DHL. Thus, DHL inhibits the malignancy of HepG2 human hepatocellular carcinoma cells via down-regulation of PI3K/AKT signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Hep G2 , Regulação para Baixo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Proliferação de Células , Apoptose , Movimento Celular
12.
Appl Biochem Biotechnol ; 195(5): 3156-3179, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36564675

RESUMO

This study aimed to screen, design, and evaluate an optimal nanoemulsion formulation for Aucklandiae Radix extraction (ARE). A simple lattice design (SLD) method was used to determine the preparation process of Aucklandiae Radix extract-nanoemulsions (ARE-NEs). After optimization, the average particle size of ARE-NEs was 14.1 ± 1.1 nm, polydispersity index was 0.2376, and pH was 6.92. In vitro penetration tests verified that the permeability ratios of costunolide (CE), dehydrocostus lactone (DE), and ARE-NEs were approximately 6.33 times and 8.20 times higher, respectively, than those of the control group. The results of the pharmacokinetic study indicated that after topical administration, the content of the index components of ARE-NEs increased in vivo, with a longer release time and higher bioavailability in vivo than in vitro. The index components were CE and DE, respectively. In addition, a skin irritation test was conducted on normal and skin-damaged rabbits, aided by HE staining and scanning electron microscopy, to reveal the transdermal mechanism of ARE-NEs and proved that NEs are safe for topical application. ARE-NEs energetically developed the properties of skin and penetration through the transdermal route, which were secure when applied via the transdermal delivery system .


Assuntos
Pele , Animais , Coelhos , Administração Cutânea , Emulsões/química
13.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431789

RESUMO

Dehydrocostus lactone (DL) is among the representative ingredients of traditional Chinese medicine (TCM), with excellent anticancer, antibacterial, and anti-inflammatory activities. In this study, an advanced strategy based on ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was integrated to comprehensively explore the metabolic fate of DL in rats. First, prior to data collection, all biological samples (plasma, urine, and feces) were concentrated and purified using solid-phase extraction (SPE) pre-treatment technology. Then, during data collection, in the full-scan (FS) data-dependent acquisition mode, FS-ddMS2 was intelligently combined with FS-parent ion list (PIL)-dynamic exclusion (DE) means for targeted monitoring and deeper capture of more low-abundance ions of interest. After data acquisition, data-mining techniques such as high-resolution extracted ion chromatograms (HREICs), multiple mass defect filters (MMDFs), diagnostic product ions (DPIs), and neutral loss fragments (NLFs) were incorporated to extensively screen and profile all the metabolites in multiple dimensions. As a result, a total of 71 metabolites of DL (parent drug included) were positively or tentatively identified. The results suggested that DL in vivo mainly underwent hydration, hydroxylation, dihydrodiolation, sulfonation, methylation, dehydrogenation, dehydration, N-acetylcysteine conjugation, cysteine conjugation, glutathione conjugation, glycine conjugation, taurine conjugation, etc. With these inferences, we successfully mapped the "stepwise radiation" metabolic network of DL in rats, where several drug metabolism clusters (DMCs) were discovered. In conclusion, not only did we provide a refined strategy for inhibiting matrix effects and fully screening major-to-trace metabolites, but also give substantial data reference for mechanism investigation, in vivo distribution visualization, and safety evaluation of DL.


Assuntos
Redes e Vias Metabólicas , Extração em Fase Sólida , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Mineração de Dados/métodos
14.
Food Chem Toxicol ; 170: 113453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228900

RESUMO

Esophageal cancer (EC) is one of the most fatal malignancies worldwide. Dehydrocostus lactone (DHL) derived from the dried roots of Saussurea costus (Falc.) Lipech is a sesquiterpene lactone compound that exerts anticancer activities. In this study, DHL was obtained to evaluate its anti-esophageal cancer ability and underlying mechanism in vitro and in vivo. DHL inhibited the proliferation and migration of Eca109 and KYSE150 esophageal cancer cells in a time- and dose-dependent manner. Moreover, it inhibited the growth of Eca109 tumor xenografts in a dose-dependent manner with no significant signs of toxicity in the organs of nude mice. Mechanistically, treatment with DHL could significantly activate reactive oxygen species (ROS) in cells, leading to mitochondrial damage, and inducing apoptosis and autophagy. The ROS inhibitor N-acetyl-L-cysteine (NAC) inhibited DHL-induced apoptosis and autophagy. The pancaspase inhibitor Z-VAD-FMK diminished DHL-induced autophagy, but the autophagy inhibitor 3-methyladenine (3-MA) had no effect on DHL-induced apoptosis. Western blot analysis results indicated that the PI3K/Akt/Bad pathway participated in this process. In conclusion, DHL inhibits the proliferation of esophageal cancer cells through ROS-mediated apoptosis and autophagy in vivo and in vitro. All results suggest that DHL can be considered a potential chemotherapeutic drug for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Autofagia , Apoptose , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
15.
Biomater Adv ; 136: 212798, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929326

RESUMO

The blocking of gastric mucosal intestinal metaplasia (IM) has been considered to be the pivotal method to control the occurrence of gastric cancer. However, there is still a lack of effective therapeutic agent. Here, we developed mucus-penetrating liposome system by covering surface with polyethylene glycol (PEG) chains (hydrophilic and electroneutral mucus-inert material) to co-delivery candidate drugs combination. Then studied the impact on the transmucus performance of different conformations, which were constructed by controlling the density of PEG chains on the surface. The results showed that the particle size of 5%PEG-Lip was less than 120 nm, the polydispersity index was less than 0.3, and the surface potential tended to be neutral. The D value (long chain spacing) of 5% PEG-Lip was 3.25 nm, which was close to the RF value (diameter of spherical PEG long chain group without external force interference) of 3.44 nm, and the L value (extended length) was slightly larger than 3.44 nm. In this case, PEG showed mushroom-brush transitional conformation on the surface of liposomes. This conformation was not only promoted stable delivery, but also shielded the capture of mucus more favorably, leading to a more unrestricted transportation in mucus. The further in vivo experimental results demonstrated the rapid distribution of liposomes, which gradually appeared both in the superficial and deep glandular of mucosa and gland cells at 1 h and absorbed into the cell cytoplasm at 6 h. The 5% PEG-Lip with the mushroom-brush transitional configuration recalled abnormal organ index and improved inflammation and intestinal metaplasia. The modified PEG conformation assay presented here was more suitable for liposomes. This PEG-modified liposome system has potential of mucus-penetrating and provides a strategy for local treatment of gastric mucosal intestinal metaplasia.


Assuntos
Agaricales , Lipossomos , Metaplasia , Muco , Polietilenoglicóis
16.
Front Chem ; 10: 872480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464223

RESUMO

The development of new biological fungicides using plant metabolites has become an important direction for pesticide development, and previous studies found that Radix Aucklandiae had a certain inhibitory effect on plant pathogens. In this study, we systematically studied the antimicrobial activity of extracts of Radix Aucklandiae, and the active compounds were isolated, purified and structurally identified. Ethanol extracts of Radix Aucklandiae had different inhibitory effects on seven common plant-pathogenic fungi, with EC50 (concentration for 50% of maximal effect) values ranging from 114.18 mg/L to 414.08 mg/L. The extract at concentration of 1,000 mg/L had a significant control effect on strawberry grey mould and wheat powdery mildew of more than 90%. Three active compounds were isolated and purified from the extract, which were identified as alantolactone, dehydrocostus lactone and costunolide. All three compounds showed significant inhibitory effects on Botrytis cinerea, and the MIC (minimal inhibitory concentration) values were 15.63 mg/L, 3.91 mg/L and 15.63 mg/L. Dehydrocostus lactone also showed obvious inhibitory effect on Fusarium graminearum with an MIC value of 62.25 mg/L. The extract of Radix Aucklandiae has high antimicrobial activity against some common plant-pathogenic fungi, and the work lays a foundation for the development of extracts of Radix Aucklandiae as botanical fungicides.

17.
Front Pharmacol ; 13: 817596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321327

RESUMO

Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5-15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/ß and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/ß or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.

18.
Exp Ther Med ; 23(3): 226, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35222703

RESUMO

Heart failure (HF) is the leading cause of death around the world, the mortality caused by HF is growing rapidly, and has become a great threaten to both public health and economic growth. Dehydrocostus lactone (DHE) is the active constituent of Saussurea lappa and is widely used in traditional Chinese medicine for its multiple biological functions, including anti-inflammatory, antioxidant and anti-cancer. To the best of our knowledge, DHE's effect on HF has not been clarified. Thioredoxin-interacting protein (TXNIP) regulates the process of oxidative stress and inflammation and leads to an increase in oxidative stress via oxidization of thioredoxin, TXNIP promotes the activation of the immune response by its binding with the NOD-like receptor protein 3 inflammasome. An MTT assay revealed that the overexpression or inhibition of TXNIP markedly decreased or significantly increased the proliferation of H9c2 cells, respectively. Through reverse transcription-quantitative PCR (RT-qPCR) and western blotting, it was determined that the expression of proinflammatory cytokines was significantly decreased with the increased expression of anti-inflammatory cytokines in a TXNIP knockout model. Further study utilizing RT-qPCR and western blotting demonstrated that these effects may be mediated by the nuclear factor erythroid 2-related factor 2/heme oxygenase-1/NF-κB signaling pathway. In conclusion, TXNIP inhibition may promote the therapeutic effect of DHE on oxidative stress-induced damage.

19.
Plant Signal Behav ; 17(1): 2025669, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35060434

RESUMO

Orobanche cumana Wallr. (Orobanche cernua Loefl.) causes severe yield losses of confectionary sunflower in China. While germination of O. cumana is stimulated by sesquiterpene lactones (STLs) from host sunflower (Helianthus annuus L.). Dehydrocostus lactone and costunolide isolated from sunflower root exudates are known as STLs to specifically induce O. cumana germination. Two major confectionary sunflower cultivars, SH363 (highly susceptible to O. cumana) and TH33 (resistant to O. cumana), were planted in China. However, STLs in these two sunflower cultivars has remained unknown. To identify STLs from root and exudates of sunflower for better understanding the role of stimulants in parasitic interaction of sunflower and O. cumana, we tested dehydrocostus lactone (DCL) and costunolide (CL) in root and root exudates of susceptible and resistant sunflower cultivars. The stimulant activity of sunflower root exudate and root extract to germination of O. cumana were also determined. Dehydrocostus lactone and costunolide were identified through ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Both DCL and CL were found in root extracts and root exudates in the whole tested time point from two sunflower cultivars. The concentration of dehydrocostus lactone was higher than that of costunolide at the same tested growth stage of each sunflower cultivar. It was observed that higher quantity of dehydrocostus lactone in susceptible cultivar than resistant cultivar of root and root exudates at later tested developmental stages. However, the amount of CL was no significant difference between SH363 and TH33 at all tested stages. The release amount of DCL from susceptible cultivar is 3.7 folds that of resistant cultivar at 28 DAT. These findings suggested that DCL was the one of the major signal compound in these two sunflower cultivars, and lower dehydrocostus lactone might contribute to the resistance of sunflower TH33 to O. cumana.


Assuntos
Helianthus , Orobanche , Sesquiterpenos , Cromatografia Líquida , Exsudatos e Transudatos , Germinação , Lactonas/química , Lactonas/farmacologia , Extratos Vegetais , Raízes de Plantas , Espectrometria de Massas em Tandem
20.
Anticancer Agents Med Chem ; 22(9): 1742-1752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353270

RESUMO

BACKGROUND: Dehydrocostus lactone (DEH), one of the sesquiterpene lactones, has shown extensive pharmaceutical activities, including anti-cancer activity. However, its effects on human esophageal squamous cell carcinoma (ESCC) cells are still unknown. OBJECTIVE: To investigate the effect of DEH on ESCC cells and the underling molecular mechanisms. METHODS: The cell proliferation was tested using CCK-8 and colony formation assay. Apoptosis was analyzed by flow cytometry, hoechst staining and caspase-3 activity assay. Cell cycle was analyzed by flow cytometry. IL-6 (STAT3 activator) was used to activate JAK2/STAT3 pathway. Immunofluorescence assay was performed to detect intracellular location of STAT3. SiRNA transfection was performed to knock down the expression of PLK1. The protein expression was analyzed by western blotting assay. RESULT: DHE treatment significantly reduced the viability of ESCC cells through apoptosis induction and cell cycle arrest. Furthermore, DHE treatment significantly inhibited the phosphorylation of JAK2 and STAT3. IF assay showed that the distribution of STAT3 in the nucleus was decreased by DHE treatment. In addition, coculture with IL-6 significantly prevented the inhibition of phosphorylation of JAK2 and STAT3 by DHE treatment and partly reversed the effect of DHE on ESCC cells. Moreover, DHE treatment significantly down-regulated the expression of PLK1, which was partly reversed by IL-6 coculture. Finally, knock down of PLK1 using siRNA reduced the viability of ESCC cells and induced apoptosis and cell cycle arrest Conclusion: Our study demonstrated that DHE has a potent anti-cancer effect on ESCC cells through apoptosis induction and cell cycle arrest via JAK2/STAT3/PLK signaling pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Humanos , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Lactonas , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...