Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
BMC Oral Health ; 24(1): 676, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858745

RESUMO

BACKGROUND: Clinicians often utilize both flowable and packable composites concurrently in bonding fixed retainers. Thus, this study aimed to assess the synergistic effect of these composites in the bonding process. METHODS: This in vitro study divided specimens into three groups: flowable composite (nano-hybrid, Tetric N-Flow, Ivoclar Vivadent), packable composite (nano-hybrid, Tetric N-ceram, Ivoclar Vivadent), and combined use of flowable and packable composite. Shear bond strength (SBS), adhesive remnant index (ARI), and wire pull-out resistance were compared among the groups. Statistical analyses were conducted using ANOVA and Tukey tests to compare study groups. Additionally, Chi-square and Kruskal-Wallis tests were employed to analyze the ARI index among the groups. RESULTS: ANOVA results indicated no statistically significant differences among test groups (P = 0.129) regarding SBS. However, a significant difference existed between flowable and packable composite groups (P = 0.01) regarding ARI scores. Among the study groups, flowable composite exhibited the highest frequencies of ARI scores of 1 and 2, whereas packable composite showed the highest frequency of ARI scores of 0. The combined group had higher frequencies of ARI scores of 0 and 1 compared to the flowable composite. The wire pull-out test revealed that the combined application of flowable and packable composite resulted in significantly lower detachments compared to the packable composite alone (P = 0.008). However, no significant differences were observed in the comparisons between the flowable-packable (P = 0.522) and combined-flowable (P = 0.128) groups. CONCLUSION: The combined use of flowable and packable composites for fixed retainers demonstrated adequate shear bond strength and ideal ARI scores, suggesting it as a suitable adhesive system for bonding orthodontic fixed retainers.


Assuntos
Resinas Compostas , Teste de Materiais , Contenções Ortodônticas , Resistência ao Cisalhamento , Resinas Compostas/química , Técnicas In Vitro , Colagem Dentária/métodos , Análise do Estresse Dentário , Humanos
2.
BMC Oral Health ; 24(1): 651, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831398

RESUMO

BACKGROUND: Carious/Non-carious cervical lesions with gingival recessions may require both dental and periodontal reconstructive therapy, where flaps/grafts may be placed in contact with a dental filling material. Human Gingival Fibroblasts (HGF-1) response during the early phase of healing could vary according to the procedures employed to cure the dental composite. Moreover, oxygen diffusion into dental composite inhibits the polymerization reaction, creating an oxygen-inhibited layer (OIL) that presents residual unreacted monomers. The aim of this study was to assess the effect of different polishing techniques and OIL on HGF-1. METHODS: Composite discs polished with different techniques (diamond rubber, abrasive discs and tungsten carbide burr) were used. An additional not polished smooth group obtained with and without OIL was used as control. Samples were physically characterized through the analysis of their hydrophilicity and surface topography through contact angle measurement and SEM, respectively; afterwards the biologic response of HGF-1 when cultured on the different substrates was analyzed in terms of cytotoxicity and gene expression. RESULTS: The finishing systems caused alterations to the wettability, even if without a proportional relation towards the results of the proliferation essay, from which emerges a greater proliferation on surfaces polished with one-step diamond rubber and with abrasive discs as well as a direct effect of the glycerin layer, confirming that surface roughness can heavily influence the biological response of HGF-1. CONCLUSIONS: Surfaces wettability as well as cellular behavior seem to be affected by the selection of the finishing system used to lastly shape the restoration. Especially, the presence of OIL act as a negative factor in the regards of human gingival fibroblasts. The present study may provide the first clinical instruction regarding the best polishing system of composite material when the restoration is placed directly in contact with soft tissue cells. Understanding HGF-1 behavior can help identifying the polishing treatment for direct restoration of carious/non-carious cervical lesions associated with gingival recessions.


Assuntos
Resinas Compostas , Polimento Dentário , Fibroblastos , Gengiva , Propriedades de Superfície , Humanos , Gengiva/citologia , Polimento Dentário/métodos , Microscopia Eletrônica de Varredura , Proliferação de Células , Molhabilidade , Restauração Dentária Permanente/métodos , Compostos de Tungstênio/farmacologia , Células Cultivadas
3.
Technol Health Care ; 32(4): 2755-2768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820032

RESUMO

BACKGROUND: The accuracy of dental crowns is crucial for their longevity and effectiveness. OBJECTIVE: This study aims to investigate how the precision of crowns is affected by two different fabrication methods, either subtractive (milling) or additive (3D printing), within computer-aided design/computer-aided manufacture (CAD/CAM) technology. METHODS: A standardised digital scan of a maxillary first molar with a shoulder margin (.stl file) was used to design and fabricate crowns through both subtractive (milling) and additive (3D printing) processes. The crowns' marginal and internal fits were assessed comprehensively. Statistical analysis, including two-way ANOVA and independent t-tests, revealed significant differences in fitting accuracy between the two methods. RESULTS: Crowns produced via 3D printing demonstrated superior fitting with minimal marginal (14 ± 5 µm) and internal discrepancies (22 ± 5 µm) compared to milling (marginal: 22 ± 4 µm, internal: 23 ± 3 µm), indicating a statistically significant advantage in precision (p⁢s⩽ 0.022 for marginal fit). CONCLUSION: The findings suggest that 3D printing may offer a more accurate alternative to milling in the fabrication of digital dental prostheses, potentially revolutionising the field with its enhanced precision capabilities.


Assuntos
Desenho Assistido por Computador , Coroas , Planejamento de Prótese Dentária , Impressão Tridimensional , Humanos , Planejamento de Prótese Dentária/métodos , Dente Molar
4.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611176

RESUMO

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

5.
Dent J (Basel) ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668012

RESUMO

OBJECTIVES: A tricalcium silicate-based cement, Biodentine™, has displayed antibiofilm activity when mixed with chitosan powder. This study aimed to assess the effect of chitosan incorporation on the physico-mechanical and biological properties of Biodentine™. METHODS: In this study, medium molecular weight chitosan powder was incorporated into Biodentine™ in varying proportions (2.5 wt%, 5 wt%, 10 wt%, and 20 wt%). The setting time was determined using a Vicat apparatus, solubility was assessed by calculating weight variation after water immersion, radiopacity was evaluated and expressed in millimeters of aluminum, the compressive strength was evaluated using an Instron testing machine, and the microhardness was measured with a Vickers microhardness tester. In addition, surface topography of specimens was analyzed using scanning electron microscopy, and the effect of chitosan on the viability of human embryonic kidney (HEK 293) cells was measured by a colorimetric MTT assay. RESULTS: Incorporation of 2.5 wt% and 5 wt% chitosan powder delivered an advantage by speeding up the setting time of Biodentine material. However, the incorporation of chitosan compromised all other material properties and the crystalline structure in a dose-dependent manner. The chitosan-modified material also showed significant decreases in the proliferation of the HEK 293 cells, signifying decreased biocompatibility. SIGNIFICANCE: Chitosan incorporation into calcium silicate materials adversely affects the physical and biological properties of the material. Despite the increased antimicrobial activity of the modified material, the diminution in these properties is likely to reduce its clinical value.

6.
J Dent Sci ; 19(2): 762-772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618073

RESUMO

The formation of dental plaque is well-known for its role in causing various oral infections, such as tooth decay, inflammation of the dental pulp, gum disease, and infections of the oral mucosa like peri-implantitis and denture stomatitis. These infections primarily affect the local area of the mouth, but if not treated, they can potentially lead to life-threatening conditions. Traditional methods of mechanical and chemical antimicrobial treatment have limitations in fully eliminating microorganisms and preventing the formation of biofilms. Additionally, these methods can contribute to the development of drug-resistant microorganisms and disrupt the natural balance of oral bacteria. Antimicrobial photodynamic therapy (aPDT) is a technique that utilizes low-power lasers with specific wavelengths in combination with a photosensitizing agent called photosensitizer to kill microorganisms. By inducing damage through reactive oxygen species (ROS), aPDT offers a new approach to addressing dental plaque and associated microbial biofilms, aiming to improve oral health outcomes. Recently, photosensitizers have been incorporated into dental materials to create photosensitive dental materials. This article aimed to review the use of photosensitive dental materials for aPDT as an innovative antimicrobial option in dentistry, with the goal of enhancing oral health.

7.
J Funct Biomater ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535264

RESUMO

Hydrofluoric acid (HF) is commonly used as an etchant for the pretreatment of dental computer-aided design/computer-aided manufacturing (CAD-CAM) materials, such as glass-ceramics and resin composites. Despite its effectiveness, the harmful and hazardous nature of HF has raised significant safety concerns. In contrast, ammonium fluoride (AF) is known for its relatively low toxicity but has limited etching capability. This study explored the potential of ammonium hydrogen sulfate (AHS), a low-toxicity and weak acid, to enhance the etching ability of aqueous AF solutions for the bonding pretreatment of CAD-CAM materials. This study investigated five types of aesthetic CAD-CAM materials: lithium disilicate glass, feldspathic porcelain, polymer-infiltrated ceramic networks, resin composites, and zirconia. Seven experimental etchants were prepared by varying the amount of AHS added to aqueous AF solutions, with each etchant used to etch the surfaces of the respective CAD-CAM materials. The treated surfaces were analyzed using scanning electron microscopy and confocal laser scanning microscopy. Additionally, the shear bond strength (SBS) of the CAD-CAM materials treated with a luting agent (resin cement) was evaluated. The results indicated that the AF1/AHS3 (weight ratio AF:AHS = 1:3) etchant had the most substantial etching effect on the surfaces of silica-containing materials (lithium disilicate glass, feldspathic porcelain, polymer-infiltrated ceramic networks, and resin composites) but not on zirconia. The SBS of the materials treated with the AF1/AHS3 etchant was comparable to that of the commercial HF etchant. Hence, an AF/AHS mixed solution could effectively etch silica-containing CAD-CAM materials, thereby enhancing their bonding capabilities.

8.
BMC Oral Health ; 24(1): 322, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468251

RESUMO

BACKGROUND: This animal study sought to evaluate two novel nanomaterials for pulpotomy of primary teeth and assess the short-term pulpal response and hard tissue formation in dogs. The results were compared with mineral trioxide aggregate (MTA). METHODS: This in vivo animal study on dogs evaluated 48 primary premolar teeth of 4 mongrel female dogs the age of 6-8 weeks, randomly divided into four groups (n = 12). The teeth underwent complete pulpotomy under general anesthesia. The pulp tissue was capped with MCM-48, MCM-48/Hydroxyapatite (HA), MTA (positive control), and gutta-percha (negative control), and the teeth were restored with intermediate restorative material (IRM) paste and amalgam. After 4-6 weeks, the teeth were extracted and histologically analyzed to assess the pulpal response to the pulpotomy agent. RESULTS: The data were analyzed using the Kruskal‒Wallis, Fisher's exact, Spearman's, and Mann‒Whitney tests. The four groups were not significantly different regarding the severity of inflammation (P = 0.53), extent of inflammation (P = 0.72), necrosis (P = 0.361), severity of edema (P = 0.52), extent of edema (P = 0.06), or connective tissue formation (P = 0.064). A significant correlation was noted between the severity and extent of inflammation (r = 0.954, P < 0.001). The four groups were significantly different regarding the frequency of bone formation (P = 0.012), extent of connective tissue formation (P = 0.047), severity of congestion (P = 0.02), and extent of congestion (P = 0.01). No bone formation was noted in the gutta-percha group. The type of newly formed bone was not significantly different among the three experimental groups (P = 0.320). CONCLUSION: MCM-48 and MCM-48/HA are bioactive nanomaterials that may serve as alternatives for pulpotomy of primary teeth due to their ability to induce hard tissue formation. The MCM-48 and MCM-48/HA mesoporous silica nanomaterials have the potential to induce osteogenesis and tertiary (reparative) dentin formation.


Assuntos
Capeamento da Polpa Dentária , Dentina Secundária , Animais , Cães , Feminino , Dente Pré-Molar , Polpa Dentária/patologia , Capeamento da Polpa Dentária/métodos , Dentina Secundária/patologia , Combinação de Medicamentos , Edema , Guta-Percha , Hidroxiapatitas , Inflamação/patologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Dente Decíduo
9.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474339

RESUMO

The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.


Assuntos
Polpa Dentária , Dente , Medicina Regenerativa , Diferenciação Celular/fisiologia , Biofísica
10.
Odontology ; 112(2): 472-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37914822

RESUMO

The use of collagen is the recent development in various medical fields. Huge quantities of hide and skin trimmings are generated during the leather processing are wasted or underutilized. Trimmings contain collagen which can be beneficially extracted and utilized for high value products. Poly methyl methacrylate based denture materials exhibit serious concerns such as high porosity, presence of residual monomer, shrinkage, distortion and high rate of deterioration of the materials. This study aims to incorporate extracted Type I collagen with polymer to obtain denture base and investigate its chemical and mechanical properties. The present research methodology also reduces the quantity of monomer and acrylic resin usage. The collagen was extracted from animal skin and hide trimmings which are otherwise disposed as wastes. This study investigated the effect of visco-elastic characteristics of resulted specimens and their transition temperature, mechanical properties, decomposition temperature and leachability. The collagen-based specimens have better tensile strength with high decomposition temperature compared to control specimens. Scanning Electron Microscopy analysis revealed that the experimental specimens was cohesive and homogeneous which explained the higher tensile and decomposition values. The study suggests that collagen cross-linked acrylic denture base exhibit better mechanical and thermal resistance properties when compared to control specimens. The study indicates that biomaterials are emerging as smart products of value in human health.


Assuntos
Materiais Biocompatíveis , Colagem Dentária , Humanos , Colágeno Tipo I , Saúde Bucal , Teste de Materiais , Propriedades de Superfície , Polimetil Metacrilato/química , Dentaduras , Resistência à Tração , Materiais Dentários/química
11.
J Mech Behav Biomed Mater ; 150: 106320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134584

RESUMO

Polymer-infiltrated ceramic network (PICN) materials have gained considerable attention as tooth restorative materials owing to their mechanical compatibility with human teeth. However, the mechanical strength of contemporary PICN materials is lower than those of conventional resin composites and ceramics. This study aims to develop novel high-strength PICN for use as a dental restorative material. Zirconia-based PICN (EXP) was fabricated using 3 mol% yttria tetragonal polycrystalline zirconia powder and resin monomers via slip casting, followed by sintering and polymer infiltration. Comprehensive analyses of the microstructure, mechanical properties, and physicochemical properties of EXP were performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, inorganic content measurements, three-point bending test, Vickers hardness test, two-body wear test, shear bond strength (SBS) test, surface free energy analysis, and water sorption/solubility test. Commercially available computer-aided design/computer-aided manufacturing (CAD/CAM) materials, including resin composite (CERASMART), silicate-based PICN (ENAMIC), and zirconia ceramic (e.max ZirCAD), were used for comparison. The analyses highlight the dual network structure of EXP, which comprised a zirconia skeleton and an infiltrated resin phase. EXP exhibits a flexural strength of 346.0 ± 46.0 MPa, flexural modulus of 44.0 ± 3.7 GPa, and Vickers hardness of 440.1 ± 51.2 VHN. The mechanical properties of EXP are significantly higher than those of CERASMART and ENAMIC but lower than those of ZirCAD. Notably, the EXP hardness closely mimics that of the human enamel. The wear volume, SBS, and water sorption/solubility of EXP are comparable to those of CERASMART and ENAMIC. Therefore, EXP has potential applications as a tooth restorative material.


Assuntos
Resinas Compostas , Polímeros , Humanos , Teste de Materiais , Polímeros/química , Cerâmica/química , Desenho Assistido por Computador , Água , Propriedades de Superfície , Porcelana Dentária , Materiais Dentários
12.
J Trace Elem Med Biol ; 81: 127337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000168

RESUMO

BACKGROUND: The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure. METHODS: In this study, EC cultures were subjected to shear stress while being exposed to zirconia for up to 3 days. The conditioned medium obtained from these cultures was then used to expose osteoblasts for a duration of 7 days. To investigate the effects of zirconia on osteoblasts, we examined the expression of genes associated with osteoblast differentiation, including Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Additionally, we assessed the impact of mechanosignaling-related angiocrine factors on extracellular matrix (ECM) remodeling by measuring the activities of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) during the acquisition of the osteogenic phenotype, which precedes mineralization. RESULTS: Our data revealed that mechanosignaling-related angiocrine factors play a crucial role in promoting an osteoblastic phenotype in response to zirconia exposure. Specifically, exposed osteoblasts exhibited significantly higher expression levels of genes associated with osteoblast differentiation, such as Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Furthermore, the activities of MMP2 and MMP9, which are involved in ECM remodeling, were modulated by mechanosignaling-related angiocrine factors. This modulation is likely an initial event preceding the mineralization phase. CONCLUSION: Based on our findings, we propose that mechanosignaling drives the release of angiocrine factors capable of modulating the osteogenic phenotype at the biointerface with zirconia. This process creates a microenvironment that promotes wound healing and osseointegration. Moreover, these results highlight the importance of considering the mechanosignaling of endothelial cells in the modulation of bone healing and osseointegration in the context of blood vessel effects. Our data provide new insights and open avenues for further investigation into the influence of mechanosignaling on bone healing and the osseointegration of dental devices.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Células Endoteliais , Osteocalcina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Sialoproteína de Ligação à Integrina/farmacologia , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fenótipo , Diferenciação Celular , Osteoblastos/metabolismo , Titânio/farmacologia , Propriedades de Superfície
13.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1528851

RESUMO

The present study analyzed the microhardness and degree of conversion of three Bulk Fill resins (M1 - Filtek Bulk Fill; M2 - Tetric N-Ceram Bulk Fill and M3 - Opus Bulk Fill) polymerized by single peak and polywave Light-emitting Diode Curing Lights. A total 90 test specimens (n=10) were obtained using a Teflon matrix for the purpose of testing microhardness; and for degree of conversion: 135 specimens (n=5) by using a 2 x 6 cm matrix. The specimens were light polymerized using 3 light sources (L1 - Optilight Max, L2 - Bluephase, L3 - VALO). They were kept in artificial saliva om an oven at 37±1°C during the experiment. The degree of conversion was measured by FTIR 24 h after obtaining each test specimen. The microhardness readouts were performed with a microdurometer at the time intervals of 48 hours (T0), 7 days (T1), 14 days (T2) and 21 days (T3). M1L3 was found to show the highest microhardness values in T2, and M1 showed the lowest degree of conversion in the deep third with L1. It was concluded that Filtek Bulk Fill resin showed the best results in comparison with the other resins.


El presente estudio analizó la microdureza y el grado de conversión de tres resinas Bulk Fill (M1 - Filtek Bulk Fill; M2 - Tetric N-Ceram Bulk Fill y M3 - Opus Bulk Fill) polimerizadas por lámparas de curado de diodo emisor de luz de pico único y polionda. Se obtuvieron un total de 90 especímenes de prueba (n=10) utilizando una matriz de teflón con el propósito de probar la microdureza; y para grado de conversión: 135 especímenes (n=5) utilizando una matriz de 2 x 6 cm. Las muestras se fotopolimerizaron utilizando 3 fuen- tes de luz (L1 - Optilight Max, L2 - Bluephase, L3 - VALO). Se mantuvieron en saliva artificial en estufa a 37 ±1°C durante el experimento. El grado de conversión se midió por FTIR 24 h después de obtener cada muestra de prueba. Las lecturas de microdureza se realizaron con un microdurómetro en los intervalos de tiempo de 48 horas (T0), 7 días (T1), 14 días (T2) y 21 días (T3). Se encontró que M1L3 mostraba los valores más altos de microdureza en T2, y M1 mostraba el grado más bajo de conversión en el tercio profundo con L1. Se concluyó que la resina Filtek Bulk Fill mostró los mejores resultados en comparación con las demás resinas.

14.
Saudi Dent J ; 35(8): 953-959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107045

RESUMO

Vacuum-formed retainer (VFR) is the most used retainer due to its higher aesthetic properties and lower cost, their mechanical properties of are important in determining the stability and long-term use of appliances made out of them. AIM: This study aimed to evaluate and compare the flexural modulus, surface hardness, and color stability of three different VFR materials. METHODS: Three different VFR materials, namely Duran, Keystone, and Zendura, of 1 mm thickness, were tested after thermoforming for flexural modulus, hardness, and color stability. They were formed over a stainless-steel model of 12 mm diameter and 6 mm height. RESULTS: There were significant statistical differences (p = 0.000) in the flexural modulus and hardness of the three materials. Regarding color stability, Zendura exhibited significantly higher ΔE* values than Keystone and Duran (p < 0.05). CONCLUSIONS: Zendura had the highest flexural modulus and hardness compared with Duran and Keystone; however, it is more susceptible to color change compared to the other tested materials.

15.
BMC Oral Health ; 23(1): 863, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964242

RESUMO

BACKGROUND: Periodontitis often leads to progressive destruction and loss of alveolar bone, the reconstruction of which remains difficult in periodontal therapy. As a novel bone graft material, tooth-derived bone substitute (TDBS) processed from extracted teeth has been previously reported about its osteoconductivity and promising results in bone regeneration. This study was to investigate the biological effects and bone regeneration properties of TDBS in vitro and in vivo using rat periodontal bone defect model. METHODS: Three groups of materials were used in the experiments: TDBS, TDBS treated with ethylene diamine tetraacetic acid (EDTA) (TDBS-E), and allogeneic bone materials. Calcium (Ca) and phosphate (P) ion dissolutions were quantified by spectrophotometer for seven days. The releases of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-ß1 (TGF-ß1) were identified by enzyme-linked immunosorbent assay (ELISA). Human osteoblast proliferation, migration, and differentiation were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell counting, alkaline phosphatase activity (ALP), and alizarin red staining (ARS), respectively. Furthermore, the osteogenic effects of TDBS on periodontal furcation bone defects were evaluated at eight weeks postoperatively using micro-computed tomography (Micro-CT) and histological analysis. RESULTS: The dissolution of both Ca and P ions in TDBS increased over time. The BMP-2 released from TDBS was significantly higher than that from TDBS-E and allografts, while the TGF-ß1 release from TDBS and TDBS-E groups was higher than that in the allografts. The TDBS-E group could induce the highest level of osteoblast proliferation compared to other groups. Cell migration with allografts co-culture was significantly induced compared to the blank control. However, all groups demonstrated similar positive effects on osteoblast differentiation. Furthermore, in the periodontal model, all materials could effectively enhance bone regeneration in the furcation defect. CONCLUSIONS: The TDBS prepared chairside as an autogenous bone graft, demonstrating osteoinductivity, which enhances the osteogenic biological characteristics. Therefore, TDBS is suggested as an economical and biocompatible material for periodontal bone regeneration.


Assuntos
Substitutos Ósseos , Dente , Humanos , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Microtomografia por Raio-X , Fator de Crescimento Transformador beta1/farmacologia , Regeneração Óssea , Osteogênese , Cálcio , Ligamento Periodontal , Diferenciação Celular
16.
Dent J (Basel) ; 11(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886919

RESUMO

The aim of this systematic review is to describe and identify the prospects of ß-Tricalcium Phosphate (ß-TCP) as an alveolar bone grafting (ABG) material in cleft lip/palate (CL/P) or alveolar bone cleft defects. A systematic review protocol based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020) was drafted. The literature search was conducted using MEDLINE/PubMed, Web of Science/ISI Web of Knowledge, Scopus, and the Cochrane Library, with English as the inclusion criterion and no publication year limits. The keywords yielded a total of 5824 publications. After removing duplicates and non-English articles, there were 3196 suitable articles available for evaluation. Subsequently, 1315 studies remained after reviewing titles and abstracts. Furthermore, 85 full articles were assessed for eligibility. After reading the complete texts of those papers, 20 were eventually selected that matched the inclusion requirements. Thirteen out of the twenty studies included in this systematic review were deemed to have a low risk of bias; one had a high risk of bias; and six had a moderate risk of bias due to not reporting randomization. ß-TCP, when used as an ABG material, is biocompatible, visible, practical, offers a less invasive procedure, and does not interfere with orthodontic treatment. Synthetic ß-TCP for ABG can be an alternative to autologous bone grafts under certain terms and conditions. The efficacy of ß-TCP for ABG in CL/P or alveolar bone cleft defects can be enhanced through a tissue engineering approach that combines ß-TCP with growth factors, mesenchymal stem cells, or other graft materials, along with modifications to ß-TCP's physical properties.

17.
Jpn Dent Sci Rev ; 59: 312-328, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705876

RESUMO

Zirconia restorations are increasingly popular in dental treatment. Yttria-stabilized zirconia (YSZ) needs to be sintered for clinical applications and novel speed-sintering protocols are being developed for chairside treatments. Whether the properties of speed-sintered YSZ meet clinical requirements, however, remains unclear. Therefore, we conducted a systematic review and meta-analysis on the influence of speed-sintering on the optical and mechanical properties of dental YSZ according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. A literature search was conducted using PubMed, Embase, and Web of Science databases for relevant articles published between January 1, 2010 and February 28, 2022 in English, Chinese, or Japanese. After full-text evaluation and quality assessment, 26 articles were selected. Meta-analysis revealed that speed-sintering does not significantly affect the CIEDE2000-based translucency parameter, contrast ratio, three-point flexural strength, biaxial flexural strength, or fracture toughness of YSZ (p < 0.01) compared to conventional sintering. However, the CIELab-based translucency parameter of conventionally sintered YSZ is higher than that of speed-sintered YSZ. The descriptive analysis indicated that speed-sintering does not affect the hardness of YSZ compared to that of conventionally sintered YSZ. The results indicate that speed-sintering is suitable for preparing YSZ for dental restorations.

18.
J Prosthodont ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578028

RESUMO

PURPOSE: To compare the shear bond strength between polyetheretherketone (PEEK) and heat activated polymethylmethacrylate (PMMA) resin after laser treatment. MATERIALS AND METHODS: A total of 128 PEEK discs were fabricated (10 mm diameter and 2 mm thickness) and allocated into two groups. Group 1 was subjected to surface treatment followed by thermal cycling for 5000 cycles and group 2 was subjected to surface treatment followed by thermal cycling for 10,000 cycles. Each group was further subdivided into four subgroups (n = 16) which were: no surface treatment; primer treatment; acid etching; and laser surface treatment. PEEK was then bonded with PMMA resin using the conventional flasking technique. The shear bond strength was evaluated using a universal testing machine with a crosshead speed of 1 mm/min. Statistical analysis was done using one-way ANOVA for comparing within groups, followed by Tukey HSD test. Student's T-test was done to evaluate between the two groups. RESULTS: In group 1, the highest shear bond strength was exhibited by the laser group (19.08 ± 0.16 MPa) followed by the acid etch group (14.84 ± 0.23 MPa), and the primer group (6.43 ± 0.20 MPa), while the least shear bond strength was observed in the no surface treatment group (4.98 ± 0.34 MPa) which was found to be significant (p < 0.05). In group 2, the highest shear bond strength was observed in the laser group (18.21 ± 0.23 MPa) followed by the acid etch group (13.77 ± 0.48 MPa), and the primer group (6.04 ± 0.11 MPa), while the least shear bond strength was observed in no surface treatment group (4.35 ± 0.21 MPa) which was found to be significant (p < 0.05). CONCLUSION: The shear bond strength between PEEK and PMMA resin was highest for specimens that were surface treated with laser and followed by specimens treated with acid etching, primer application, and without surface treatment, respectively. Increasing thermal cycling from 5000 cycles to 10,000 cycles also reduced the bond strength.

19.
Materials (Basel) ; 16(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444984

RESUMO

This paper analyzes the phenomenon that conditions the durability and reliability of a type of dental bur based on the wear of the active part and with effect on its quality. For the experimental study, a conical-cylindrical dental bur and a sample dental material in cobalt-chromium alloy, cylindrical shape, tested on a specially made experimental installation were used. In this paper, the most significant parameter was considered (loss of mass, mw, through the wear of the active part of a tested dental bur), which highlights the studied wear phenomenon. This is useful for the establishment of the durability and reliability of the dental bur by the extension of the lifetime or even optimization of its operation. The wear phenomenon of the active part of dental bur is studied based on the results and experimental data obtained in the work process that was validated by interpolation and led to polynomial functions which approximate very well the dependent parameter, mw, considered in the experimental program. The results of the interpolation showed that in the first 11 h of work, the dental bur works with high efficiency (allow optimizing operation or offering new ideas for constructive solutions), after which it can be easily decommissioned; i.e., it should be replaced with a new one (establishing some possible criteria for replacing the used dental bur).

20.
J Adv Prosthodont ; 15(3): 136-144, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441719

RESUMO

PURPOSE: The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CAD-CAM materials after aging. MATERIALS AND METHODS: A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS: The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION: The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...