Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.625
Filtrar
1.
Front Neurosci ; 18: 1418694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952923

RESUMO

The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.

2.
Cell Rep ; 43(7): 114386, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909362

RESUMO

The dentate gyrus plays a key role in the discrimination of memories by segregating and storing similar episodes. Whether hilar mossy cells, which constitute a major excitatory principal cell type in the mammalian hippocampus, contribute to this decorrelation function has remained largely unclear. Using two-photon calcium imaging of head-fixed mice performing a spatial virtual reality task, we show that mossy cell populations robustly discriminate between familiar and novel environments. The degree of discrimination depends on the extent of visual cue differences between contexts. A context decoder revealed that successful environmental classification is explained mainly by activity difference scores of mossy cells. By decoding mouse position, we reveal that in addition to place cells, the coordinated activity among active mossy cells markedly contributes to the encoding of space. Thus, by decorrelating context information according to the degree of environmental differences, mossy cell populations support pattern separation processes within the dentate gyrus.

3.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904658

RESUMO

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Assuntos
Doença de Alzheimer , Colina , Suplementos Nutricionais , Modelos Animais de Doenças , Animais , Doença de Alzheimer/metabolismo , Colina/administração & dosagem , Colina/metabolismo , Camundongos , Feminino , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a DNA
4.
Cell Rep ; 43(7): 114382, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38905101

RESUMO

Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.

5.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230223, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853551

RESUMO

Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Animais , Feminino , Humanos , Masculino , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Fatores Sexuais
6.
Neurosci Bull ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907786

RESUMO

Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853554

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Adiponectina , Giro Denteado , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Plasticidade Neuronal , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Adiponectina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Receptores de AMPA/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38850072

RESUMO

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is one of the leading causes of neurodevelopmental disorder for which there is a pressing need for an effective treatment. Recent studies have investigated the essential nutrient choline as a postnatal treatment option. Supplementation with choline has produced improvements in behavioral tasks related to learning and memory and reverted changes in methylation signature following third-trimester equivalent ethanol exposure. We examined whether there are related improvements in hippocampal synaptic plasticity in vivo. METHODS: Sprague-Dawley offspring were administered binge-levels of ethanol from postnatal day (PND) 4 to 9, then treated with choline chloride (100 mg/kg/day) from PND 10 to 30. In vivo electrophysiology was performed on male and female offspring from PND 55 to 70. Long-term potentiation (LTP) was induced in the medial perforant pathway of the dentate gyrus using a theta-burst stimulation (TBS) protocol, and field-evoked postsynaptic potentials (EPSPs) were evoked for 60 min following the conditioning stimulus. RESULTS: Developmental ethanol exposure caused long-lasting deficits in LTP of the slope of the evoked responses and in the amplitude of the population spike potentiation. Neither deficit was rescued by postnatal choline supplementation. CONCLUSIONS: In contrast to our prior findings that choline can improve hippocampal plasticity (Nutrients, 2022, 14, 2004), here we found that deficits in hippocampal synaptic plasticity due to developmental ethanol exposure persisted into adulthood despite adolescent choline supplementation. Future research should examine more subtle changes in synaptic plasticity to identify synaptic changes that mirror behavioral improvements.

9.
bioRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38854102

RESUMO

Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with electrophysiological and optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into in-fraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG is modulated by rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

10.
Cell Rep ; 43(6): 114339, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38852158

RESUMO

Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.


Assuntos
Autofagia , Hipocampo , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Neurogênese , Giro Denteado/metabolismo , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Diferenciação Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/citologia , Análise de Célula Única , Proliferação de Células
11.
Eur J Neurosci ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858171

RESUMO

Animal studies and clinical trials suggest that maintenance of gamma-aminobutyric acid (GABA)-ergic activity may be crucial in coping with stressful conditions, anxiety and mood disorders. Drugs highly efficient in promoting anxiolysis were shown to activate this system, particularly via the α2-subunit of type A receptors (GABAA α2). Given the high expression of GABAA α2 in the dentate gyrus (DG) sub-field of the hippocampus, we sought to examine whether manipulation of the α2 subunit in this area will evoke changes in emotional behaviour, memory and learning as well as in synaptic plasticity. We found that knockdown of GABAAα2 receptor specifically in the dorsal DG of rats caused increased anxiety without affecting locomotor activity. Spatial memory and learning in the Morris water maze were also impaired in GABAAα2 receptor knocked down rats, an effect accompanied by alterations in synaptic plasticity, as assessed by long-term potentiation in the DG. Our findings provide further support to the notion that emotional information processing in the hippocampus may be controlled, at least in part, via the inhibitory GABAA α2 receptor subunit, opening a potential avenue for early interventions from pre- puberty into adulthood, as a strategy for controlling anxiety-related psychopathology.

12.
Heliyon ; 10(9): e29713, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720739

RESUMO

We have recently shown delayed increases in GABAB receptor (GABABR) subunit protein levels in the hippocampal dentate gyrus (DG), but not in the pyramidal CA1 and CA3 regions, at 15-30 days after the systemic single administration of trimethyltin (TMT) in mice. An attempt was thus made to determine whether the delayed increases return to the control levels found in naive mice afterward. In the DG on hippocampal slices obtained at 90 days after the administration, however, marked increases were still seen in protein levels of both GABABR1 and GABABR2 subunits without significant changes in calbindin and glial fibrillary acidic protein (GFAP) levels on immunoblotting analysis. Fluoro-Jade B staining clearly revealed the absence of degenerated neurons from the DG at 90 days after the administration. Although co-localization was invariably detected between GABABR2 subunit and GFAP in the DG at 30 days on immunohistochemical analysis, GABABR2-positive cells did not merge well with GFAP-positive cells in the DG at 90 days. These results suggest that both GABABR1 and GABABR2 subunits would be tardily and sustainably up-regulated by cells other than neurons and astrocytes in the murine DG at 90 days after a systemic single injection of TMT.

13.
Brain Sci ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790475

RESUMO

This study explores the multifaceted influence of litter size, maternal care, exercise, and aging on rats' neurobehavioral plasticity and dentate gyrus microglia dynamics. Body weight evolution revealed a progressive increase until maturity, followed by a decline during aging, with larger litters exhibiting lower weights initially. Notably, exercised rats from smaller litters displayed higher body weights during the mature and aged stages. The dentate gyrus volumes showed no significant differences among groups, except for aged sedentary rats from smaller litters, which exhibited a reduction. Maternal care varied significantly based on litter size, with large litter dams showing lower frequencies of caregiving behaviors. Behavioral assays highlighted the detrimental impact of a sedentary lifestyle and reduced maternal care/large litters on spatial memory, mitigated by exercise in aged rats from smaller litters. The microglial dynamics in the layers of dentate gyrus revealed age-related changes modulated by litter size and exercise. Exercise interventions mitigated microgliosis associated with aging, particularly in aged rats. These findings underscore the complex interplay between early-life experiences, exercise, microglial dynamics, and neurobehavioral outcomes during aging.

14.
Neuroscientist ; : 10738584241252581, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757781

RESUMO

The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.

15.
Behav Brain Res ; 468: 115042, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723676

RESUMO

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.


Assuntos
Hipocampo , Camundongos Endogâmicos C57BL , Neurogênese , Animais , Neurogênese/fisiologia , Masculino , Hipocampo/metabolismo , Camundongos , Cálcio/metabolismo , Comportamento Animal/fisiologia , Reconhecimento Psicológico/fisiologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Dependovirus , Vetores Genéticos/administração & dosagem , Lateralidade Funcional/fisiologia
16.
Peptides ; 178: 171244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788901

RESUMO

The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide-3 receptors (RXFP3), have been implicated in modulating learning and memory processes, but their specific roles remain unclear. This study utilized behavioral and molecular approaches to investigate the effects of putatively reversible blockade of RXFP3 in the ventral dentate gyrus (vDG) of the hippocampus on spatial and fear memory formation in rats. Male Wistar rats received bilateral vDG cannula implantation and injections of the RXFP3 antagonist, R3(BΔ23-27)R/I5 (400 ng/0.5 µL per side), or vehicle at specific time points before acquisition, consolidation, or retrieval phases of the Morris water maze and passive avoidance learning tasks. RXFP3 inhibition impaired acquisition in the passive avoidance task but not the spatial learning task. However, both memory consolidation and retrieval were disrupted in both tasks following RXFP3 antagonism. Ventral hippocampal levels of the consolidation-related kinase p70-S6 kinase (p70S6K) were reduced RXFP3 blockade. These findings highlight a key role for ventral hippocampal RXFP3 signaling in the acquisition, consolidation, and retrieval of spatial and emotional memories, extending previous work implicating this neuropeptide system in hippocampal memory processing.


Assuntos
Giro Denteado , Medo , Ratos Wistar , Receptores Acoplados a Proteínas G , Animais , Giro Denteado/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Medo/fisiologia , Aprendizagem da Esquiva/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Memória/fisiologia , Relaxina/metabolismo , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Receptores de Peptídeos/metabolismo
17.
Alcohol ; 118: 45-55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705312

RESUMO

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.


Assuntos
Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Receptores Histamínicos H3 , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Feminino , Masculino , Ratos , Gravidez , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Ratos Sprague-Dawley , Etanol/farmacologia , Agonismo Inverso de Drogas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
18.
Front Cell Neurosci ; 18: 1379438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694537

RESUMO

Retinoic acid (RA), derived from vitamin A (retinol), plays a crucial role in modulating neuroplasticity within the adult brain. Perturbations in RA signaling have been associated with memory impairments, underscoring the necessity to elucidate RA's influence on neuronal activity, particularly within the hippocampus. In this study, we investigated the cell type and sub-regional distribution of RA-responsive granule cells (GCs) in the mouse hippocampus and delineated their properties. We discovered that RA-responsive GCs tend to exhibit a muted response to environmental novelty, typically remaining inactive. Interestingly, chronic dietary depletion of RA leads to an abnormal increase in GC activation evoked by a novel environment, an effect that is replicated by the localized application of an RA receptor beta (RARß) antagonist. Furthermore, our study shows that prolonged RA deficiency impairs spatial discrimination-a cognitive function reliant on the hippocampus-with such impairments being reversible with RA replenishment. In summary, our findings significantly contribute to a better understanding of RA's role in regulating adult hippocampal neuroplasticity and cognitive functions.

19.
Alcohol Clin Exp Res (Hoboken) ; 48(7): 1289-1301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789401

RESUMO

BACKGROUND: Cannabis is increasingly being legalized and socially accepted around the world and is often used with alcohol in social settings. We recently showed that in utero exposure to both substances can alter the density of parvalbumin-expressing interneurons in the hippocampus. Here we investigate the effects of in utero alcohol and cannabis exposure, alone or in combination, on somatostatin- and neuropeptide Y-positive (NPY) interneurons. These are separate classes of interneurons important for network synchrony and inhibition in the hippocampus. METHODS: A 2 (Ethanol, Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either ethanol or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry for somatostatin- and NPY-positive interneurons was performed in 50 µm tissue sections obtained at postnatal day 70. RESULTS: Exposure to THC in utero had region-specific and sex-specific effects on the density of somatostatin-positive interneurons in the adult rat hippocampus. A female-specific decrease in NPY interneuron cell density was observed in the CA1 region following THC exposure. Combined exposure to alcohol and THC reduced NPY neurons selectively in the ventral dentate gyrus hippocampal subfield. However, overall, co-exposure to alcohol and cannabis had neither additive nor synergistic effects on interneuron populations in other areas of the hippocampus. CONCLUSIONS: These results illustrate how alcohol and cannabis exposure in utero may affect hippocampal function by altering inhibitory processes in a sex-specific manner.

20.
Brain Sci ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790410

RESUMO

Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...