Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mater Today Bio ; 24: 100907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170028

RESUMO

Vital pulp preservation, which is a clinical challenge of aseptic or iatrogenic accidental exposure of the pulp, in cases direct pulp capping is the main technology. Human dental pulp stem cells (hDPSCs) play a critical role in pulp tissue repair, but their differentiative ability could be inhibited by the potential infection and inflammatory response of the exposed pulp. Therefore, inflammatory regulation and differentiated promotion of hDPSCs are both essential for preserving living pulp teeth. In this study, we constructed a functional dental pulp-capping hydrogel by loading cerium oxide nanoparticles (CNPs) and dentin matrix protein-1 (DMP1) into an injectable Fmoc-triphenylalanine hydrogel (Fmoc-phe3 hydrogel) as CNPs/DMP1/Hydrogel for in situ drugs delivery. With a view to long-term storage and release of CNPs (anti-inflammatory and antioxidant) to regulate the local inflammatory environment and DMP1 to promote the regeneration of dentin. Results of CCK-8, LDH release, hemolysis, and Live/Dead assessment of cells demonstrated the good biocompatibility of CNPs/DMP1/Hydrogel. The levels of alkaline phosphatase activity, quantification of the mineralized nodules, expressions of osteogenic genes and proteins demonstrated CNPs/DMP1/Hydrogel could protect the activity of hDPSCs' osteogenic/dentinogenic differentiation by reducing the inflammation response via releasing CNPs. The therapy effects were further confirmed in rat models, CNPs/DMP1/Hydrogel reduced the necrosis rate of damaged pulp and promoted injured pulp repair and reparative dentin formation with preserved vital pulps. In summary, the CNPs/DMP1/Hydrogel composite is an up-and-coming pulp-capping material candidate to induce reparative dentin formation, as well as provide a theoretical and experimental basis for developing pulp-capping materials.

2.
Contemp Clin Dent ; 14(3): 220-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075542

RESUMO

Background: Disinfection and dentin conditioning promote a favorable scenario for regenerative endodontic treatment. Clinical reports have confirmed periapical normality with high variability in disinfection protocols; nevertheless, the nature of neoformed tissue varied between them. Thus, this study aimed to present the impact of disinfection protocols on the clinical, histological, and molecular outcomes of regenerative endodontics procedures in permanent teeth with incomplete root formation. Materials and Methods: Eighteen teeth with incomplete root formation which required endodontic regenerative treatment were treated with different disinfection and conditioning agents and followed under clinical control. One case was evaluated under histological and immunohistochemical analyses. Results: Clinical outcomes revealed periapical repair in 17/18 cases. Histological and immunohistochemical analyses confirmed the neoformation of the dentinal matrix and its mineralization. Conclusions: Chemical conditioning could impact the outcome of regenerative endodontic procedures. The histological and immunohistochemical analysis showed the nature of the newly formed tissue that correlates with the clinical outcome.

3.
Acta Biomater ; 159: 156-172, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708852

RESUMO

Hard dental tissue pathologies, such as caries, are conventionally managed through replacement by tooth-colored inert biomaterials. Tissue engineering provides novel treatment approaches to regenerate lost dental tissues based on bioactive materials and/or signaling molecules. While regeneration in the form of reparative dentin (osteo-dentin) is feasible, the recapitulation of the tubular microstructure of ortho-dentin and its special features is sidelined. This study characterized in vitro, and in vivo human EDTA-treated, freeze-dried dentin matrices (HTFD scaffolds) conditioned with calcium phosphate nanoparticles (NPs) bearing plasmids encoding dentinogenesis-inducing factors (pBMP2/NPs or pDMP1/NPs). The uptake and transfection efficiency of the synthesized NPs on dental pulp stem cells (DPSCs) increased in a concentration- and time-dependent manner, as evaluated qualitatively by confocal laser microscopy and transmission electron microscopy, and quantitatively by flow cytometry, while, in parallel, cell viability decreased. HTFD scaffolds conditioned with the optimal transfectability-to-viability concentration at 4 µg Ca/mL of each of the pBMP2/NPs or pDMP1/NPs preserved high levels of cell viability, evidenced by live/dead staining in vitro and caused no adverse reactions after implantation on C57BL6 mice in vivo. HTFD/NPs constructs induced rapid and pronounced odontogenic shift of the DPSCs, as evidenced by relevant gene expression patterns of RunX2, ALP, BGLAP, BMP-2, DMP-1, DSPP by real-time PCR, and acquirement of polarized meta-mitotic phenotype with cellular protrusions entering the dentinal tubules as visualized by scanning electron microscopy. Taken together, HTFD/NPs constitute a promising tool for customized reconstruction of the ortho-dentin/odontoblastic layer barrier and preservation of pulp vitality. STATEMENT OF SIGNIFICANCE: In clinical dentistry, the most common therapeutic approach for the reconstruction of hard dental tissue defects is the replacement by resin-based restorative materials. Even modern bioactive materials focus on reparative dentinogenesis, leading to amorphous dentin-bridge formation in proximity to the pulp. Therefore, the natural microarchitecture of tubular ortho-dentin is not recapitulated, and the sensory and defensive role of odontoblasts is sidelined. This study approaches the reconstruction at the dentin-pulp interface using a construct of human treated dentin (HTFD) scaffold and plasmid-carrying nanoparticles (NPs) encoding dentinogenic factors (DMP-1 or BMP-2) with excellent in vitro and in vivo properties. As a future perspective, the HTFD/NPs constructs could act as bio-fillings for personalized reconstruction of the dentin-pulp interface.


Assuntos
Nanopartículas , Engenharia Tecidual , Humanos , Animais , Camundongos , Alicerces Teciduais/química , Diferenciação Celular , Células Cultivadas , Células-Tronco/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Fosfatos de Cálcio/metabolismo , Dentina , Plasmídeos , Polpa Dentária , Proteína Morfogenética Óssea 2/metabolismo
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-980080

RESUMO

Objective @#To study the effect of light-emitting diode (LED) red light on the osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) and its mechanism were discussed. @*Methods@#This study has been reviewed and approved by the Ethics Committee. hDPSCs were cultured by tissue block enzyme digestion. The proliferative capacity of hDPSCs was detected by the CCK-8 at days 1, 3, 5 and 7 under stimulation with 0, 1, 5 and 10 μg/mL lipopolysaccharide (LPS), and the LPS stimulatory concentration was screened. The CG group (mineralization induction), LPS+CG group, and LPS+CG+ (2, 4, 6, 8, and 10 J/cm2) LED red light groups were set. On day 7, alkaline phosphatase (ALP) staining and ALP activity were determined. Relative expression levels of the ALP, osterix (OSX), dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) genes were measured by qRT-PCR. On day 21, alizarin red staining and calcium nodule quantitative determination were performed to screen the best light energy. The LPS+CG group and LPS+CG+LED group (optimal energy) were set up, and the secretion and expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected by ELISAs on days 1, 3, 5 and 7. The relative expression levels of the extracellular regulated protein kinases 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and extracellular regulated protein kinases 5 (ERK5) proteins and their phosphorylated proteins in the MAPK signaling pathway were detected by Western blots. After the pathway was blocked, the relative expression levels of the ALP, OSX, DMP-1, and DSPP proteins after LED red light irradiation on day 7 were detected by Western blots.@*Results@# CCK-8 assays showed that the proliferation of hDPSCs induced by 10 μg/mL LPS was lower than that of the 0, 1, and 5 μg/mL groups on the 5th and 7th days (P<0.05), and 10 μg/mL was selected as the LPS stimulatory concentration in the follow-up experiment. ALP staining, ALP activity, gene expression levels of ALP, OSX, DMP-1 and DSPP and calcium nodule quantification in the LPS+CG+4 J/cm2 group were higher than those in the other treatment groups (P<0.05). 4 J/cm2 LED red light had the strongest ability to promote osteogenic/odontogenic differentiation and was used as the LED light energy density in subsequent experiments. ELISA showed that the secretion and expression levels of TNF-α and IL-1β in the LPS+CG+LED group were lower than those in the LPS+CG group on the 5th and 7th days (P<0.05). Western blot analysis showed that 4 J/cm2 LED red light promoted the expression levels of the p-ERK1/2, p-p38, p-JNK and p-ERK5 proteins. After the MAPK pathway was blocked, the expression levels of the ALP, OSX, DMP-1, and DSPP proteins in the LPS+CG+LED+U0126 (ERK1/2 inhibitor), SP600125 (JNK inhibitor), and BIX02189 (ERK5 inhibitor) groups were lower than those in the LPS+CG+LED group (P<0.001). The protein expression levels of ALP, OSX and DMP-1 in the LPS+CG+LED+SB203580 (p38 inhibitor) group were not significantly different from those in the LPS+CG+LED group (P>0.05).@*Conclusion@#In inflammatory conditions, LED red light promotes osteogenic/odontogenic differentiation of hDPSCs. This effect may be attributed to enhancement of the ERK1/2, JNK, and ERK5 signaling pathways, which reduces the production of the inflammatory cytokines TNF-α and IL-1β.

5.
Int J Implant Dent ; 8(1): 49, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316596

RESUMO

PURPOSE: To investigate the bone augmentation ability of demineralized bone sheets mixed with allogeneic bone with protein fractions containing bioactive substances and the interaction between coexisting bioactive substances and proteins. METHODS: Four types of demineralized bone sheets mixed with allogeneic bone in the presence or absence of bone proteins were created. Transplantation experiments using each demineralized bone sheet were performed in rats, and their ability to induce bone augmentation was analysed by microcomputed tomography images. Bioactive substances in bone proteins were isolated by heparin affinity chromatography and detected by the measurement of alkaline phosphatase activity in human periodontal ligament cells and dual luciferase assays. Noncollagenous proteins (NCPs) coexisting with the bioactive substances were identified by mass spectrometry, and their interaction with bioactive substances was investigated by in vitro binding experiments. RESULTS: Demineralized bone sheets containing bone proteins possessed the ability to induce bone augmentation. Bone proteins were isolated into five fractions by heparin affinity chromatography, and transforming growth factor-beta (TGF-ß) was detected in the third fraction (Hep-c). Dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and biglycan (BGN) also coexisted in Hep-c, and the binding of these proteins to TGF-ß increased TGF-ß activity by approximately 14.7% to 32.7%. CONCLUSIONS: Demineralized bone sheets are capable of inducing bone augmentation, and this ability is mainly due to TGF-ß in the bone protein mixed with the sheets. The activity of TGF-ß is maintained when binding to bone NCPs such as DMP1, MEPE, and BGN in the sheets.


Assuntos
Ligamento Periodontal , Fator de Crescimento Transformador beta , Ratos , Humanos , Animais , Microtomografia por Raio-X , Fator de Crescimento Transformador beta/metabolismo , Ligamento Periodontal/metabolismo , Heparina
6.
BMC Mol Cell Biol ; 23(1): 43, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175851

RESUMO

BACKGROUND: The cranial region is a complex set of blood vessels, cartilage, nerves and soft tissues. The reconstruction of cranial defects caused by trauma, congenital defects and surgical procedures presents clinical challenges. Our previous data showed that deficiency of the proteoglycan (PG) form of dentin matrix protein 1 (DMP1-PG) could lead to abnormal cranial development. In addition, DMP1-PG was highly expressed in the cranial defect areas. The present study aimed to investigate the potential role of DMP1-PG in intramembranous ossification in cranial defect repair. METHODS: Mouse cranial defect models were established by using wild- type (WT) and DMP1-PG point mutation mice. Microcomputed tomography (micro-CT) and histological staining were performed to assess the extent of repair. Immunofluorescence assays and real-time quantitative polymerase chain reaction (RT‒qPCR) were applied to detect the differentially expressed osteogenic markers. RNA sequencing was performed to probe the molecular mechanism of DMP1-PG in regulating defect healing. RESULTS: A delayed healing process and an abnormal osteogenic capacity of primary osteoblasts were observed in DMP1-PG point mutation mice. Furthermore, impaired inflammatory signaling pathways were detected by using RNA transcription analysis of this model. CONCLUSIONS: Our data indicate that DMP1-PG is an indispensable positive regulator during cranial defect healing.


Assuntos
Osteogênese , Proteoglicanas , Animais , Modelos Animais de Doenças , Proteínas da Matriz Extracelular , Camundongos , Osteoblastos , Proteoglicanas/genética , RNA , Microtomografia por Raio-X
7.
Bone ; 164: 116522, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981698

RESUMO

As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.


Assuntos
Condrócitos , Metiltransferases , Diferenciação Celular/genética , Condrócitos/metabolismo , Proteínas da Matriz Extracelular , Humanos , Hipertrofia , Metiltransferases/genética , Metiltransferases/metabolismo , Osteogênese/genética , Fosfoproteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Bone Joint Res ; 11(7): 465-476, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35787000

RESUMO

AIMS: There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. METHODS: A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. RESULTS: Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. CONCLUSION: The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465-476.

9.
Orthod Craniofac Res ; 25(1): 55-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33931954

RESUMO

OBJECTIVE: To investigate the effect of local injection of mineralized hybrid nanoparticles loading dentin matrix protein-1 (DMP-1) and matrix metalloproteinase-13 (MMP-13) complex (P-NPs) on the bone remodelling on atrophic alveolar ridges (AAR) ahead of orthodontic tooth movement (OTM). SETTINGS AND SAMPLE POPULATION: Four beagles were randomly allocated into Group C (OTM only) and Group NP (OTM with P-NPs injection). Experimental model of AAR was prepared in 8 mandibular quadrants after extraction of the third premolars (n = 4 per Group). MATERIALS AND METHODS: Reciprocal traction of the second and fourth premolars was performed towards AAR for 8 weeks. P-NPs were prepared by loading recombinant DMP-1 and MMP-13 complex into calcium carbonate (CaCO3 )-mineralized hybrid nanoparticles and injected at 0, 3 and 6 weeks. The rate of OTM and the bone remodelling characteristics were compared between Groups using fluorescent microscopic analysis and microstructural histomorphometric analysis. RESULTS: Group NP revealed higher bone volume fraction and higher trabecular ratio with lower bone mineral density than Group C on AAR area. Meanwhile, the root movement towards AAR was facilitated in Group NP representing more bodily movement than Group C. CONCLUSION: Non-invasive intervention of P-NPs injection suggested a clinical potential to facilitate translational movement into the AAR with sustaining woven bone-like microstructural environment.


Assuntos
Processo Alveolar , Nanopartículas , Animais , Cães , Dente Pré-Molar , Remodelação Óssea , Técnicas de Movimentação Dentária
10.
J Biomater Sci Polym Ed ; 33(2): 212-228, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547218

RESUMO

We evaluate the effects of the new Dentine matrix protein 1 (DMP-1) biomimetic system composed of phosphorylated polyamidoamine dendrimer (PAMAM-PO3H2) and carboxylated polyamidoamine dendrimer (PAMAM-COOH) on the mineralization of type I collagen fibrils. PAMAM-PO3H2 and PAMAM-COOH were observed to have the ability to induce internal and external mineralization of type I collagen fibrils in vitro through non-classical mineralization crystallization pathway, which has become a hopeful biomimetic system of biomimetic remineralization and demineralization of dentin type I collagen fibrils and has great potential in inducing biomimetic remineralization of demineralized dentin.


Assuntos
Biomimética , Dendrímeros , Colágeno Tipo I , Dentina , Poliaminas
11.
J Stroke Cerebrovasc Dis ; 30(6): 105760, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33845422

RESUMO

Dentin matrix protein 1 (DMP1) is an extracellular matrix phosphoprotein that is known to facilitate mineralization of collagen in bone and promote osteoblast/odontoblast differentiation. Blood-brain barrier (BBB) disruption is the major pathogenesis in secondary brain injury after intracerebral hemorrhage (ICH). This study aimed to investigate the expression pattern of DMP1 in the mouse brain and explore the role of DMP1 in BBB disruption and brain injury in a mouse model of ICH. Mice were subjected to autologous blood injection-induced ICH. Immunofluorescence staining, western blot analysis, neurobehavioral tests, brain water content measurements, Evans blue permeability assay, and transmission electron microscopy were performed. Small interfering RNA targeting DMP1 (DMP1 siRNA) was administered at 72 h prior to ICH. Results showed that DMP1 is expressed extensively in the mouse brain, and is upregulated in the ICH model. Administration of DMP1 siRNA effectively ameliorated BBB disruption, attenuated brain edema, and improved neurological function after ICH. Moreover, the expression of zonula occludens-1 (ZO-1) and occludin were upregulated, and matrix metalloproteinase-9 (MMP-9) was downregulated in the ICH model. DMP1 siRNA administration reversed the expression of ZO-1, occludin, and MMP-9. These results demonstrated that DMP1 upregulation plays an essential role in inducing BBB disruption and brain injury after ICH. The inhibition of DMP1 could be a potential therapeutic strategy for ICH treatment.


Assuntos
Barreira Hematoencefálica/metabolismo , Edema Encefálico/prevenção & controle , Hemorragia Cerebral/terapia , Proteínas da Matriz Extracelular/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Barreira Hematoencefálica/ultraestrutura , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ocludina/genética , Ocludina/metabolismo , RNA Interferente Pequeno/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
12.
Mol Cell Biochem ; 476(4): 1673-1690, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420898

RESUMO

Accumulating evidence suggests that specific non-coding RNAs exist in many types of malignant tissues, and are involved in cancer invasion and metastasis. However, little is known about the precise roles of non-coding RNAs in squamous cell carcinoma (SQCC) invasion and migration. Recently, the dentin matrix protein-1 (DMP-1) gene locus was identified as a transcriptionally active site in squamous cell carcinoma (SQCC) tissue and cells. However, it is unclear whether RNA associated with cell migration exist at the DMP-1 gene locus in SQCC cells. We identified a novel promoter-associated non-coding RNA in the antisense strand of DMP-1 gene locus, promoter-associated non-coding RNA (panRNA)-DMP-1, by the RACE method in SQCC cells and tissues, and characterized the functions of panRNA-DMP-1 in EGF-driven SQCC cell migration. The inhibition of endogenous panRNA-DMP-1 expression by specific siRNAs and exogenous over-expression of panRNA-DMP-1 resulted in increased and suppressed cellular migration toward EGF in SQCC cells, respectively, and nuclear expression of panRNA-DMP-1 was induced by EGF stimulation. Mechanistically, suppression of panRNA-DMP-1 expression increased EGFR nuclear localization upon EGF treatment and nuclear panRNA-DMP-1 physically interacted with EGFR, which was confirmed by RNA immunoprecipitation assay using a bacteriophage-delivered PP7 RNA labeling system. Furthermore, co-immunoprecipitation assay revealed that suppression of panRNA-DMP-1 stabilized EGFR interaction with STAT3, a known co-transcription factors of EGFR, to induce migratory properties in many cancer cells. Based on these findings, panRNA-DMP-1 is an EGFR-associating RNA that inhibits the EGF-induced migratory properties of SQCC possibly by regulating EGFR nuclear localization and EGFR binding to STAT3.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Fator de Crescimento Epidérmico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , RNA Antissenso/metabolismo , RNA Neoplásico/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Receptores ErbB/biossíntese , Receptores ErbB/genética , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , RNA Antissenso/genética , RNA Neoplásico/genética
13.
Injury ; 52 Suppl 2: S97-S100, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32654846

RESUMO

The prevalence of osteoporotic fracture is high due to global aging problem. Delayed and impaired healing in osteoporotic fractures increase the socioeconomic burden significantly. Through intensive animal and clinical research in recent years, the pathogenesis of osteoporotic fracture healing is unveiled, including decreased inflammatory response, reduced mesenchymal stem cells and deteriorated angiogenesis, etc. The enhancement of osteoporotic fracture healing is important in shortening hospitalization, thus reducing related complications. Mechanical stimulation is currently the most well-accepted approach for rehabilitation of osteoporotic fracture patients. Some new interventions providing mechanical signals were explored extensively in recent years, including vibration treatment, and osteoporotic fracture healing was found to respond very well to these signals. Vibration treatment could accelerate osteoporotic fracture healing with improved callus formation, mineralization and remodeling. However, the mechanism of how osteoporotic fracture bones sense mechanical signals and relay to bone formation remains unanswered. Osteocytes are the most abundant cells in bone tissues. Cumulative evidence confirm that osteocyte is a type of mechanosensory cell and shows altered morphology and reduced cell density during aging. Meanwhile, osteocytes serve as endocrine cells to regulate bone and mineral homeostasis. However, the contribution of osteocytes in osteoporotic fracture healing is largely unknown. A recent in vivo study was conducted to examine the morphological and functional changes of osteocytes after vibration treatment in an osteoporotic metaphyseal fracture rat model. The findings demonstrated that vibration treatment induced significant outgrowth of canaliculi and altered expression of various proteins (E11, DMP1, FGF23 and sclerostin), particularly osteocyte-specific dentin matrix protein 1 (DMP1) which was greatly increased. DMP1 may play a major role in relaying mechanical signals to bone formation, which may require further experiments to consolidate. Most importantly, vibration treatment significantly increased the mineralization and accelerated the osteoporotic fracture healing in metaphyseal fracture model. In summary, osteocyte is the major cell type to sense mechanical signals and facilitate downstream healing in osteoporotic fracture bone. Vibration treatment has good potential to be translated for clinical application to benefit osteoporotic fracture patients, while randomized controlled trials are required to validate its efficacy.


Assuntos
Fraturas por Osteoporose , Animais , Fator de Crescimento de Fibroblastos 23 , Consolidação da Fratura , Humanos , Osteócitos , Fraturas por Osteoporose/terapia , Ratos , Ratos Sprague-Dawley , Vibração/uso terapêutico
14.
Acta Biomater ; 120: 224-239, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130308

RESUMO

Osteoblasts and odontoblasts, are non-excitable cells and facilitate mass calcium transport during matrix mineralization. A sophisticated Ca2+ sensing mechanism is used to maintain Ca2+ homeostasis. STIM1 (Stromal interaction molecule 1) is a calcium sensor protein localized in the ER membrane and maintains calcium homeostasis by initiating the store-operated Ca2+ entry (SOCE) process, following store depletion. The role of STIM1 in dentin mineralization is yet to be elucidated. Therefore, transgenic DPSCs were generated in which overexpression or knockdown of STIM1 was achieved to study its function in matrix mineralization. Gene expression analysis and Alizarin Red staining assay demonstrated upregulation of genes involved in odontogenic differentiation and matrix mineralization with increased calcium deposition with STIM1 overexpression. Topology of the ECM examined by Field Emission Scanning Electron Microscopy (FESEM) showed the presence of large amounts of extracellular microvesicles with mineral deposits. Interestingly, silencing STIM1 resulted in fewer vesicles and less mineral deposits in the ECM. Analysis of the dentin-pulp complex of STIM1- deficient mice by micro-CT show reduced dentin thickness, malformed and highly porous alveolar bone, suggesting a cell intrinsic role for STIM1 in dentin mineralization. Confocal microscopy showed that DMP1-mediated depletion of store Ca2+ resulted in aggregation or "puncta-formation" of STIM1 at the plasma membrane indicative of a gating arrangement with Orai1 for Ca2+ influx. Together, our data provide evidence for an important role for STIM1 in dentin and alveolar bone mineralization by influencing intracellular Ca2+ oscillations that could provide signals for a wide array of cellular functions. STATEMENT OF SIGNIFICANCE: Calcium signaling and transport are fundamental to bone and dentin mineralization. Osteoblasts and odontoblasts transport large amounts of Ca2+ to the extracellular matrix. These cells maintain calcium homeostasis by spatially distributed calcium pumps and channels at the plasma membrane. STIM1 an ER Ca2+ sensor protein is an important component of the store-operated calcium entry (SOCE) process. In this study, we examined the role of STIM1 during the differentiation of dental pulp stem cells into functional odontoblasts and formation of mineralized dentin matrix. Stimulation of these cells with DMP1, a key regulatory protein in matrix mineralization, stimulates STIM1-mediated release of ER Ca2+ and SOCE activation. Silencing of STIM1 impairs signaling events, release of exosomes containing matrix proteins and matrix mineralization.


Assuntos
Cálcio , Vesículas Extracelulares , Animais , Cálcio/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Proteína ORAI1 , Molécula 1 de Interação Estromal/genética
15.
Tissue Eng Regen Med ; 17(5): 705-715, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32588341

RESUMO

BACKGROUND: Beta-tricalcium phosphate (ß-TCP) has been employed successfully as a synthetic graft material in maxillary sinus floor augmentation (MSFA) for placing dental implants. However, the lack of osteogenic and osteoinductive properties of this substitute invariably results in bone regeneration of low quality and quantity. The purpose of this study was to determine whether loading dentin matrix protein-1 (DMP1) gene-modified bone marrow mesenchymal stem cells (BMSCs) onto ß-TCP promoted bone regeneration and osteointegration of dental implants in MSFA of dogs. METHODS: BMSCs were transduced with a lentiviral vector overexpressing the DMP1 gene (Lenti-DMP1) and with a lentiviral vector overexpressing enhanced green fluorescent protein (Lenti-EGFP) in vitro and were loaded into ß-TCP scaffolds for autologous sinus grafting. Beagles received bilateral MSFA with four biomaterials (① Lenti-DMP1-transduced BMSCs/ß-TCP, ② Lenti-EGFP-transduced BMSCs/ß-TCP, ③ BMSCs/ß-TCP, ④ ß-TCP) and simultaneous implant placement at each sinus. Twelve weeks post operation, the maxillae were explanted, and every sinus was evaluated by radiographic observation, micro-CT and histological analysis. The osteogenic outcomes of bone regeneration and osseointegration were compared between the four groups. RESULTS: The sinuses grafted with Lenti-DMP1-transduced BMSCs/ß-TCP constructs presented a significantly higher increase in compact radiopaque area, higher local bone mineral densities, greater bone-implant contact and greater bone density when compared to other three groups. CONCLUSION: These results demonstrated that combinations of ß-TCP and DMP1 gene-modified BMSCs could be used to construct tissue-engineered bone to enhance mineralization of the regenerated bone and osseointegration of dental implants in MSFA.


Assuntos
Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Animais , Células da Medula Óssea , Dentina , Cães , Maxila/diagnóstico por imagem , Maxila/cirurgia , Seio Maxilar , Osseointegração
16.
Biochem Biophys Res Commun ; 526(4): 1125-1130, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32331833

RESUMO

The regeneration of bone defects is necessary for the successful healing. During the process of healing, callus plays crucial roles in providing the stable bone-reconstruction environment. The callus is consisted of various large molecules including collagen proteins, non-collagen proteins and proteoglycans (PGs), which are involved in maintaining mechanical strength and interacting with cytokines and grow factors in the injury sites. Recently, our data have found that the PG form of Dentin Matrix Protein 1 (DMP1-PG), which is a newly identified PG, was richly expressed in the bone defect sites. Previous researches have demonstrated the special role of DMP1-PG in chondrogenesis and endochondral ossification, however, the knowledge about the role of DMP1-PG in bone defect repair is still limited. To further detect the potential function of DMP1-PG in the defect healing, we employed a bone defect intramembranous ossification model using the glycosylation site mutant DMP1-PG (S89-G89, S89G-DMP1) mouse. The morphologic changes of calluses and abnormal expression levels of osteogenesis genes were displayed in the injury sites in S89G-DMP1 mice. In addition, impaired BMP-Smad signaling pathway was observed due to the deficiency of DMP1-PG. Collectively, our findings indicated that the DMP1-PG is one of key proteoglycans in the process of defect healing via regulating the osteogenesis.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteínas da Matriz Extracelular/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Calo Ósseo/patologia , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , Glicosilação , Masculino , Camundongos Transgênicos , Osteogênese , Proteoglicanas/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
17.
Front Genet ; 11: 233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256524

RESUMO

Several long non-coding RNAs (lncRNAs) have been reported regulate the expression of neighbor protein-coding genes at post-transcriptional, transcriptional and epigenetic levels. Dmp1 (Dentin matrix protein 1), encoding a non-collagenous extracellular matrix protein, plays an important role in dentin and bone mineralization. However, the transcriptional regulation of lncRNA on Dmp1 has not been reported. In this study, we identified a novel lncRNA named lnc-DMP1, which is near the Dmp1 gene region and undergoes remarkable changes during mandible development. lnc-DMP1 is co-localized and significantly expressed correlation with Dmp1 in embryonic and postnatal mouse mandibles. In MC3T3-E1 cells, lnc-DMP1 positively regulates DMP1 expression and skeletal mineralization. Furthermore, lnc-DMP1 induces the promoter activity of Dmp1 by modulating H3K27Ac enrichment in the Dmp1 promoter. In conclusion, our results indicate that lnc-DMP1 is a novel lncRNA near the Dmp1 gene region and regulates Dmp1 expression by modulating the H3K27 acetylation level of Dmp1 promoter.

18.
J Orthop Translat ; 21: 111-121, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32309136

RESUMO

BACKGROUND: Although emerging studies have provided evidence that osteocytes are actively involved in fracture healing, there is a general lack of a detailed understanding of the mechanistic pathway, cellular events and expression of markers at different phases of healing. METHODS: This systematic review describes the role of osteocytes in fracture healing from early to late phase. Literature search was performed in PubMed and Embase. Original animal and clinical studies with available English full-text were included. Information was retrieved from the selected studies. RESULTS: A total of 23 articles were selected in this systematic review. Most of the studies investigated changes of various genes and proteins expression patterns related to osteocytes. Several studies have described a constant expression of osteocyte-specific marker genes throughout the fracture healing cascade followed by decline phase with the progress of healing, denoting the important physiological role of the osteocyte and the osteocyte lacuno-canalicular network in fracture healing. The reports of various markers suggested that osteocytes could trigger coordinated bone healing responses from cell death and expression of proinflammatory markers cyclooxygenase-2 and interleukin 6 at early phase of fracture healing. This is followed by the expression of growth factors bone morphogenetic protein-2 and cysteine-rich angiogenic inducer 61 that matched with the neo-angiogenesis, chondrogenesis and callus formation during the intermediate phase. Tightly controlled regulation of osteocyte-specific markers E11/Podoplanin (E11), dentin matrix protein 1 and sclerostin modulate and promote osteogenesis, mineralisation and remodelling across different phases of fracture healing. Stabilised fixation was associated with the finding of higher number of osteocytes with little detectable bone morphogenetic proteins expressions in osteocytes. Sclerostin-antibody treatment was found to result in improvement in bone mass, bone strength and mineralisation. CONCLUSION: To further illustrate the function of osteocytes, additional longitudinal studies with appropriate clinically relevant model to study osteoporotic fractures are crucial. Future investigations on the morphological changes of osteocyte lacuno-canalicular network during healing, osteocyte-mediated signalling molecules in the transforming growth factor-beta-Smad3 pathway, perilacunar remodelling, type of fixation and putative biomarkers to monitor fracture healing are highly desirable to bridge the current gaps of knowledge.The translational potential of this article: This systematic review provides an up-to-date chronological overview and highlights the osteocyte-regulated events at gene, protein, cellular and tissue levels throughout the fracture healing cascade, with the hope of informing and developing potential new therapeutic strategies that could improve the timing and quality of fracture healing in the future.

19.
Front Physiol ; 11: 82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116788

RESUMO

Dentin, one of the four mineralized tissues of the craniofacial complex, forms sequentially from the deposition of an organic matrix to the nucleation of an inorganic phase within the matrix scaffold. Several promoters and inhibitors of mineralization support and regulate mineral nucleation. Clinical and experimental evidence suggest that dentin matrix protein 1 (DMP1) and phosphate-regulating neutral endopeptidase (PHEX) cooperate and are necessary for the formation of a cohesive dentin layer. The following study investigates the effect of PHEX loss-of-function on dentin matrix formation preceding mineralization. Using the Hyp mouse, an animal model for X-linked hypophosphatemia (XLH), we identified an irregular distribution of dentin extracellular matrix proteins. Likewise, dental pulp stem cells (DPSCs) from XLH patients exhibited altered proteolytic events with disrupted extracellular matrix deposition. Further differentiation assays demonstrated that XLH DPSCs exhibited impaired matrix mineralization. Overexpression of DMP1 in XLH DPSCs restored the irregular protein processing patterns to near-physiological levels. Our results support the hypothesis that hypophosphatemia resulting from PHEX loss-of-function affects the integrity of the organization of the dentin matrix and suggests that exogenous DMP1 can restore physiological processing of matrix proteins, in addition to its canonical role in mineralization.

20.
Stem Cells ; 38(6): 769-781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32053258

RESUMO

Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRß), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.


Assuntos
Osso e Ossos/fisiopatologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...