Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Small ; : e2402847, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845471

RESUMO

A large amount of radioactive waste is accumulated in the process of nuclear fuel preparation, causing serious pollution to the environment and abundant depleted uranium resources to be abandoned. One of the key issues affecting the development of nuclear energy is how to make full use of depleted uranium resources efficiently. Here, U element with unique coordination mode of 5f electron is spacer bonded to transition metal with 3d orbit through the adsorption and anchoring effect of MXene, thus U and Co dual doped MXene catalyst is constructed along with the comprehensive utilization of depleted uranium resources. The as-prepared U-Co/MXene catalyst demonstrates excellent overpotential of only 184 mV at -10 mA cm-2 and excellent stability up to 150 h, significantly surpassing the bare MXene substrate. Theoretical calculations indicate that the U and Co dual doping optimizes the electronic structure of MXene catalyst by forming the U-O-Co network, thereby improving the thermodynamics of H* adsorption during the catalytic transition state. This research opens up a new path for the recovery of depleted uranium resources and the development of functional actinide catalysts.

2.
Environ Toxicol ; 39(7): 3833-3845, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546377

RESUMO

Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.


Assuntos
Proteínas Hedgehog , Rim , Camundongos Knockout , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Células HEK293 , Transdução de Sinais/efeitos dos fármacos , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos , Urânio/toxicidade , Apoptose/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/toxicidade , Masculino , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
3.
J Food Prot ; 87(1): 100204, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070829

RESUMO

Iraq is a desert country with access to large river resources and an extensive aquifer, but these have already been overdrawn for domestic, industry and agriculture use. The diminished flow of the Tigris and Euphrates rivers has allowed seawater intrusion from the Persian Gulf 110 km up as far as Basra, the county's third largest city. In addition, water distribution systems are overloaded and wastewater treatment plants (WWTPs) need upgrading, and fresh water sources polluted by lack of sanitation, agricultural runoff, household and industrial waste, and including the irrigation of vegetables with sewage water, have led to episodes of bacterial, viral and parasitic diseases. Also, there have been increases in many types of cancer since the early 1990s, and based on clinical and epidemiological data, these increases could be attributable to exposure to depleted uranium in the environment arising from conflict in Iraq and particularly during the Iraqi War started 20 years ago. The population affected would like government action to reduce their health concerns, and policies that have been proposed for improving water availability and quality, as well as but have not been followed up sufficiently to tackle these, including increasing the capacity and efficiency of WWTP; promoting the most efficient irrigation techniques for the local growing conditions; reducing the use of chemical fertilizers and pesticides that can decrease the water quality; reducing saline intrusion challenges; building compact desalination units; constructing water storage facilities to address water scarcity challenges; and establishing public education plans for consumers to reduce the water demand during the hot season. Whether the government rises to the task remains to be seen. Also, do those countries that used the DU have a responsibility to remove or otherwise dispose of the fragments that remain?


Assuntos
Purificação da Água , Doenças Transmitidas pela Água , Humanos , Iraque , Agricultura , Qualidade da Água
4.
Natl Sci Rev ; 10(2): nwac144, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36950222

RESUMO

The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido µ 2-NH ligands and one nitrido µ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.

5.
Chem Biol Interact ; 372: 110356, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36681261

RESUMO

The kidney is the main organ affected by acute depleted uranium (DU) toxicity. The mechanism of nephrotoxicity induced by DU is complex and needs to be further explored. This study aimed to elucidate the function of mitochondrial dysfunction in nephrotoxicity generated by DU and confirm the latent mechanism. We verified that DU (2.5-10 mg/kg) caused mitochondrial dysfunction in male rat kidneys and decreased ATP content and the mitochondrial membrane potential. In addition, melatonin (20 mg/kg), as an antioxidant, alleviated DU-induced oxidative stress and mitochondrial dysfunction in male rats, further reducing kidney damage caused by DU. These results indicate that mitochondrial dysfunction plays a vital role in DU nephrotoxicity. When ethylmalonic encephalopathy 1 (ETHE1) was knocked down, DU-induced oxidative stress and mitochondrial dysfunction were increased, and renal injury was aggravated. When exogenous ETHE1 protein was applied to renal cells, the opposite changes were observed. We also found that ETHE1 knockdown increased the expression of NF-E2-related factor 2 (Nrf2), a vital oxidative stress regulator, and its downstream molecules heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). Nrf2 knockout also aggravated DU-induced oxidative stress, mitochondrial dysfunction, and kidney damage. In conclusion, DU causes oxidative stress and antioxidant defense imbalance in renal cells through the ETHE1/Nrf2 pathway, further causing mitochondrial dysfunction and ultimately leading to nephrotoxicity.


Assuntos
Nefropatias , Urânio , Ratos , Masculino , Animais , Urânio/toxicidade , Urânio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Estresse Oxidativo , Mitocôndrias/metabolismo
6.
ChemSusChem ; 16(5): e202201859, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36331078

RESUMO

Ni-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO2 hydrogenation to substituted natural gas (SNG; CH4 ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UOx stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process. At odds with the benchmark Ni/γ-Al2 O3 catalyst, the double action played by DU as a "thermal mass" and "dopant" for the nickel active phase unveiled the unique performance of Ni/UOx composites as CO2 methanation catalysts. The ability of the weakly radioactive ceramic (UOx ) to harvest waste heat for more useful purposes was demonstrated in practice within a rare example of a highly effective and long-term methanation operated under autothermal regime (i. e., without any external heating source). This finding is an unprecedented example that allows a real step-forward in the intensification of "low-temperature" methanation with an effective reduction of energy wastes. At the same time, the proposed catalytic technology can be regarded as an original approach to recycle and bring to a second life a less-severe nuclear by-product (DU), providing a valuable alternative to its more costly long-term storage or controlled disposal.

7.
ACS Earth Space Chem ; 6(5): 1321-1330, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36275877

RESUMO

Armor-penetrating projectiles and fragments of depleted uranium (DU) have been deposited in soils at weapon-tested sites. Soil samples from these military facilities were analyzed by inductively coupled plasma-optical emission spectroscopy and X-ray diffraction to determine U concentrations and transport across an arid ecosystem. Under arid conditions, both vertical transport driven by evaporation (upward) and leaching (downward) and horizontal transport of U driven by surface runoff in the summer were observed. Upward vertical transport was simulated and confirmed under laboratory-controlled conditions, to be leading to the surface due to capillary action via evaporation during alternating wetting and drying conditions. In the field, the 92.8% of U from DU penetrators and fragments remained in the top 5 cm of soil and decreased to background concentrations in less than 20 cm. In locations prone to high amounts of water runoff, U concentrations were reduced significantly after 20 m from the source due to high surface runoff. Uranium was also transported throughout the ecosystem via plant uptake and wild animal consumption between trophic levels, but with limited accumulation in edible portions in plants and animals.

8.
J Environ Radioact ; 255: 107011, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137359

RESUMO

We examine the historical changes of 236U/238U and 235U/238U in a sediment core collected in Tokyo Bay and elucidate the anthropogenic sources of uranium in the 1960s-2000s. Uranium-236 was detected in samples deposited in the 1960s-2000s, and the 236U/238U ratio of the sediment core shows peak values in the 1970s. The 235U/238U isotopic ratios in samples deposited in the early 1960s are almost identical to that of natural uranium, implying that the 236U might have originated from global fallout. A decrease in 235U/238U was observed in the late 1960s-2000s, suggesting that depleted uranium from nuclear fuel reprocessing increased the 236U/238U ratios in the sediment. The 236U/238U values in sediments from the 1980s-2000s were lower than those in the 1970s but considerably higher than those in the 1960s, suggesting that the main source of depleted uranium still remains around Tokyo Bay. Our results demonstrated that the depleted uranium released in the 1970s should be considered as an important end-member when using uranium isotopic ratios as environmental tracers in closed aquatic environments around industrial cities.


Assuntos
Monitoramento de Radiação , Urânio , Poluentes Radioativos da Água , Monitoramento de Radiação/métodos , Urânio/análise , Tóquio , Baías , Poluentes Radioativos da Água/análise
9.
Curr Res Toxicol ; 3: 100083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935915

RESUMO

Injuries suffered in armed conflicts often result in wounds with embedded metal fragments. Standard surgical guidance has been to leave fragments in place except under certain circumstances; meaning that individuals may carry these retained fragments for their lifetime. Because of advancements in weapon design and the use of improvised explosive devices, the list of metals that could be found in a wound is extensive. In most cases the toxicological properties of these metals when embedded in the body are not known. To assess the potential damage embedded metals may cause to surrounding tissue, we utilized a rodent model to investigate the effect of a variety of military-relevant metals on markers of oxidative damage. The metals tested included tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium. Herein we report our findings on creatine kinase activity, lipid and protein oxidation, total antioxidant capacity, and glutathione levels in gastrocnemius homogenates from Sprague-Dawley rats surgically implanted with metal pellets for periods up to 12 months. Not all embedded metals affected the measured markers equally. However, metal-associated effects were seen at various times for muscle and serum creatinine levels, protein oxidation, total antioxidant capacity, and glutathione levels. No metal-induced effects on lipid peroxidation were observed. Taken together, these data suggest that subtle oxidative damage may be occurring in the muscle surrounding an embedded metal and indicates the need for medical surveillance of those individuals wounded by metal shrapnel.

10.
Environ Monit Assess ; 194(8): 522, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737131

RESUMO

The activity concentrations of natural and artificial radionuclides (40K, 232Th, 226Ra, 238U, 137Cs) and concentrations of six heavy metals of interest (Cd, Cr, Cu, Ni, Pb and Zn) were investigated in 18 soil samples through soil depths (0-10, 10-20, 20-30, 30-40.40-50, 50-60 cm) at the three selected sites in the Hadzici. Since at this area ammunition with depleted uranium had been used during the NATO strikes in 1995, this study was conducted with the aim to assess the radiological and environmental health hazards. Radioactivity was determined by gamma spectrometry using HPGe and LEGE detectors and content of heavy metals by using a flame atomic absorption spectrometry. The correlation with distribution of the radionuclides and their activity concentrations through depths was found only at the site 1 for 40K, 232Th and 226Ra, where minimum/maximum activity concentrations for 40K were 814.42 Bq/kg/1039.48 Bq/kg, for 232Th 53.98 Bq/kg/74.12 Bq/kg and for 226Ra 50.32 Bq/kg/65.73 Bq/kg. Vertical distribution of 137Cs along 3 site profiles was used for distinction of cultivated and uncultivated soil. Using the activity ratio of 238U/226Ra and 235U/238U, the presence of depleted uranium (DU) was established at the site 3. Obtained Igeo values for determined heavy metals showed that all of three sites were unpolluted to moderately polluted. Pb content in all three sites showed correlation with concentration decreasing with increasing soil depth.


Assuntos
Metais Pesados , Poluentes do Solo , Urânio , Monitoramento Ambiental , Chumbo/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Espectrometria gama/métodos , Urânio/análise
11.
Sci Total Environ ; 810: 151292, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756899

RESUMO

We examine the temporal changes of 236U/238U and 235U/238U in atmospheric deposition from samples collected in Tokyo and Akita from 1963 to 1979 and elucidate the spatial distribution and historical changes of the anthropogenic sources of uranium in Japan. The 236U/238U ratio of atmospheric deposition in Tokyo peaked in 1963 and again during the 1970s, while the corresponding 235U/238U ratios of atmospheric deposition during the second peak period were lower than that of natural uranium. The 236U/238U ratios of atmospheric deposition in Akita samples peaked in 1963. The 235U/238U ratios in Akita samples were almost identical to that of the natural uranium ratios. These results suggest that the peak of 236U/238U in 1963 corresponds to what is recognized as representative for global fallout. The increase of 236U/238U and the decrease of 235U/238U observed simultaneously in the 1970s indicate that depleted uranium has subsequently been released into the environment around Tokyo. The cumulative deposition density of 236U for atmospheric fallout samples collected in Tokyo from 1968 to 1979 is an order of magnitude larger than that of the global fallout, suggesting that the depleted uranium in the 1970s is a major component of 236U in Tokyo and should be considered as an end-member when using 236U as an environmental tracer in the industrial city. This knowledge can facilitate future research using 236U as an effective environmental tracer.


Assuntos
Monitoramento de Radiação , Urânio , Cidades , Japão , Tóquio , Urânio/análise
12.
Int J Radiat Biol ; 97(7): 968-976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085887

RESUMO

PURPOSE: This study compared the effect of whole lung lavage (WLL) at different time-points early after exposure of the respiratory system to insoluble radioactive particles. MATERIALS AND METHODS: Forty adult beagles were randomized into a control group and the 3-h, 8-h, 24-h, and 48-h lavage groups (n = 8). A canine model of acute lung injury was established by spraying a depleted uranium (DU) suspension using a superfine fiber bronchoscope, at a dose of 20 mg/kg. The lavage groups were subjected to WLL at 3 h, 8 h, 24 h, and 48 h post-DU exposure, while the control group received no treatment after exposure. Measurement of U in serum was performed using inductively coupled plasma mass spectrometry; measurements in the lavage fluid and left lung tissue were performed using inductively coupled plasma atomic emission spectrometry. The color of the lavage fluid was analyzed using colorimetry, and shadow changes in the lung were observed using chest computed tomography (CT). RESULTS: The lavage groups showed similarly increasing trends for serum U levels from DU exposure to 3 and 7 days after exposure; however, these values were significantly lower than those in the control group (p < .01). The U content in the lavage fluid was significantly higher in the 3-h group than in the 8-h, 24-h, and 48-h groups (p < .01), while that in the 8-h group was markedly higher than those in the 24-h and 48-h groups (p < .05). The average clearance rate of DU in the lungs varied in the range of 0.63‒7.06%. The U content in the left lung tissue of each lavage group was significantly lower than that in the control group (p < .01), while the content in the 8-h, 24-h, and 48-h groups was significantly higher than that in the 3-h group (p < .05). The colorimetric score of the lavage fluid in the 3-h group was significantly lower than those in the 8-h, 24-h, and 48-h groups (p < .05). Chest CT showed different degrees of consolidation and ground glass shadow changes in all groups. The score of the left lung shadow volume in the 3-h group was significantly lower than in the control, 8-h, 24-h, and 48-h groups (p < .01), while the score in the 8-h group was significantly higher than those in the 48-h and control groups (p < .05). CONCLUSIONS: The best effect of WLL after exposure of the respiratory system to insoluble radioactive particles was achieved at 3 h, followed by 8 h; there was no difference in the effectiveness of lung lavage at 24 h and 48 h.


Assuntos
Lavagem Broncoalveolar/métodos , Pulmão/metabolismo , Urânio/isolamento & purificação , Animais , Cães , Pulmão/diagnóstico por imagem , Fatores de Tempo , Tomografia Computadorizada por Raios X
13.
Toxicol Rep ; 8: 463-480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717999

RESUMO

BACKGROUND: Wounds with embedded metal fragments are an unfortunate consequence of armed conflicts. In many cases the exact identity of the metal(s) and their long-term health effects, especially on the kidney, are not known. AIM OF STUDY: The aim of this study was to quantitate the urinary levels of metals solubilized from surgically implanted metal pellets and to assess the effect of these metals on the kidney using a battery of biomarker assays. MATERIALS AND METHODS: Using a rodent model system developed in our Institute to simulate embedded fragment injuries, eight metals considered likely components of an embedded fragment wound were individually implanted into the gastrocnemius muscle of male Sprague-Dawley rats. The rats were followed for 12 months post-implantation with urine collected prior to surgery then at 1-, 3-, 6-, 9-, and 12-months post-implantation to provide a within-subjects cohort for examination. Urinary metal levels were determined using inductively coupled plasma-mass spectrometry and urinary biomarkers assessed using commercially available kits to determine metal-induced kidney effects. RESULTS: With few exceptions, most of the implanted metals rapidly solubilized and were found in the urine at significantly higher levels than in control animals as early as 1-month post-implantation. Surprisingly, many of the biomarkers measured were decreased compared to control at 1-month post-implantation before returning to normal at the later time points. However, two metals, iron and depleted uranium, showed increased levels of several markers at later time points, yet these levels also returned to normal as time progressed. CONCLUSION: This study showed that metal pellets surgically implanted into the leg muscle of Sprague-Dawley rats rapidly solubilized with significant levels of the implanted metal found in the urine. Although kidney biomarker results were inconsistent, the changes observed along with the relatively low amounts of metal implanted, suggest that metal-induced renal effects need to be considered when caring for individuals with embedded metal fragment wounds.

14.
J Environ Radioact ; 228: 106511, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341752

RESUMO

Corrosion process was investigated of depleted uranium (DU) ammunition fragments buried for three years in aerobic soils continuously irrigated with water. The continuing corrosion process was triggered through formation of soluble uranyl oxyhydrate phases such as metaschoepite and becquerelite, which were identified by micro-Raman and X-ray diffraction spectroscopy. The soil was not amended by phosphates and, therefore, no uranyl phosphates were found as corrosion products on the DU surfaces by X-ray photoelectron spectroscopy. A speciation modelling at high temporal sequence (chronospeciation approach) indicated that the abundant Fe oxyhydroxides in the soil immobilized the U(IV) released through DU corrosion. During the first two years, therefore, only <10 mg of U(VI) was thus found in the leachates from the soil columns, even though >3 g of DU had been corroded. However, the degree of this immobilization was found to be controlled by the amount of dissolved inorganic and organic carbon (DIC and DOC) in the soil pore water providing for U(VI) complexation competing with surface complexation by the Fe hydroxides. The chronospeciation approach applied is useful to improve our understanding and ability to predict the long-term fate of U(VI) and the mechanisms controlling U(VI) mobility in soil contaminated with DU shells.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Urânio , Corrosão , Solo , Poluentes Radioativos do Solo/análise , Urânio/análise
15.
Toxicology ; 449: 152666, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359576

RESUMO

Depleted uranium (DU) is widely used in civil and military activities. The testis is one of the target organs of DU chronic toxicity. In this study, male SD rats were chronically exposed to DU by 3, 30, 300 mg U/kg through oral intake. After 6 months and 12 months of exposure, it was found that DU could lead to increased oxidative stress levels, decreased glutathione S-transferases (GSTs) expression, resulting in testicular injury and decreased serum testosterone (T) level in rats. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) expression increases with the increase of DU exposure dose. After upregulation of hnRNP A2/B1 expression, the GC-1 cell injury caused by DU is aggravated, suggesting that hnRNP A2/B1 may play an important role in the reproductive toxicity of DU. At the same time, 12 months after chronic oral exposure to DU, the expression level of cyclooxygenase-2 (COX-2) and proinflammatory factor prostaglandin E2 (PGE2) in testicular tissue were increased, and the level of hnRNP A2/B1 caused by DU was decreased by reactive oxygen scavenger N-acetylcysteine (NAC). As hnRNP A2/B1 is a COX-2 regulator, DU may lead to the upregulation of hnRNP A2/B1 expression through the increase of oxidative stress level in germ cells, which in turn leads to the increase of COX-2 and PGE2 level, and ultimately result in the reproductive toxicity. In this study, the regulation mechanism of the ROS-hnRNP A2/B1-COX-2 pathway on DU-induced reproductive damage in male rats was hypothesized, providing a new target for the prevention and treatment of chronic poisoning of DU.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodução/fisiologia , Transdução de Sinais/efeitos dos fármacos , Urânio/toxicidade , Administração Oral , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Transdução de Sinais/fisiologia , Urânio/administração & dosagem
16.
J Biochem Mol Toxicol ; 35(3): e22669, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33274826

RESUMO

The kidney is the target of the acute toxicity of depleted uranium (DU). However, the mechanism of DU-induced cytotoxicity is not clear. The study was to demonstrate the role of autophagy in DU-induced cytotoxicity and to determine the potential mechanism. We confirmed that after a 4-h exposure to DU, the autophagic vacuoles and the autophagy marker light chain 3-II in the human embryonic kidney 293 cells (HEK293) increased, and cytotoxicity decreased by abrogation of excessive autophagy using autophagy inhibitor. We also found activation of nucleus p53 and inhibiting mTOR pathways in DU-treated HEK293 cells. Meanwhile, ethylmalonic encephalopathy 1 (ETHE1) decreased as the exposure dose of DU increased, with increasing autophagy flux. We suggested that by reducing ETHE1, activation of the p53 pathway, and inhibiting mTOR pathways, DU might induce overactive autophagy, which affected the cytotoxicity. This study will provide a novel therapeutic target for the treatment of DU-induced cytotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Citotoxinas/toxicidade , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Urânio/toxicidade , Células HEK293 , Humanos
17.
J Environ Radioact ; 222: 106357, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32755761

RESUMO

Depleted uranium (DU) is primarily used for DU bombs and DU tanks in the military. Aerosol inhalation is considered the primary route of DU exposure. Although laboratory tests have confirmed that inhalation of DU aerosol can cause lung, kidney, and other organ damage, epidemiological studies have found no conclusive evidence that persons in areas with prolonged exposure to DU-containing bombs are affected. After the body inhaled DU aerosols, we first clear the insoluble DU through whole-lung lavage (WLL). Then we eliminate the soluble uranium by the chelating agent. Besides, reducing DU damage to tissues and cells through drugs is also an important treatment method. In future research, emphasis should be placed on the damage mechanism of DU aerosol, the laboratory and clinical research of DU chelating agents, the research on the combination of DU chelating agent and WLL, and the research and development of new drugs to prevent DU damage.


Assuntos
Poluentes Radioativos do Ar , Militares , Lesões por Radiação , Monitoramento de Radiação , Urânio , Aerossóis , Poluentes Radioativos do Ar/toxicidade , Humanos , Lesões por Radiação/terapia , Urânio/toxicidade
18.
Mil Med ; 185(1-2): e239-e243, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31322664

RESUMO

INTRODUCTION: In 2012, Norwegian news media reported on cases of brain cancer among Norwegian peacekeeping troops who served in Kosovo, allegedly caused by exposure to depleted uranium fired during airstrikes before the peacekeepers arrived in 1999. A first study followed 6076 military men and women with peacekeeping service in Kosovo during 1999-2011 for cancers and deaths throughout 2011. The study did not support to the idea that peacekeeping service in Kosovo could lead to increased risk of brain cancer or other cancers. However, the average time of follow-up (10.6 years) was rather short for cancer development; therefore the aim of the present study was to evaluate cancer risk and general mortality in an updated cohort after 5 years of additional follow-up. MATERIALS AND METHODS: The updated cohort consisted of 6,159 peacekeepers (5,884 men and 275 women) who served in Kosovo during 1999-2016 and were followed for cancer incidence and mortality from all causes combined throughout 2016. We calculated standardized incidence ratios (SIR) for cancer and standardized mortality ratios (SMR) from national population rates. Poisson regression was used to assess the effect of length of service (<1 year vs. ≥1 year) on cancer risk. RESULTS: We observed 149 cancer cases and 75 deaths in the updated cohort. Observed cancer incidence did not exceed national rates. In men, the SIR for brain cancer was 0.73 (95% confidence interval (CI) 0.32-1.44), based on eight cases, while the risk of colon cancer was lowered (SIR = 0.14, 95% CI 0.00-0.79). The Poisson regression showed no effect of service duration on all-site cancer incidence. Mortality from all causes combined was lower than expected (SMR = 0.62, 95% CI 0.49-0.78) and in accordance with a "healthy soldier effect". CONCLUSION: The extended follow-up did not give support to the suggestion that peacekeeping service in Kosovo could lead to increased risk of cancer.


Assuntos
Militares , Neoplasias , Feminino , Seguimentos , Humanos , Incidência , Kosovo , Masculino , Neoplasias/epidemiologia , Noruega/epidemiologia , Risco
19.
Environ Pollut ; 256: 113070, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757565

RESUMO

In Iraq, war contamination is the result of dispensed bombs, bullets, detonation of chemical and conventional weapons, and burn-pit emissions by US bases. Increases in congenital anomalies were reported from Iraqi cities post-2003. These cities were heavily bombed and encircled by US bases with burn-pits. Thorium is a radioactive compound and a direct depleted-uranium decay-product. Radioactive materials, including depleted uranium, are routinely stored in US bases and they have been shown to leak into the environment. We conducted a case-control study to investigate associations of residential proximity to Tallil Air Base, a US military base near Nasiriyah, as well as levels of uranium and thorium in hair and deciduous teeth with congenital anomalies. The study was based on a sample of 19 cases and 10 controls who were recruited during late Summer and early Fall of 2016. We developed mixed effects logistic regression models with village as the random effect, congenital anomaly as the outcome and distance to the US base and hair metal levels (one at a time) as the predictor variable, controlling for child's age, sex and paternal education. We also explored the mediation of the association between proximity to the base and congenital anomalies by hair metal levels. We found an inverse association between distance to Tallil Air Base and risk of congenital anomalies and hair levels of thorium and uranium. The results of our mediation analyses were less conclusive. Larger studies are necessary to understand the scope of war contamination and its impact on congenital anomalies in Iraq.


Assuntos
Anormalidades Congênitas/epidemiologia , Poluição Ambiental/análise , Cabelo/química , Instalações Militares , Tório/análise , Urânio/análise , Estudos de Casos e Controles , Criança , Poluição Ambiental/efeitos adversos , Humanos , Lactente , Iraque , Probabilidade , Distribuição Aleatória , Risco , Tório/toxicidade , Estados Unidos , Urânio/toxicidade , Armas
20.
Environ Res ; 181: 108927, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796256

RESUMO

Indications of proximal tubule effects have been observed in recent surveillance study of Gulf War veterans exposed to depleted uranium (DU). This gives some support for the suspicion that DU may represent one of the causes for the so-called Persian Gulf syndrome. Proposed effects may be especially harmful if the toxicity hits the mitochondrial DNA since the mitochondria lack the nucleotide excision repair mechanism, which is needed for repairing bulky adducts that have been associated with DU. It is a plausible working hypothesis that a significant part of the symptoms from various organs, which have been observed among veterans from Gulf War 1 and that have been grouped under the name of the Persian Gulf syndrome, may be explained as a consequence of mitochondrial DNA damage in various cell types and organs. Interpretation of observations, on military personnel and civilians after Gulf War 1, is associated with difficulties because of the abundance of potential confounding factors. The symptoms observed on veterans from Gulf War 1 may be attributed to a multiplicity of substances functioning directly or indirectly as mitochondrial mutagens. A concise analysis of the cascade of toxic effects initiated by DU exposure in the human body is the subject of this article.


Assuntos
Militares , Síndrome do Golfo Pérsico , Urânio , Veteranos , Guerra do Golfo , Humanos , Exposição Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...