Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.144
Filtrar
1.
Sci Rep ; 14(1): 18182, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107429

RESUMO

Ecosystems in winter cities are complex and fragile, experiencing significant changes due to climate variations and human construction activities. Previous studies on the assessment of overall ecosystem service value (ESV) and ecological risk index (ERI) in winter cities are scarce. In this study, we constructed ESV and ERI measurement models using land use data in 2000, 2010, and 2020 using the improved value per unit area factor method and the landscape pattern index method, respectively, to reveal their spatial and temporal change characteristics. Geographic detectors were used to explore the driving roles of natural and artificial factors on the changes of ESV and ERI. The combination in ESV and ERI can then provide a more quantitative and accurate basis for policy decisions, identify priority areas for urban ecological restoration, and reduce the risk to ecosystems. The results of the study show that the total ESV of Shenyang city decreased from 273.97 × 108 CNY to 270.38 × 108 CNY during 2000-2020. Although the decrease is not large, the ESV changes structurally with the advancement of urbanization. During the 20 years, the construction land with the lowest ecological service function continues to expand, increasing by 354 km2, the grassland decreased by 215.9 km2, and the arable land decreased by 196.6 km2. The ecological service function of the water area is the strongest, with an increase of 51.3 km2 in the water area, ensuring that there is no significant decline in ESV. The size of the ERI is Very high, High, and Medium value zones remained relatively stable, while the size of the Very Low-value zone decreased by 12.78% and the size of the Low-value zone increased by 13.21%. The interaction factors that contributed most to the changes in ESV and ERI were annual evapotranspiration (EVP)/ Normalized Difference Vegetation Index (NDVI) and Annual sunshine hours (SSD)/ Digital Elevation Model (DEM) , respectively. There was a spatial correlation between ESV and ERI. The areas with the highest ESV supply capacity and at the same time facing severe ecological risks to the landscape pattern are distributed in the northeastern hilly lands. This area should be prioritized to develop planning and control measures to prevent further erosion of forest lands and grasslands and reduce ecological risks. These results provide a theoretical basis for ensuring ecological security and sustainable development in winter cities.

2.
Med Phys ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177300

RESUMO

A National Institutes of Health (NIH) and U.S. Department of Energy (DOE) Office of Science virtual workshop on shared general topics was held in July of 2021 and reported on in this publication in January of 2023. Following the inaugural 2021 joint meeting representatives from the DOE Office of Science and NIH met to discuss organizing a second joint workshop that would concentrate on radiation detection to bring together teams from both agencies and their grantee populations to stimulate collaboration and efficiency. To meet this scientific mission within the NIH and DOE radiation detection space, the organizers assembled workshop sessions covering the state-of-the-art in cameras, detectors, and sensors for radiation external and internal (diagnostic and therapeutic) to human, data acquisition and electronics, image reconstruction and processing, and the application of artificial intelligence. NIH and DOE are committed to continuing the process of convening a joint workshop every 12-24 months. This Special Report recaps the findings of this second workshop. Beyond showing only the innovations and areas of success, important gaps in our knowledge were defined and presented. We summarize by defining four areas of greatest opportunity and need that emerged from the unique, dynamic dialogue the in-person workshop provided the attendees.

3.
J Environ Radioact ; 278: 107511, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096838

RESUMO

One of the major demands in gamma spectrometry of environmental samples is the accurate determination of activity concentration of present radionuclides (naturally occurring and those of artificial origin), due to the fact they are commonly of relatively low content. Thus, all these measurements have in common that the detection limit, in the spectral region of interest should be as low as possible. For this reason, the construction of a good passive, as well as active shield requires a detailed knowledge of the origin of the background events in the absence of an environmental sample. In addition, an analysis of the impact on detection limits due to the presence of the sample itself is also important. Also, the knowledge of the statistical basics for low-level counting is helpful to enable the best choice of detector characteristics (relative efficiency, peak to Compton ratio, resolution), measuring time, and required level of precaution against the different background contributions. In this paper, the background spectra of several gamma spectroscopy systems (with passive and active veto shields) are analyzed and discussed, regarding their capabilities for measurements of environmental samples. Furthermore, various environmental samples are analyzed by low-level gamma spectrometry, including the sample measurements in the presence of an active veto shield against cosmic-ray muons. The disturbance of radioactive equilibrium between members of radioactive series in the samples is commented on, together with the possibility of use of certain gamma lines (including their interference and the corresponding intensities) for radionuclide activities determination.


Assuntos
Raios gama , Monitoramento de Radiação , Espectrometria gama , Monitoramento de Radiação/métodos , Espectrometria gama/métodos
4.
J Appl Clin Med Phys ; : e14486, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137008

RESUMO

PURPOSE: The time structures of proton spot delivery in proton pencil beam scanning (PBS) radiation therapy are essential in many clinical applications. This study aims to characterize the time structures of proton PBS delivered by both synchrotron and synchrocyclotron accelerators using a non-invasive technique based on scattered particle tracking. METHODS: A pixelated semiconductor detector, AdvaPIX-Timepix3, with a temporal resolution of 1.56 ns, was employed to measure time of arrival of secondary particles generated by a proton beam. The detector was placed laterally to the high-flux area of the beam in order to allow for single particle detection and not interfere with the treatment. The detector recorded counts of radiation events, their deposited energy and the timestamp associated with the single events. Individual recorded events and their temporal characteristics were used to analyze beam time structures, including energy layer switch time, magnet switch time, spot switch time, and the scanning speeds in the x and y directions. All the measurements were repeated 30 times on three dates, reducing statistical uncertainty. RESULTS: The uncertainty of the measured energy layer switch times, magnet switch time, and the spot switch time were all within 1% of average values. The scanning speeds uncertainties were within 1.5% and are more precise than previously reported results. The measurements also revealed continuous sub-milliseconds proton spills at a low dose rate for the synchrotron accelerator and radiofrequency pulses at 7 µs and 1 ms repetition time for the synchrocyclotron accelerator. CONCLUSION: The AdvaPIX-Timepix3 detector can be used to directly measure and monitor time structures on microseconds scale of the PBS proton beam delivery. This method yielded results with high precision and is completely independent of the machine log files.

5.
J Low Temp Phys ; 216(1-2): 175-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070764

RESUMO

Microwave Kinetic Inductance Detectors (MKIDs) combine significant advantages for photon detection like single photon counting, single pixel energy resolution, vanishing dark counts and µs time resolution with a simple design and the feasibility to scale up into the megapixel range. But high quality MKID fabrication remains challenging as established superconductors tend to either have intrinsic disadvantages, are challenging to deposit or require very low operating temperatures. As alternating stacks of thin Ti and TiN films have shown very impressive results for far-IR and sub-mm MKIDs, they promise significant improvements for UV, visible to near-IR MKIDs as well, especially as they are comparably easy to fabricate and control. In this paper, we present our ongoing project to adapt proximity coupled superconducting films for photon counting MKIDs. Some of the main advantages of Ti/TiN multilayers are their good control of critical temperature (T c) and their great homogeneity of T c even over large wafers, promising improved pixel yield especially for large arrays. We demonstrate the effect different temperatures during fabrication have on the detector performance and discuss excess phase noise observed caused by surface oxidization of exposed Si. Our first prototypes achieved photon energy resolving powers of up to 3.1 but turned out to be much too insensitive. As the work presented is still in progress, we also discuss further improvements planned for the near future.

6.
J Med Imaging (Bellingham) ; 11(Suppl 1): S12805, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072221

RESUMO

Purpose: Photon counting CT (PCCT) provides spectral measurements for material decomposition. However, the image noise (at a fixed dose) depends on the source spectrum. Our study investigates the potential benefits from spectral optimization using fast kV switching and filtration to reduce noise in material decomposition. Approach: The effect of the input spectra on noise performance in both two-basis material decomposition and three-basis material decomposition was compared using Cramer-Rao lower bound analysis in the projection domain and in a digital phantom study in the image domain. The fluences of different spectra were normalized using the CT dose index to maintain constant dose levels. Four detector response models based on Si or CdTe were included in the analysis. Results: For single kV scans, kV selection can be optimized based on the imaging task and object size. Furthermore, our results suggest that noise in material decomposition can be substantially reduced with fast kV switching. For two-material decomposition, fast kV switching reduces the standard deviation (SD) by ∼ 10 % . For three-material decomposition, greater noise reduction in material images was found with fast kV switching (26.2% for calcium and 25.8% for iodine, in terms of SD), which suggests that challenging tasks benefit more from the richer spectral information provided by fast kV switching. Conclusions: The performance of PCCT in material decomposition can be improved by optimizing source spectrum settings. Task-specific tube voltages can be selected for single kV scans. Also, our results demonstrate that utilizing fast kV switching can substantially reduce the noise in material decomposition for both two- and three-material decompositions, and a fixed Gd filter can further enhance such improvements for two-material decomposition.

7.
Appl Radiat Isot ; 212: 111430, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38996508

RESUMO

A custom Monte Carlo (MC) computer model was developed to simulate thermal neutron absorption in, and subsequent photon and electron emission from, natural Gd with a view to using the material as a neutron conversion layer for neutron detectors. The MC code also modelled photon and electron detection with two dissimilar detectors: a thick (500 µm) single crystal diamond detector; and a thin (5.15 µm) commercial off the shelf (COTS) 4H-SiC photodiode detector. The detectors' quantum detection efficiencies (QE) for hard X-rays and γ-rays were relatively low in comparison to their QE for electrons, thus making it possible to collect electron spectra from the Gd layer neutron conversion products which were not overwhelmed by photon emissions from the Gd. The MC code was utilised to determine the optimal thickness of Gd for the efficient detection of a thermal neutron flux. These radiation hard and spectroscopic detectors paired with natural Gd could find utility as robust and compact thermal neutron detectors for nuclear science and engineering, space science, and other applications.

8.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000949

RESUMO

In this paper, we report on a systematic study of a soft X-ray Gas Electron Multiplier (GEM) detector built with aluminium-clad kapton GEM foils. The primary objective of this research is to comprehend the performance of this type of detector when irradiated with soft energy photons. The results are analysed and discussed with a particular focus on the long-term detector stability, as well as its gas gain and energy resolution uniformity across the detector area. Presented results lead us to the conclusion that the aluminium based GEM detector is a promising device to suppress the X-ray Fluorescence (XRF) background, simultaneously providing very good stability during long-term measurement campaigns.

9.
Diagnostics (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001321

RESUMO

Single photon emission tomography/computed tomography (SPECT/CT) is a mature imaging technology with a dynamic role in the diagnosis and monitoring of a wide array of diseases. This paper reviews the technological advances, clinical impact, and future directions of SPECT and SPECT/CT imaging. The focus of this review is on signal amplifier devices, detector materials, camera head and collimator designs, image reconstruction techniques, and quantitative methods. Bulky photomultiplier tubes (PMTs) are being replaced by position-sensitive PMTs (PSPMTs), avalanche photodiodes (APDs), and silicon PMs to achieve higher detection efficiency and improved energy resolution and spatial resolution. Most recently, new SPECT cameras have been designed for cardiac imaging. The new design involves using specialised collimators in conjunction with conventional sodium iodide detectors (NaI(Tl)) or an L-shaped camera head, which utilises semiconductor detector materials such as CdZnTe (CZT: cadmium-zinc-telluride). The clinical benefits of the new design include shorter scanning times, improved image quality, enhanced patient comfort, reduced claustrophobic effects, and decreased overall size, particularly in specialised clinical centres. These noticeable improvements are also attributed to the implementation of resolution-recovery iterative reconstructions. Immense efforts have been made to establish SPECT and SPECT/CT imaging as quantitative tools by incorporating camera-specific modelling. Moreover, this review includes clinical examples in oncology, neurology, cardiology, musculoskeletal, and infection, demonstrating the impact of these advancements on clinical practice in radiology and molecular imaging departments.

10.
Data Brief ; 55: 110659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39044906

RESUMO

Jataí is a pollinator of some crops; therefore, its sustainable management guarantees quality in the ecosystem services provided and implementation in precision agriculture. We acquired videos of natural and artificial hives in urban and rural environments with a camera positioned at the hive entrance. In this way, we obtained videos of the entrance of several colonies for multiple bee tracking and removed images from the videos for bee detectors. This data, their respective labels, and metadata make up the dataset. The dataset displays potential for utilization in computer vision tasks such as comparative studies of deep learning models. They can also integrate intelligent monitoring systems for natural and artificial hives.

11.
ACS Appl Mater Interfaces ; 16(29): 38252-38259, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38993025

RESUMO

Metal halide perovskites have demonstrated superior sensitivity, lower detection limits, stability, and exceptional photoelectric properties in comparison to existing commercially available X-ray detector materials, showing their potential for shaping the next generation of X-ray detectors. Nevertheless, significant challenges persist in the seamless integration of these materials into pixelated array sensors for large-area X-ray direct detection imaging. In this article, we propose a strategy for fabricating large-scale array devices using a double-sided bonding process. The approach involves depositing a wet film on the surface of a thin-film transistor substrate to establish a robust bond between the substrate and δ-CsPbI3 wafer via van der Waals force, thereby facilitating area-array imaging. Additionally, the freestanding polycrystalline δ-CsPbI3 wafer demonstrated a competitive ultralow detection limit of 3.46 nGyair s-1 under 50 kVP X-ray irradiation, and the δ-CsPbI3 wafer still maintains a stable signal output (signal current drift is 3.5 × 10-5 pA cm-1 s-1 V-1) under the accumulated radiation dose of 234.9 mGyair. This strategy provides a novel perspective for the industrial production of large-area X-ray flat panel detectors utilizing perovskites and their derivatives.

12.
ACS Appl Mater Interfaces ; 16(29): 38799-38809, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39004899

RESUMO

The development of perovskite direct X-ray detectors shows potential for advancing medical imaging and industrial inspection precision. To ensure the optimal energy conversion efficiency of X-rays for reducing radiation doses, it is necessary for perovskites with thicknesses reaching hundreds of micrometers or even several millimeters to be utilized. However, the nonlinear current response becomes uncertain with such high thicknesses. For instance, the prevailing theory regarding the rapid trapping and release of charges by shallow-level defects falls short in explaining the nonlinear current response observed in high-quality single-crystal samples. Moreover, a significant nonlinear current response can degrade the detection performance. Here, we elucidate peculiar parasitic and drift capacitance-induced nonlinear current responses in perovskites, which arise from bulk structural deficiencies and interface junction width variation in addition to shallow-level defects. Both theoretical analysis and experimental findings demonstrate the effective suppression of nonlinear current responses by establishing bulk heterojunctions and refining interface junctions. Consequently, we have successfully developed highly linear current-responsive detectors based on polycrystalline MAPbI3 thick films. Notably, these detectors achieve a record sensitivity of 2.3 × 104 µC·Gyair-1·cm-2 under 100 kVp X-ray irradiation with a low bias of 0.1 V/µm, enabling enduring and high-resolution X-ray imaging for high-density objects. Successful fabrication and testing of a 64 × 64-pixel flat-panel prototype detector affirm the widespread applicability of these strategies in rectifying nonlinear current responses in perovskite-based X-ray detectors.

13.
ACS Appl Mater Interfaces ; 16(29): 38283-38289, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011746

RESUMO

Bismuth-based halide perovskites have shown great potential for direct X-ray detection, attributable to their nontoxicity and advantages in detection sensitivity and spatial resolution. However, the practical application of such materials still faces the critical challenge of combining both high sensitivity and low detection limits. Here, we report a new type of zero-dimensional (0D) perovskite (HIS)BiI5 (1, where HIS2+ = histamine) with high sensitivity and a low detection limit. Structurally, the strong N-H···I hydrogen bonds between HIS2+ cations and inorganic frameworks enhance the rigidity of the structure and diminish the intermolecular distance between adjacent inorganic [Bi2I10]4- dimers. By virtue of such structural merits, single crystal 1 exhibits excellent physical properties perpendicular to both the (001) and (010) faces. Perpendicular to the (010) face, 1 exhibited a high electrical resistivity (2.31 × 1011 Ω cm) and a large carrier mobility-lifetime product (µτ) (2.81 × 10-4 cm2 V-1) under X-ray illumination. Benefiting from these superior physical properties, it demonstrates an excellent X-ray detection capability with a sensitivity of approximately 103 µC Gyair-1 cm-2 and a detection limit of 36 nGyair s-1 in both directions perpendicular to the (001) and (010) crystal faces. These results provide a promising candidate material for the development of new, lead-free, high-performance X-ray detectors.

14.
Biomed Phys Eng Express ; 10(5)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968931

RESUMO

Quantitative contrast-enhanced breast computed tomography (CT) has the potential to improve the diagnosis and management of breast cancer. Traditional CT methods using energy-integrated detectors and dual-exposure images with different incident spectra for material discrimination can increase patient radiation dose and be susceptible to motion artifacts and spectral resolution loss. Photon Counting Detectors (PCDs) offer a promising alternative approach, enabling acquisition of multiple energy levels in a single exposure and potentially better energy resolution. Gallium arsenide (GaAs) is particularly promising for breast PCD-CT due to its high quantum efficiency and reduction of fluorescence x-rays escaping the pixel within the breast imaging energy range. In this study, the spectral performance of a GaAs PCD for quantitative iodine contrast-enhanced breast CT was evaluated. A GaAs detector with a pixel size of 100µm, a thickness of 500µm was simulated. Simulations were performed using cylindrical phantoms of varying diameters (10 cm, 12 cm, and 16 cm) with different concentrations and locations of iodine inserts, using incident spectra of 50, 55, and 60 kVp with 2 mm of added aluminum filtration and and a mean glandular dose of 10 mGy. We accounted for the effects of beam hardening and energy detector response using TIGRE CT open-source software and the publicly available Photon Counting Toolkit (PcTK). Material-specific images of the breast phantom were produced using both projection and image-based material decomposition methods, and iodine component images were used to estimate iodine intake. Accuracy and precision of the proposed methods for estimating iodine concentration in breast CT images were assessed for different material decomposition methods, incident spectra, and breast phantom thicknesses. The results showed that both the beam hardening effect and imperfection in the detector response had a significant impact on performance in terms of Root Mean Squared Error (RMSE), precision, and accuracy of estimating iodine intake in the breast. Furthermore, the study demonstrated the effectiveness of both material decomposition methods in making accurate and precise iodine concentration predictions using a GaAs-based photon counting breast CT system, with better performance when applying the projection-based material decomposition approach. The study highlights the potential of GaAs-based photon counting breast CT systems as viable alternatives to traditional imaging methods in terms of material decomposition and iodine concentration estimation, and proposes phantoms and figures of merit to assess their performance.


Assuntos
Arsenicais , Neoplasias da Mama , Mama , Meios de Contraste , Gálio , Iodo , Mamografia , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X , Gálio/química , Humanos , Feminino , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/química , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Simulação por Computador , Método de Monte Carlo , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação
15.
Talanta ; 277: 126359, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852340

RESUMO

Characterization of aminoglycoside antibiotics like ribostamycin is important due to the complex composition and common toxic impurities. Aerosol detectors are often employed for determination of these non-absorbent analytes. In this work, a robust and cost-effective method was developed for simultaneous detection of ribostamycin and its related substances using high-performance liquid chromatography (HPLC) with a relative new aerosol detector named nano-quantity analyte detector (NQAD). With the introduction of less toxic but more compatible ion-pairs pentafluoropropionic acid (PFPA) and trifluoroacetic acid (TFA) in the eluent, an optimized separation effect was achieved. Compared with the other two aerosol detectors namely ELSD (evaporative light scattering detector) and CAD (charged aerosol detector), method verification and quantitative detection results revealed that NQAD had higher sensitivity than ELSD with a 0.8 µg/mL limit of detection, as well as wider linear range (from 2 µg/mL to 1000 µg/mL) than both CAD (from 2 µg/mL to 200 µg/mL) and ELSD (from 8 µg/mL to 200 µg/mL) detector. The performance of NQAD helped to realize detection of ribostamycin and its impurities with significant concentration differences in a single run. With a cation suppressor to eliminate the ion-suppression caused by the ion-pairs in the eluent, the structure of nine impurities in ribostamycin sample was characterized by liquid chromatography-mass spectrum (LC-MS). Both external standard and area normalization calculation were investigated, and NQAD obtained more accurate results due to its full-range linear response-to-concentration relationship, providing an alternative for routine quality control of multi analyte systems.


Assuntos
Aerossóis , Aerossóis/análise , Aerossóis/química , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Medicamentos , Limite de Detecção , Antibacterianos/análise
16.
J Med Imaging (Bellingham) ; 11(3): 033502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827778

RESUMO

Purpose: The modulation transfer function (MTF) and detective quantum efficiency (DQE) of x-ray detectors are key Fourier metrics of performance, valid only for linear and shift-invariant (LSI) systems and generally measured following IEC guidelines requiring the use of raw (unprocessed) image data. However, many detectors incorporate processing in the imaging chain that is difficult or impossible to disable, raising questions about the practical relevance of MTF and DQE testing. We investigate the impact of convolution-based embedded processing on MTF and DQE measurements. Approach: We use an impulse-sampled notation, consistent with a cascaded-systems analysis in spatial and spatial-frequency domains to determine the impact of discrete convolution (DC) on measured MTF and DQE following IEC guidelines. Results: We show that digital systems remain LSI if we acknowledge both image pixel values and convolution kernels represent scaled Dirac δ-functions with an implied sinc convolution of image data. This enables use of the Fourier transform (FT) to determine impact on presampling MTF and DQE measurements. Conclusions: It is concluded that: (i) the MTF of DC is always an unbounded cosine series; (ii) the slanted-edge method yields the true presampling MTF, even when using processed images, with processing appearing as an analytic filter with cosine-series MTF applied to raw presampling image data; (iii) the DQE is unaffected by discrete-convolution-based processing with a possible exception near zero-points in the presampling MTF; and (iv) the FT of the impulse-sampled notation is equivalent to the Z transform of image data.

17.
Bioinspir Biomim ; 19(5)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917814

RESUMO

Flying insects rely mainly upon visual motion to detect and track objects. There has been a lot of research on fly inspired algorithms for object detection, but few have been developed based on visual motion alone. One of the daunting difficulties is that the neural and circuit mechanisms underlying the foreground-background segmentation are still unclear. Our previous modeling study proposed that the lobula held parallel pathways with distinct directional selectivity, each of which could retinotopically discriminate figures moving in its own preferred direction based on relative motion cues. The previous model, however, did not address how the multiple parallel pathways gave the only detection output at their common downstream. Since the preferred directions of the pathways along either horizontal or vertical axis were opposite to each other, the background moving in the opposite direction to an object also activated the corresponding lobula pathway. Indiscriminate or ungated projection from all the pathways to their downstream would mix objects with the moving background, making the previous model fail with non-stationary background. Here, we extend the previous model by proposing that the background motion-dependent gating of individual lobula projections is the key to object detection. Large-field lobula plate tangential cells are hypothesized to perform the gating to realize bioinspired background subtraction. The model is shown to be capable of implementing a robust detection of moving objects in video sequences with either a moving camera that induces translational optic flow or a static camera. The model sheds light on the potential of the concise fly algorithm in real-world applications.


Assuntos
Percepção de Movimento , Animais , Percepção de Movimento/fisiologia , Biomimética/métodos , Algoritmos , Simulação por Computador , Insetos/fisiologia , Modelos Neurológicos , Vias Visuais/fisiologia , Dípteros/fisiologia
18.
J Struct Biol ; 216(3): 108108, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944401

RESUMO

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a âˆ¼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a âˆ¼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining âˆ¼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.

19.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931772

RESUMO

Radiation damage significantly impacts the performance of silicon tracking detectors in Large Hadron Collider (LHC) experiments such as ATLAS and CMS, with signal reduction being the most critical effect; adjusting sensor bias voltage and detection thresholds can help mitigate these effects, generating simulated data that accurately mirror the performance evolution with the accumulation of luminosity, hence fluence, is crucial. The ATLAS and CMS collaborations have developed and implemented algorithms to correct simulated Monte Carlo (MC) events for radiation damage effects, achieving impressive agreement between collision data and simulated events. In preparation for the high-luminosity phase (HL-LHC), the demand for a faster ATLAS MC production algorithm becomes imperative due to escalating collision, events, tracks, and particle hit rates, imposing stringent constraints on available computing resources. This article outlines the philosophy behind the new algorithm, its implementation strategy, and the essential components involved. The results from closure tests indicate that the events simulated using the new algorithm agree with fully simulated events at the level of few %. The first tests on computing performance show that the new algorithm is as fast as it is when no radiation damage corrections are applied.

20.
Int J Biometeorol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884798

RESUMO

Scarlet fever (SF) is an acute respiratory transmitted disease that primarily affects children. The influence of meteorological factors and air pollutants on SF in children has been proved, but the relevant evidence in Northwest China is still lacking. Based on the weekly reported cases of SF in children in Lanzhou, northwest China, from 2014 to 2018, we used geographical detectors, distributed lag nonlinear models (DLNM), and bivariate response models to explore the influence of meteorological factors and air pollutants with SF. It was found that ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), temperature, pressure, water vapor pressure and wind speed were significantly correlated with SF based on geographical detectors. With the median as reference, the influence of high temperature, low pressure and high pressure on SF has a risk effect (relative risk (RR) > 1), and under extreme conditions, the dangerous effect was still significant. High O3 had the strongest effect at a 6-week delay, with an RR of 5.43 (95%CI: 1.74,16.96). The risk effect of high SO2 was strongest in the week of exposure, and the maximum risk effect was 1.37 (95%CI: 1.08,1.73). The interactions showed synergistic effects between high temperatures and O3, high pressure and high SO2, high nitrogen dioxide (NO2) and high particulate matter with diameter of less than 10 µm (PM10), respectively. In conclusion, high temperature, pressure, high O3 and SO2 were the most important factors affecting the occurrence of SF in children, which will provide theoretical support for follow-up research and disease prevention policy formulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...