Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cancer Lett ; 594: 216978, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795760

RESUMO

Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.


Assuntos
Transdução de Sinais , Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Animais , Linfoma/metabolismo , Linfoma/tratamento farmacológico , Linfoma/patologia , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/metabolismo
2.
Cancer Med ; 12(24): 22156-22169, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986681

RESUMO

BACKGROUND: Comprehending the molecular mechanisms underlying head and neck squamous cell carcinoma (HNSCC) is vital for the development of effective treatment strategies. Deubiquitinating enzymes (DUBs), which regulate ubiquitin-dependent pathways, are potential targets for cancer therapy because of their structural advantages. Here we aimed to identify a potential target for HNSCC treatment among DUBs. METHODS: A screening process was conducted using RNA sequencing data and clinical information from HNSCC patients in the TCGA database. A panel of 88 DUBs was analyzed to identify those associated with poor prognosis. Subsequently, HNSCC cells were modified to overexpress specific DUBs, and their effects on cell proliferation and invasion were evaluated. In vivo experiments were performed to validate the findings. RESULTS: In HNSCC patients, USP10, USP14, OTUB1, and STAMBP among the screened DUBs were associated with a poor prognosis. Among them, OTUB1 showed the most aggressive characteristics in both in vitro and in vivo experiments. Additionally, OTUB1 regulated the stability and nuclear localization of YAP1, a substrate involved in cell proliferation and invasion. Notably, OTUB1 expression exhibited a positive correlation with the HNSCC-YAP score in HNSCC cells. CONCLUSIONS: This study highlights the critical role of OTUB1 in HNSCC progression via modulating YAP1. Targeting the OTUB1-YAP1 axis holds promise as a potential therapeutic strategy for HNSCC treatment.


Assuntos
Enzimas Desubiquitinantes , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas de Sinalização YAP , Humanos , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Ubiquitina Tiolesterase , Enzimas Desubiquitinantes/metabolismo , Proteínas de Sinalização YAP/metabolismo
3.
Genes (Basel) ; 14(10)2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37895270

RESUMO

Psychosis is a severe mental disorder characterized by abnormal thoughts and perceptions (e.g., hallucinations) occurring quintessentially in schizophrenia and in several other neuropsychiatric disorders. Schizophrenia is widely considered as a neurodevelopmental disorder that onsets during teenage/early adulthood. A multiplex consanguineous Pakistani family was afflicted with severe psychosis and apparent autosomal recessive transmission. The first-cousin parents and five children were healthy, whereas two teenage daughters were severely affected. Structured interviews confirmed the diagnosis of DSM-V schizophrenia. Probands and father underwent next-generation sequencing. All available relatives were subjected to confirmatory Sanger sequencing. Homozygosity mapping and directed a priori filtering identified only one rare variant [MAF < 5(10)-5] at a residue conserved across vertebrates. The variant was a non-catalytic deubiquitinase, USP53 (p.Cys228Arg), predicted in silico as damaging. Genome sequencing did not identify any other potentially pathogenic single nucleotide variant or structural variant. Since the literature on USP53 lacked relevance to mental illness or CNS expression, studies were conducted which revealed USP53 localization in regions of the hippocampus (CA 1-3) and granular dentate. The staining pattern was like that seen with GRIA2/GluA2 and GRIP2 antibodies. All three proteins coimmunoprecipitated. These findings support the glutamate hypothesis of schizophrenia as part of the AMPA-R interactome. If confirmed, USP53 appears to be one of the few Mendelian variants potentially causal to a common-appearing mental disorder that is a rare genetic form of schizophrenia.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Criança , Humanos , Animais , Camundongos , Adulto , Adolescente , Esquizofrenia/genética , Consanguinidade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Transtornos Psicóticos/genética , Hipocampo , Proteases Específicas de Ubiquitina/genética
4.
Front Mol Biosci ; 10: 1275393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681016
5.
Acta Pharm Sin B ; 13(7): 2955-2962, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521861

RESUMO

Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.

6.
Acta Pharmaceutica Sinica B ; (6): 2955-2962, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982891

RESUMO

Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.

7.
Cells ; 11(6)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326509

RESUMO

Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.


Assuntos
Complexo de Endopeptidases do Proteassoma , Espermatogênese , Animais , Humanos , Masculino , Mamíferos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Espermatogênese/fisiologia , Ubiquitina/metabolismo , Ubiquitinação
8.
J Biol Chem ; 295(33): 11776-11788, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587090

RESUMO

Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.


Assuntos
Caenorhabditis elegans/metabolismo , Animais , Caenorhabditis elegans/química , Estabilidade Enzimática , Células HEK293 , Humanos , Proteólise , Ubiquitinação , Repetições WD40
9.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1924-1933, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290241

RESUMO

The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos
10.
Front Mol Neurosci ; 10: 347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123470

RESUMO

The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer's disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer's disease, chronic stress and epilepsy.

11.
Front Mol Neurosci ; 8: 60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528125

RESUMO

Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

12.
FEBS Lett ; 588(2): 356-67, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24239534

RESUMO

The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein functions. It is therefore a fundamentally important regulatory mechanism that impacts most if not all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human diseases such as neurodegenerative and immunological disorders and many cancers. The success of proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination cascade would be clinically important for therapeutic benefits. In this review, we summarize advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that may shed light on innovative drug discovery in the future.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteassoma/farmacologia , Ubiquitinação/efeitos dos fármacos , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...