Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.425
Filtrar
1.
Clin Res Hepatol Gastroenterol ; : 102411, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992426

RESUMO

BACKGROUND: Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS: Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20 mg/kg), and SH high-dose (SH-H, 60 mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS: SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 ß, and IL-6 in the peripheral blood of mice. CONCLUSION: The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.

2.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998546

RESUMO

Electrospinning biopolymer nanofibers have emerged as promising candidates for food packaging applications. In this study, dextran/zein nanofibers were fabricated using electro-blown spinning and subsequently cross-linked via the Maillard reaction (MR) at 60 °C and 50% relative humidity. Compared to traditional electrospinning, the introduction of air-blowing improved the sample preparation speed by 10 times. SEM analysis revealed that the nanofiber morphology remained stable upon MR treatment for 24 h. FTIR spectroscopy confirmed that the MR led to a deformation in the protein conformation and an increase in hydrophilicity and elasticity in the nanofibers cross-linked for 6 h. MR treatment for 18 h considerably enhanced the hydrophobicity and elastic modulus owing to covalent bond formation. Thermal analysis indicated an improved thermal stability with increasing MR duration. Mechanical property analysis revealed an increase in elastic modulus and a decrease in elongation at break for the nanofibers cross-linked for more than 6 h, indicating a trade-off between rigidity and flexibility. Notably, the water vapor permeability of the nanofibers cross-linked for 6 and 18 h was remarkably higher, which can be ascribed to the fiber morphology retention upon water evaporation. Overall, MR-cross-linked dextran/zein/xylose nanofibers showed tunable properties, making them a suitable encapsulation system for bioactive compounds.

3.
Molecules ; 29(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999088

RESUMO

Dihydromyricetin (DMY) has been encapsulated in delivery systems to address the solubility limitations of DMY in water and improve its bioavailability. Air-assisted electrospinning has been used as a novel technology to load DMY. To evaluate the impact of adding DMY to dextran/zein nanofibers and understand the effects of the Maillard reaction (MR) on the physical and functional properties of DMY-loaded nanofibers, dextran/zein/xylose nanofibers with 0%, 1%, 2%, 3%, and 4% DMY were fabricated, followed by MR crosslinking. Scanning electron microscopy (SEM) observations indicated that the addition of DMY and the MR did not affect the morphology of the nanofibers. X-ray diffraction (XRD) results indicated amorphous dispersion of DMY within the nanofibers and a decreased crystalline structure within the nanofibers following the MR, which might improve their molecular flexibility. The nanofibrous film formed after the MR exhibited both increased tensile strength and elastic modulus due to hydrogen bonding within the nanofibers and increased elongation at break attributed to the increased amorphization of the structure after crosslinking. The nanofibers were also found to exhibit improved heat stability after the MR. The antioxidant activity of the nanofibers indicated a dose-dependent effect of DMY on radical scavenging activity and reducing power. The maintenance of antioxidant activity of the nanofibers after the MR suggested heat stability of DMY during heat treatment. Overall, dextran/zein nanofibers with various DMY contents exhibited tunable physical properties and effective antioxidant activities, indicating that dextran/zein nanofibers offer a successful DMY delivery system, which can be further applied as an active package.

4.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999194

RESUMO

Dextransucrases play a crucial role in the production of dextran from economical sucrose; therefore, there is a pressing demand to explore novel dextransucrases with better performance. This study characterized a dextransucrase enzyme, LmDexA, which was identified from the Leuconostoc mesenteroides NN710. This bacterium was isolated from the soil of growing dragon fruit in Guangxi province, China. We successfully constructed six different N-terminal truncated variants through sequential analysis. Additionally, a truncated variant, ΔN190LmDexA, was constructed by removing the 190 amino acids fragment from the N-terminal. This truncated variant was then successfully expressed heterologously in Escherichia coli and purified. The purified ΔN190LmDexA demonstrated optimal hydrolysis activity at a pH of 5.6 and a temperature of 30 °C. Its maximum specific activity was measured to be 126.13 U/mg, with a Km of 13.7 mM. Results demonstrated a significant improvement in the heterologous expression level and total enzyme activity of ΔN190LmDexA. ΔN190LmDexA exhibited both hydrolytic and transsaccharolytic enzymatic activities. When sucrose was used as the substrate, it primarily produced high-molecular-weight dextran (>400 kDa). However, upon the addition of maltose as a receptor, it resulted in the production of a significant amount of oligosaccharides. Our results can provide valuable information for enhancing the characteristics of recombinant dextransucrase and potentially converting sucrose into high-value-added dextran and oligosaccharides.


Assuntos
Clonagem Molecular , Glucosiltransferases , Leuconostoc mesenteroides , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Leuconostoc mesenteroides/enzimologia , Leuconostoc mesenteroides/genética , Dextranos/química , Dextranos/biossíntese , Dextranos/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio , Escherichia coli/genética , Mutação , Especificidade por Substrato , Sacarose/metabolismo , Cinética , Temperatura
5.
Methods Mol Biol ; 2814: 45-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954196

RESUMO

Eukaryotic cells have been constantly challenged throughout their evolution by pathogens, mechanical stresses, or toxic compounds that induce plasma membrane (PM) or endolysosomal membrane damage. The survival of the wounded cells depends on damage detection and repair machineries that are evolutionary conserved between protozoan, plants, and animals. We use the social amoeba Dictyostelium discoideum as a model system to study bacteria, mechanical or sterile membrane damage that allows us to identify and monitor factors involved in PM, endolysosomal damage response (ELDR), and endolysosomal homeostasis. Importantly, the sterile damage techniques presented here homogenously affect cell populations, which allows to phenotype mutant strains and quantify various aspects of cell fitness using live cell microscopy. This is instrumental to functionally assess genes involved in the repair of damaged plasma membrane or intracellular compartments and the degradation of extensively damaged compartments. Here, we describe how to inflict sterile PM or endolysosomal membrane damage, how to monitor the cell-intrinsic response to damage, and how to proxy proton leakage from damaged acidic compartments and quantify cell viability.


Assuntos
Membrana Celular , Dictyostelium , Lisossomos , Dictyostelium/genética , Dictyostelium/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Sobrevivência Celular
6.
Methods Mol Biol ; 2814: 81-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954198

RESUMO

Uptaking particulate objects and bulk liquid by eucaryotic cells is critical for their growth, survival, and defense. Dictyostelium is a model organism spearheaded to uncover mechanisms behind various types of uptaking activities. Here, we describe assays measuring phagocytosis and macropinocytosis using Dictyostelium discoideum.


Assuntos
Dictyostelium , Fagocitose , Pinocitose , Dictyostelium/fisiologia , Pinocitose/fisiologia
7.
Pharmacol Res Perspect ; 12(4): e1234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961539

RESUMO

The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.


Assuntos
Colite , Sulfato de Dextrana , Estradiol , Receptor alfa de Estrogênio , Ovariectomia , Animais , Feminino , Receptor alfa de Estrogênio/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Camundongos , Estradiol/farmacologia , Estradiol/sangue , Camundongos Endogâmicos C57BL , Estrogênios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo
8.
Mol Nutr Food Res ; : e2400431, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965660

RESUMO

SCOPE: A study is conducted to determine the anti-inflammatory effects of cocoa and polyphenol-rich cocoa fractions in the dextran sulfate sodium (DSS)-induced mouse model of acute colonic inflammation. METHODS AND RESULTS: Male C57BL/6J mice are treated with dietary cocoa powder, an extractable cocoa polyphenol fraction, or a non-extractable cocoa polyphenol fraction for 2 weeks prior to treatment with 2.5% DSS in the drinking water for 7 days to induce colonic inflammation. Cocoa treatment continues during the DSS period. Cocoa and/or cocoa fractions exacerbate DSS-induced weight loss and fail to mitigate DSS-induced colon shortening but do improve splenomegaly. Cocoa/cocoa fraction treatment fails to mitigate DSS-induced mRNA and protein markers of inflammation. Principal component analysis shows overlap between cocoa or cocoa fraction-treated mice and DSS-induced controls, but separation from mice not treated with DSS. CONCLUSION: The results suggest cocoa and cocoa polyphenols may not be useful in mitigating acute colonic inflammation.

9.
Biomaterials ; 311: 122658, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38901130

RESUMO

Bismuth (Bi)-based computed tomography (CT) imaging contrast agents (CAs) hold significant promise for diagnosing gastrointestinal diseases due to their cost-effectiveness, heightened sensitivity, and commendable biocompatibility. Nevertheless, substantial challenges persist in achieving an easy synthesis process, remarkable water solubility, and effective targeting ability for the potential clinical transformation of Bi-based CAs. Herein, we show Bi drug-inspired ultra-small dextran coated bismuth oxide nanoparticles (Bi2O3-Dex NPs) for targeted CT imaging of inflammatory bowel disease (IBD). Bi2O3-Dex NPs are synthesized through a simple alkaline precipitation reaction using bismuth salts and dextran as the template. The Bi2O3-Dex NPs exhibit ultra-small size (3.4 nm), exceptional water solubility (over 200 mg mL-1), high Bi content (19.75 %), excellent biocompatibility and demonstrate higher X-ray attenuation capacity compared to clinical iohexol. Bi2O3-Dex NPs not only enable clear visualization of the GI tract outline and intestinal loop structures in CT imaging but also specifically target and accumulate at the inflammatory site in colitis mice after oral administration, facilitating a precise diagnosis and enabling targeted CT imaging of IBD. Our study introduces a novel and clinically promising strategy for synthesizing high-performance Bi2O3-Dex NPs for diagnosing gastrointestinal diseases.

10.
J Control Release ; 372: 168-175, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38844178

RESUMO

Influenza outbreaks are a major burden worldwide annually. While seasonal vaccines do provide protection against infection, they are limited in that they need to be updated every year to account for the constantly mutating virus. Recently, lipid nanoparticles (LNPs) encapsulating mRNA have seen major success as a vaccine platform for SARS-CoV-2. Herein, we applied LNPs to deliver an mRNA encoding a computationally optimized broadly active (COBRA) influenza immunogen. These COBRA mRNA LNPs induced a broadly active neutralizing antibody response and protection after lethal influenza challenge. To further increase the immunogenicity of the COBRA mRNA LNPs, we combined them with acetalated dextran microparticles encapsulating a STING agonist. Contrary to recent findings, the STING agonist decreased the immunogenicity of the COBRA mRNA LNPs which was likely due to a decrease in mRNA translation as shown in vitro. Overall, this work aids in future selection of adjuvants to use with mRNA LNP vaccines.

11.
Inflamm Bowel Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944815

RESUMO

BACKGROUND: Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS: A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS: Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS: Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.


In this article, we evaluated the role of OCTN1, an organic cation transporter, in modifying gut microbiota and immune T cell populations, as well as its effects on experimental colitis and the response to infliximab treatment.

12.
Biology (Basel) ; 13(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927307

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.

13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928030

RESUMO

Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA. The aim was also to determine how iron overload in combination with IA affects tissue metal homeostasis, hepcidin-ferritin levels, and MMP levels according to physiological, functional, and tissue features. According to the obtained results, iron accumulation was most pronounced in the liver (19×), spleen (6.7×), lungs (3.1×), and kidneys (2.5×) compared to control. Iron accumulation is associated with elevated heavy metal levels and impaired essential metal concentrations due to oxidative stress (OS). Notably, the use of IA increases the iron overload toxicity, especially after Isoflurane exposure. The results show that the regulation of iron homeostasis is based on the interaction of hepcidin, ferritin, and other proteins regulated by inflammation, OS, free iron levels, erythropoiesis, and hypoxia. Long-term exposure to IA and iron leads to the development of numerous adaptation mechanisms in response to toxicity, OS, and inflammation. These adaptive mechanisms of iron regulation lead to the inhibition of MMP activity and reduction of oxidative stress, protecting the organism from possible damage.


Assuntos
Anestésicos Inalatórios , Hepcidinas , Complexo Ferro-Dextran , Ferro , Estresse Oxidativo , Animais , Ratos , Hepcidinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Masculino , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/toxicidade , Complexo Ferro-Dextran/administração & dosagem , Complexo Ferro-Dextran/toxicidade , Ferritinas/metabolismo , Sobrecarga de Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Ratos Wistar , Homeostase/efeitos dos fármacos , Isoflurano/efeitos adversos
14.
Dev Comp Immunol ; : 105213, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880215

RESUMO

Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.

15.
Carbohydr Polym ; 340: 122300, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858007

RESUMO

The chemical modification of biopolymers to enhance their functional properties in the food, cosmetic, and pharmaceutical industries is an area of particular interest today. In this study, different molecular weight dextrans were chemically modified for the first time with octenyl succinic anhydride (OSA). This reaction involves an esterification process wherein the hydroxy groups of dextran are partially substituted by a carbonaceous chain, imparting hydrophobic properties to dextran molecules and, consequently, an amphiphilic nature. To assess and quantify the incorporation of OSA into the dextran structure, reaction products were analysed using NMR and FTIR. Additionally, the thermal properties, the Z-potential and the foaming and emulsifying capacity of both native and modified dextrans were examined. The introduction of OSA groups to dextran molecules, with degrees of substitution between 0.028 and 0.058, increased the zeta potential and the thermal stability of the polymer. Furthermore, the chemical modification of dextran backbone with this radical conferred a hydrophobic nature to the biopolymer, which enhance its foaming and emulsifying capacity. Therefore, these results demonstrate that the incorporation of hydrophobic moieties into dextran polymers improves their functional properties and broadens their potential applications in the industry.

16.
Int J Biol Macromol ; 273(Pt 1): 133062, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862051

RESUMO

Chronic bacterial infections, excessive inflammation, and oxidative stress significantly hinder diabetic wound healing by prolonging the inflammatory phase and complicating the healing process. In this study, phenylboronic acid functionalized dextran (PODP) was developed to encapsulate curcumin, referred to as PODP@Cur. Experimental results indicate that PODP significantly improves the water solubility of curcumin and exhibits synergistic biological activity both in vitro and in vivo. PODP@Cur is capable of accelerating drug release under the pathological microenvironment with ROS accumulation. Furthermore, phenylboronic acid (PBA) has demonstrated potential for targeted bacterial drug delivery, enhancing antibacterial efficacy and trapping free LPS/PGN from dead bacteria to reduce undesirable inflammation. In a diabetic mouse model, PODP@Cur exhibits an excellent antibacterial, anti-inflammatory and antioxidant activities to ultimately promote the efficient and safe wound healing. Due to the specific interaction between PBA and LPS, PODP@Cur could enhance antibacterial activity against bacteria, reduce toxic side effects on normal cells, and alleviate the LPS-mediated pro-inflammatory pathological microenvironment. Therefore, PODP@Cur is capable of being exploited as an efficient and safe candidate for promoting the bacteria-infected diabetic wound healing.


Assuntos
Antibacterianos , Ácidos Borônicos , Curcumina , Dextranos , Diabetes Mellitus Experimental , Cicatrização , Curcumina/farmacologia , Curcumina/química , Animais , Cicatrização/efeitos dos fármacos , Dextranos/química , Camundongos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células RAW 264.7 , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Infecções Bacterianas/tratamento farmacológico
17.
mSphere ; : e0016024, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920382

RESUMO

In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE: Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.

18.
Int J Biol Macromol ; 274(Pt 2): 132950, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848849

RESUMO

Dextran (Dx) is a biodegradable and biocompatible polysaccharide, thus promising as a drug delivery carrier for tumor therapy. Herein, we applied mechanical energy to a high molecular weight Dx to control its molecular weight and simultaneously generate mechanoradicals. The solid-state polymerization of methacrylate- or methacrylamide derivatives initiated with Dx mechanoradicals showed polymer conversion of >95%, yielding Dx-based graft copolymers with molecular weights of approximately 30,000 g mol-1. The Dx-based graft copolymers with hydrophobic segments formed nanoparticles with a particle size of 25-35 nm in an aqueous solution. The anti-pancreatic tumor drug 5-fluorouracil (5-FU) was covalently conjugated onto the hydrophobic segments of the amphiphilic Dx, and the nanoparticles were also prepared. The drug release profile from 5-FU-conjugated nanoparticles corresponded well to the Korsmeyer-Peppas model applied to drug release from matrix substrates, and was also immensely predicted by the Logistic and Gompertz curves. The 5-FU-conjugated nanoparticles showed cytotoxicity against the pancreatic adenocarcinoma cell lines (BxPC-3) that were not significantly inferior to the 5-FU positive group. Furthermore, the fluorescein-labeled nanoparticles internalized into BxPC-3 within 6 h and actively migrated into the cytosol. These results suggest that Dx-based graft copolymers with hydrophobic segments might be used to enhance therapeutic activity.

19.
Mucosal Immunol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838816

RESUMO

The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.

20.
Front Biosci (Elite Ed) ; 16(2): 17, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38939916

RESUMO

Dextran is an exopolysaccharide synthesized in reactions catalyzed by enzymes obtained from microbial agents of specific species and strains. Products of dextran polysaccharides with different molecular weights are suitable for diverse pharmaceutical and clinical uses. Dextran solutions have multiple characteristics, including viscosity, solubility, rheological, and thermal properties; hence, dextran has been studied for its commercial applications in several sectors. Certain bacteria can produce extracellular polysaccharide dextran of different molecular weights and configurations. Dextran products of diverse molecular weights have been used in several industries, including medicine, cosmetics, and food. This article aims to provide an overview of the reports on dextran applications in blood transfusion and clinical studies and its biosynthesis. Information has been summarized on enzyme-catalyzed reactions for dextran biosynthesis from sucrose and on the bio-transformation process of high molecular weight dextran molecules to obtain preparations of diverse molecular weights and configurations.


Assuntos
Dextranos , Dextranos/química , Dextranos/biossíntese , Humanos , Transfusão de Sangue , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...