Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143555

RESUMO

This paper presents a comprehensive approach to optimising the structure and properties of chromium cast iron that is intended for use in the production of castings that operate under abrasive-wear conditions. In the study, chromium cast iron was inoculated to reduce the grain size in the solidification structure. The finer-grained structure of the casting has a positive effect on its mechanical properties. A number of inoculants have been used that allow the elimination of many types of casting defects: hot cracks and porosities that often occur during the production of chromium cast iron castings. Another advantage of the developed inoculation procedure is the resulting increase in the toughness of chromium cast iron. It should be emphasised that this cast iron does not have a high impact strength in its as-cast condition due to the formation of chromium carbides in the structure. This work also proposes a specially designed heat treatment for inoculated cast iron. The parameters of the applied heat treatment were determined on the basis of dilatometric tests. The visible deviation on a dilatogram at a temperature of about 600 °C is the result of a partial martensitic transformation in the area of grain boundaries. Therefore, the increase in abrasion resistance chromium cast iron is mainly due to the appearance of martensite. The microstructure of the investigated cast iron is particularly desirable in the case of alloys that work with lubrication. The microcavities that are formed by the abrasion of the softer phase constitute natural grease, which reduces abrasive wear. Under the influence of heat treatment, only a part of austenite located near the carbides is destabilized and transformed into martensite. Therefore, this phase of composition formation provided much greater resistance to abrasive wear and hardness.

2.
Rev. bras. eng. biomed ; 30(3): 257-264, Sept. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-723263

RESUMO

INTRODUCTION: The mechanical properties and corrosion resistance of a material are dependent on its microstructure and can be modified by phase transformation. When a phase transformation occurs in a material it usually forms at least one new phase, with physical-chemical characteristics that differ from the original phase. Moreover, most phase transformations do not occur instantly. This paper presents an evaluation of the phase transformation of martensitic stainless steels ASTM 420A and ASTM 440C when submitted to different thermal processes. METHODS: Dilatometry tests were performed with several continuous heating and cooling rates in order to obtain the profiles of the continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for these two types of steel. Also, the temperature ranges for the formation of the different phases (ferrite and carbides; ferrite; austenite and carbides; non-homogeneous and homogeneous austenite phases) were identified. Rockwell hardness (HRC) tests were performed on all thermally treated steels. Anodic and cathodic potential dynamic polarization measurements were carried out through immersion in enzymatic detergent as an electrolyte for different samples submitted to the thermal processes in order to select the best routes for the heat treatment and to recommend steels for the manufacture of surgical tools. RESULTS: The martensitic transformation temperature tends to increase with increasing temperature for the initiation of cooling. The 440C steel had a higher hardness value than the 420A steel at the austenitizing temperature of 1100 °C. Above the austenitizing temperature of 1100 °C, the material does not form martensite at the cooling rate used, which explains the sharp decline in the hardness values. CONCLUSION: The study reported herein achieved its proposed objectives, successfully investigating the issues and indicating solutions to the industrial problems addressed, which are frequently encountered in the manufacture of surgical instruments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...