Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500923

RESUMO

Indigo Blue (IB) is a dye widely used by the textile sector for dyeing cellulose cotton fibers and jeans, being considered a recalcitrant substance, and therefore resistant to traditional treatments. Several methodologies are reported in the literature for the removal or degradation of dyes from the aqueous medium, among which photoelectrocatalysis stands out, which presents promising results in the degradation of dyes when a dimensionally stable anode (DSA) is used as a photoanode. In the present work, we sought to investigate the efficiency of a Ti/RuO2-TiO2 DSA modified with tin and tantalum for the degradation of Indigo Blue dye by photoelectrocatalysis. For this, electrodes were prepared by the thermal decomposition method and then a physical-chemical and electrochemical analysis of the material was carried out. The composition Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) was compared to Ti/RuO2-TiO2 (30:70) in the photocatalysis, electrocatalysis, and photoelectrocatalysis tests. The photocatalysis was able to degrade only 63% of the IB at a concentration of 100 mg L-1 in 3 h, whereas the electrocatalysis and photoelectrocatalysis were able to degrade 100% of the IB at the same initial concentration in 65 and 60 min, respectively.

2.
MethodsX ; 5: 1613-1617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568882

RESUMO

This paper describes a thermal method to obtain metal oxides on a titanium substrate surface. This adapted Pechini method is a versatile, easy to handle and scalable technique to obtain electrodes for industrial uses, such as Dimensionally Stable Anodes (DSA). This method has advantages over other thermal methods like dip coating or sputtering, as it needs a smaller amount of polymeric mixture than dip coating method to cover the same area and is less expensive than sputtering method. The thermal method described herein to prepare DSA type electrodes of RuO2-ZrO2 doped with Sb2O5 over titanium plates needs no sophisticated equipment as spray pyrolysis technique does; a muffle, ultrasonic equipment, and a hot plate magnetic stirrer are the principal apparatus necessary to carry out the adapted Pechini method. On the other hand, this method allows metal oxides to disperse homogeneously. The cyclic voltammograms showed the stability of DSA, and the accelerated life test allowed establishing its useful life (18.18 years) at a current density of 10 mA cm-2.

3.
J Environ Manage ; 224: 340-349, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056353

RESUMO

The destruction of the herbicide chloramben in 0.050 M Na2SO4 solutions at natural pH has been studied by photoelectro-Fenton with UVA light (PEF). The trials were carried out in a cell equipped with an air-diffusion cathode for H2O2 generation and different electrocatalytic anodes, namely active IrO2-based and RuO2-based electrodes and non-active boron-doped diamond (BDD) and PbO2 ones. Similar removal rates were found regardless of the anode nature because the herbicide was mainly oxidized by OH formed from Fenton's reaction, which was enhanced by UVA-induced photo-Fenton reaction. The use of an IrO2-based anode led to almost total mineralization at high current density, as also occurred with the powerful BDD anode, since photoactive intermediates originated from OH-mediated oxidation were degraded under irradiation with UVA light. The good performance of the IrO2-based anode in PEF was confirmed at different current densities and herbicide concentrations. The presence of Cl- in the medium caused a slight deceleration of herbicide removal as well as mineralization inhibition, owing to the production of active chlorine with consequent formation of persistent chloroderivatives. Seven aromatic products along with oxalic and oxamic acids were identified in sulfate medium. Five aromatic derivatives were detected in Cl--containing matrix, corroborating the generation of organochlorine compounds. In secondary effluent, larger mineralization was achieved by PEF with a BDD anode due to its high oxidation ability to destroy the chloroderivatives, although an acceptable performance was also obtained using an IrO2-based anode.


Assuntos
Clorobenzoatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Boro , Clorobenzoatos/química , Diamante , Eletroquímica , Eletrodos , Herbicidas , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/química
4.
Chemosphere ; 201: 740-748, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29547862

RESUMO

This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO2-TiO2) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO2-TiO2. The presence of Cl- in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO2-TiO2. Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time.


Assuntos
Diamante/química , Eletrólise/métodos , Fenóis/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anacardium/química , Boro/química , Eletrodos , Eletrólise/instrumentação , Indústria Alimentícia , Lactuca/efeitos dos fármacos , Nozes/química , Oxirredução , Fenóis/toxicidade , Compostos de Rutênio/química , Titânio/química , Poluentes Químicos da Água/toxicidade , Purificação da Água/instrumentação
5.
Chemosphere ; 185: 145-151, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688848

RESUMO

Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Biodegradação Ambiental , Cresóis , Técnicas Eletroquímicas , Eletrodos , Resíduos Industriais , Oxirredução , Fenol , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA