Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Vet Parasitol Reg Stud Reports ; 54: 101095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237236

RESUMO

The non-cyclic trypanosomiasis (surra), caused by Trypanosoma evansi, and mechanically transmitted by biting flies, hinders camel productivity in Kenya. Trypanocides are the most commonly used drugs to control surra. However, emergence of drug resistance by the parasites is a major limitation to control efforts. There is limited information on the quality of trypanocides, the supply chain and drug-use practices among camel keepers potentially contributing to development of drug resistance in Kenya. We sought to fill this gap by conducting a cross-sectional study among camel keepers in Isiolo and Marsabit counties, Kenya. We mapped the trypanocide drugs supply chain through quantitative and qualitative surveys. We administered a semi-structured questionnaire to camel keepers to generate data on trypanocides-use practices, including the types, sources, person who administers treatment, reconstitution, dosage, route and frequency of administration, among others. Additionally, we tested the quality of trypanocidal drugs retailed in the region. We mapped a total of 55 and 49 agro-veterinary outlets and general (ordinary) shops retailing veterinary drugs in the two counties, respectively. These comprised of 29 and 26 agro-veterinary outlets, as well as 24 and 25 general shops in Isiolo and Marsabit counties, respectively. Overall, the respondents experienced 283 surra cases in the three-month recall period, which were treated with trypanocides. The majority of these cases were diagnosed by camel owners (71.7%) and herders (24.1%). A significant proportion of the cases were treated by camel owners (54.8%), herders (35.3%), the owner's son (3.2%) and veterinary personnel (1.1%) (χ2 = 24.99, p = 0.000). Most of the households sourced the drugs from agro-veterinary outlets (59.0%), followed by general shops (19.8%), veterinary personnel (2.1%), and open-air markets (0.4%) (χ2 = 319.24, p = 0.000). Quinapyramine was the most (56.9%) predominantly used trypanocide in treatment of surra, followed by homidium (19.8%), isometamidium (15.9%), diminazene aceturate (6.7%), and ethidium (0.7%) (χ2 = 340.75, p < 0.000). Only a meager proportion of respondents (15.2%) used the drugs correctly as instructed by the manufacturers. We recorded an association between correct drug usage, with the person who administers the treatment (χ2 = 17.7, p = 0.003), and the type of trypanocide used (χ2 = 19.4, p < 0.001). All the drug samples tested had correct concentrations of active ingredient (100.0%), and therefore of good quality. We have demonstrated that whereas the trypanocides retailed in the region by authorized vendors are of good quality, there is widespread incorrect handling and use of the drugs by unqualified individuals, which may contribute to treatment failure and emergence of trypanocide resistance.


Assuntos
Camelus , Tripanossomicidas , Trypanosoma , Quênia , Estudos Transversais , Tripanossomicidas/farmacologia , Animais , Humanos , Feminino , Masculino , Trypanosoma/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Tripanossomíase/tratamento farmacológico , Tripanossomíase/veterinária , Inquéritos e Questionários , Adulto Jovem , Resistência a Medicamentos
2.
Mol Cell Neurosci ; 130: 103953, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013481

RESUMO

Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/ß-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipocampo , Hipertensão , Neurogênese , Via de Sinalização Wnt , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Neurogênese/efeitos dos fármacos , Hipocampo/metabolismo , Hipertensão/metabolismo , Ratos , Masculino , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Diminazena/análogos & derivados , Diminazena/farmacologia , Peptidil Dipeptidase A/metabolismo , Ratos Sprague-Dawley
3.
Brain Behav Immun ; 119: 105-119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548186

RESUMO

The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.


Assuntos
Diminazena , Endotoxemia , Microbioma Gastrointestinal , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Serotonina , Baço , Sistema Nervoso Simpático , Animais , Masculino , Camundongos , Baço/metabolismo , Baço/efeitos dos fármacos , Diminazena/análogos & derivados , Diminazena/farmacologia , Lipopolissacarídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Serotonina/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Endotoxemia/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
J Biomol Struct Dyn ; 42(4): 2162-2169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37286380

RESUMO

G-quadruplexes (G4s) are secondary four-stranded DNA helical structures made up of guanine-rich nucleic acids that can assemble in the promoter regions of multiple genes under the appropriate conditions. Stabilization of G4 structures by small molecules can regulate transcription in non-telomeric regions, including in proto-oncogenes and promoter regions, contributing to anti-proliferative and anti-tumor activities. Because G4s are detectable in cancer cells but not in normal cells, they make excellent drug discovery targets. Diminazene, DMZ (or berenil), has been shown to be an efficient G-quadruplex binder. Due to the stability of the folding topology, G-quadruplex structures are frequently found in the promotor regions of oncogenes and may play a regulatory role in gene activation. Using molecular docking and molecular dynamics simulations on several different binding poses, we have studied DMZ binding toward multiple G4 topologies of the c-MYC G-quadruplex. DMZ binds preferentially to G4s that have extended loops and flanking bases. This preference arises from its interactions with the loops and the flanking nucleotides, which were not found in the structure lacking extended regions. The binding to the G4s with no extended regions instead occurred mostly through end stacking. All binding sites for DMZ were confirmed by 100 ns molecular dynamics simulations and through binding enthalpies calculated using the MM-PBSA method. The primary driving forces were electrostatic, as the cationic DMZ interacts with the anionic phosphate backbone, and through van der Waals interactions, which primarily contributed in end stacking interactions.Communicated by Ramaswamy H. Sarma.


Assuntos
Diminazena/análogos & derivados , Quadruplex G , Diminazena/química , Diminazena/metabolismo , Simulação de Acoplamento Molecular , DNA/química
5.
J Biochem Mol Toxicol ; 38(1): e23527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681557

RESUMO

Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.


Assuntos
Diminazena/análogos & derivados , Peptidil Dipeptidase A , Neoplasias do Colo do Útero , Feminino , Humanos , Peptidil Dipeptidase A/metabolismo , Células HeLa , Regulação para Baixo , Neoplasias do Colo do Útero/genética , Furina/genética , Furina/metabolismo , Oncogenes , Ciclo Celular , RNA Mensageiro , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1151-1162, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632551

RESUMO

Hyperthyroidism is associated with the alteration in molecular pathways involved in the regulation of mitochondrial mass and apoptosis, which contribute to the development of cardiac hypertrophy. Diminazene (DIZE) is an animal anti-infection drug that has shown promising effects on improving cardiovascular disease. The aim of the present study was to investigate the therapeutic effect of DIZE on cardiac hypertrophy and the signaling pathways involved in this process in the hyperthyroid rat model. Twenty male Wistar rats were equally divided into four groups: control, hyperthyroid, DIZE, and hyperthyroid + DIZE. After 28 days of treatment, serum thyroxine (T4) and thyroid stimulating hormone (TSH) level, cardiac hypertrophy indices, cardiac damage markers, cardiac malondialdehyde (MDA), and superoxide dismutase (SOD) level, the mRNA expression level of mitochondrial and apoptotic genes were evaluated. Hyperthyroidism significantly decreased the cardiac expression level of SIRT1/PGC1α and its downstream involved in the regulation of mitochondrial biogenesis, mitophagy, and antioxidant enzyme activities including TFAM, PINK1/MFN2, Drp1, and Nrf2, respectively, as well as stimulated mitochondrial-dependent apoptosis by reducing Bcl-2 expression and increasing Bax expression. Treatment with DIZE significantly reversed the downregulation of SIRT1, PGC1α, PINK1, MFN2, Drp1, and Nrf2 but did not significantly change the TFAM expression. Moreover, DIZE suppressed apoptosis by normalizing the cardiac expression levels of Bax and Bcl-2. DIZE is effective in attenuating hyperthyroidism-induced cardiac hypertrophy by modulating the mitophagy-related pathway, suppressing apoptosis and oxidative stress.


Assuntos
Hipertireoidismo , Tiroxina , Ratos , Masculino , Animais , Tiroxina/farmacologia , Diminazena/farmacologia , Diminazena/uso terapêutico , Sirtuína 1 , Ratos Wistar , Proteína X Associada a bcl-2 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Mitofagia , Fator 2 Relacionado a NF-E2 , Cardiomegalia/tratamento farmacológico , Hipertireoidismo/tratamento farmacológico , Hipertireoidismo/complicações , Proteínas Quinases
7.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1030977

RESUMO

@#Objective: To evaluate the combination therapy of pyronaridine tetraphosphate and diminazene aceturate against Babesia in vitro and in vivo. Methods: Bioinformatic analysis was performed using atom pair fingerprints. An in vitro combination test was performed against Babesia bovis and Theileria equi. Moreover, the in vivo chemotherapeutic efficacy of pyronaridine tetraphosphate in combination with diminazene aceturate was investigated against the growth of Babesia microti in mice using a fluorescence inhibitory assay. Results: Pyronaridine tetraphosphate and diminazene aceturate exhibited nearly similar molecular weights. The in vitro combination of pyronaridine tetraphosphate and diminazene aceturate was synergistic on Babesia bovis and additive on Theileria equi. In addition, 5 mg/kg pyronaridine tetraphosphate combined with 10 mg/kg diminazene aceturate inhibited Babesia microti growth significantly compared with those observed after treatment with 25 mg/kg diminazene aceturate alone from day 6 post treatment to day 12 post treatment. The combination therapy also normalized the hematological parameters of infected mice. Conclusions: An oral dose of pyronaridine tetraphosphate combined with a subcutaneous dose of diminazene aceturate inhibits Babesia in vitro and in mice, suggesting it might be a new paradigm for the treatment of babesiosis.

8.
Toxicol Rep ; 11: 460-468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053572

RESUMO

This study aimed to investigate the potential protective effects of diminazene, an activator of angiotensin II converting enzyme (ACE2), on kidney function and structure in rats with acute kidney injury (AKI) induced by the anticancer drug doxorubicin (DOX). The impact of diminazene was compared to that of two other drugs: the ACE inhibitor lisinopril and the angiotensin II type 1 (AT1) receptor blocker valsartan. Rats were subjected to a single intraperitoneal injection of DOX (13.5 mg/kg) on the 5th day, either alone or in combination with diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), or valsartan (30 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Additionally, kidney tissues were assessed histopathologically. DOX-induced nephrotoxicity was confirmed by elevated levels of plasma urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL). DOX also led to increased urinary N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased creatinine clearance, albumin levels, and osmolality. Moreover, DOX caused a reduction in renal oxidative stress markers, including superoxide dismutase (SOD), glutathione reductase (GR), and catalase activities, while increasing malondialdehyde (MDA) levels. It also raised plasma inflammatory markers, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß). Concurrently administering diminazene significantly mitigated these DOX-induced changes, including histopathological alterations like renal tubule necrosis, tubular casts, shrunken glomeruli, and increased renal fibrosis. Similar protective effects were observed with lisinopril and valsartan. These protective effects, at least in part, appear to result from the anti-inflammatory and antioxidant properties of these drugs. In summary, this study suggests that the administration of diminazene, lisinopril, or valsartan had comparable effects in ameliorating the biochemical and histopathological aspects of DOX-induced acute kidney injury in rats.

9.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958669

RESUMO

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Assuntos
Pentamidina , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Pentamidina/metabolismo , Guanidinas/farmacologia , Guanidinas/metabolismo , Hipocampo/metabolismo , Células Cultivadas , N-Metilaspartato/metabolismo
10.
J Exp Orthop ; 10(1): 107, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878123

RESUMO

PURPOSE: Current therapies for osteoarthritis (OA) are limited to analgesics and anti-inflammatory drugs. Considering the importance of oxidative stress and inflammatory mediators in OA etiology, we tested the hypothesis that targeting the renin-angiotensin-aldosterone system (RAAS) can improve OA anomalies. Diminazene (DIZE), an activator of angiotensin-converting enzyme 2 and the angiotensin 2 type-1 receptor blocker losartan (LOS) were used for this purpose. METHODS: OA was induced by a single intra-articular injection of monosodium iodoacetate. The effects of exposure to DIZE or LOS for 21 days on OA anomalies in rats' knees were investigated. Evaluation of motor function, nociception, and inflammatory response was done using rotarod, knee bend and knee swelling tests. Markers of knee joint inflammation, and cellular oxidation in addition to the RAAS biomarkers, were assessed in knee tissues, along with radiological and histopathological investigations. RESULTS: Elevations in inflammatory and oxidative markers in knee tissues of OA rats were mostly improved by the two therapeutic drugs. Such effect was also reflected in the rotarod, knee bend and knee swelling tests. Treatment with DIZE has shown a more prominent effect than LOS in controlling OA-associated inflammation and cellular oxidation. Markers of RAAS have also shown better responsiveness to DIZE over LOS. CONCLUSIONS: DIZE has shown a prominent increase in the angiotensin 1-7 amount, highlighting the involvement of the signaling pathway in the immunomodulatory effect. The radiological and histopathology examination came to confirm the outcome of biochemical markers, nominating diminazene aceturate as a possible therapeutic option for OA.

11.
Inflammopharmacology ; 31(6): 3263-3279, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725260

RESUMO

The implication of the tissue-localized renin-angiotensin system (RAS) in the pathogenesis of osteoarthritis (OA) has been documented in the last decades. A combination of intraarticular (IA) corticosteroid and hyaluronic acid (HYAL) is approved for pain relief in patients with mild to moderate OA. Combining HYAL with an activator of angiotensin-converting enzyme 2, diminazen aceturate (DIZE), was evaluated in this study for its therapeutic potential. Monosodium iodoacetate was used to induce OA. The effects of daily administration of DIZE versus once-per-week IA injection of HYAL and a combination of both drugs for 21 days on OA deformities in rats' knees were observed. Evaluation of motor activities, pain, and inflammatory response was done using rotarod, knee bend, and knee swelling tests. RAS components, inflammatory biomarkers, and oxidative stress mediators were measured in the knee joint. X-ray radiological examination and histopathological investigations were used to assess joint degeneration and regeneration. Levels of both inflammatory and oxidative markers in knee joint homogenate of OA rats rose, and these increments were mostly improved by the three therapies with a more prominent effect of the drug combination, an effect that was also reflected in the behavioral tests. RAS markers have shown better responsiveness to the combination therapy over both drugs individually, showing a pronounced increase in the angiotensin 1-7 amount. Both radiological and histopathology investigations came to confirm the biochemical results, nominating a combination of HYAL and DIZE as a possible therapeutic option for OA.


Assuntos
Ácido Hialurônico , Peptidil Dipeptidase A , Humanos , Ratos , Animais , Ácido Hialurônico/farmacologia , Enzima de Conversão de Angiotensina 2 , Roedores , Dor
12.
Front Cell Neurosci ; 17: 1131661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502464

RESUMO

Tissue acidification causes sustained activation of primary nociceptors, which causes pain. In mammals, acid-sensing ion channels (ASICs) are the primary acid sensors; however, Na+/H+ exchangers (NHEs) and TRPV1 receptors also contribute to tissue acidification sensing. ASICs, NHEs, and TRPV1 receptors are found to be expressed in nociceptive nerve fibers. ASIC inhibitors reduce peripheral acid-induced hyperalgesia and suppress inflammatory pain. Also, it was shown that pharmacological inhibition of NHE1 promotes nociceptive behavior in acute pain models, whereas inhibition of TRPV1 receptors gives relief. The murine skin-nerve preparation was used in this study to assess the activation of native polymodal nociceptors by mild acidification (pH 6.1). We have found that diminazene, a well-known antagonist of ASICs did not suppress pH-induced activation of CMH-fibers at concentrations as high as 25 µM. Moreover, at 100 µM, it induces the potentiation of the fibers' response to acidic pH. At the same time, this concentration virtually completely inhibited ASIC currents in mouse dorsal root ganglia (DRG) neurons (IC50 = 17.0 ± 4.5 µM). Non-selective ASICs and NHEs inhibitor EIPA (5-(N-ethyl-N-isopropyl)amiloride) at 10 µM, as well as selective NHE1 inhibitor zoniporide at 0.5 µM induced qualitatively the same effects as 100 µM of diminazene. Our results indicate that excitation of afferent nerve terminals induced by mild acidification occurs mainly due to the NHE1, rather than acid-sensing ion channels. At high concentrations, diminazene acts as a weak blocker of the NHE. It lacks chemical similarity with amiloride, EIPA, and zoniporide, so it may represent a novel structural motif for the development of NHE antagonists. However, the effect of diminazene on the acid-induced excitation of primary nociceptors remains enigmatic and requires additional investigations.

13.
Front Pharmacol ; 14: 1192999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324476

RESUMO

Introduction: Histone post-translational modification is one of the most studied factors influencing epigenetic regulation of protozoan parasite gene expression, which is mediated by histone deacetylases (KDACs) and acetyltransferases (KATs). Objective and methods: The present study investigated the role of resveratrol (RVT) as an activator of histone deacetylases in the control of various pathogenic Babesia sp. and Theileria equi in vitro, as well as B. microti infected mice in vivo using fluorescence assay. Its role in mitigating the side effects associated with the widely used antibabesial drugs diminazene aceturate (DA) and azithromycin (AZM) has also been investigated. Results: The in vitro growth of B. bovis, B. bigemina, B. divergens, B. caballi and Theileria equi (T. equi) was significantly inhibited (P < 0.05) by RVT treatments. The estimated IC50 values revealed that RVT has the greatest inhibitory effects on B. bovis growth in vitro, with an IC50 value of 29.51 ± 2.46 µM. Reverse transcription PCR assay showed that such inhibitory activity might be attributed to resveratrol's stimulatory effect on B. bovis KDAC3 (BbKADC3) as well as its inhibitory effect on BbKATS. RVT causes a significant decrease (P < 0.05) in cardiac troponin T (cTnT) levels in heart tissue of B. microti- infected mice, thereby indicating that RVT may play a part in reducing the cardiotoxic effects of AZM. Resveratrol showed an additive effect with imidocarb dipropionate in vivo. Treatment of B. microti-infected mice with a combined 5 mg/kg RVT and 8.5 mg/kg ID resulted in an 81.55% inhibition at day 10 postinoculation (peak of parasitemia). Conclusion: Our data show that RVT is a promising antibabesial pharmacological candidate with therapeutic activities that could overcome the side effects of the currently used anti-Babesia medications.

14.
Mol Brain ; 16(1): 52, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312182

RESUMO

Angiotensin (Ang)-converting-enzyme (ACE) 2 converts Ang II into Ang (1-7), which in turn acts on MAS receptors (ACE2/Ang (1-7)/MAS receptors pathway). This pathway has neuroprotective properties, making it a potential therapeutic target for psychiatric disorders such as depression. Thus, we examined the effects of diminazene aceturate (DIZE), an ACE2 activator, on depressive-like behavior using behavioral, pharmacological, and biochemical assays. To determine whether DIZE or Ang (1-7) produce antidepressant-like effects, we measured the duration of immobility of mice in the tail suspension test following their intracerebroventricular administration. Next, we measured the levels of ACE2 activation in the cerebral cortex, prefrontal cortex, hippocampus, and amygdala after DIZE injection, and examined which cell types, including neurons, microglia, and astrocytes, express ACE2 in the hippocampus using immunofluorescence. Administration of DIZE or Ang (1-7) significantly shortened the duration of immobility time in the tail suspension test, while this effect was inhibited by the co-administration of the MAS receptor antagonist A779. DIZE activated ACE2 in the hippocampus. ACE2 was localized to neurons, astrocytes, and microglia in the hippocampus. In conclusion, these results suggest that DIZE may act on ACE2-positive cells in the hippocampus where it increases the activity of ACE2, thereby enhancing signaling of the ACE2/Ang (1-7)/MAS receptor pathway and resulting in antidepressant-like effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antidepressivos , Animais , Camundongos , Tonsila do Cerebelo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Cerebral , Hipocampo
15.
Microvasc Res ; 148: 104544, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127063

RESUMO

Alleviating vascular barrier injury improves colitis. Angiotensin converting enzyme 2/angiotensin 1-7/Mas receptor (ACE2/Ang1-7/MasR) axis-related drugs have various biological properties, such as inhibition of inflammation and fibrosis, but their role in improving the gut-vascular barrier (GVB) has rarely been reported. This study aims to investigate the effects of diminazene aceturate (DIZE), an ACE2 activator, on vascular barrier damage in colitis. Mice were randomly divided into three groups: control, dextran sulfate sodium salt (DSS), and DIZE+DSS. Mice in the DSS group drank DSS for 8 days starting on day 4. Mice in the DIZE+DSS group were pregavaged with DIZE for 3 days and then drank DSS for 8 days while continuing to be gavaged with DIZE for 4 days. Mice were euthanized and samples were collected on the last day. Injury to colonic structure and colonic microvasculature was assessed by visual observation and appropriate staining. DSS-induced colonic and microvascular pathological damage in mice was substantially reversed by DIZE treatment. Molecular pathways were investigated by Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme linked immunosorbent assay (ELISA). DSS treatment upregulated angiotensin converting enzyme (ACE), angiotensin type 1 receptor (AT1R) protein, pro-inflammatory cytokines and inhibited tight junction-related protein expression. DIZE treatment activated ACE2/MasR protein expression and reversed epithelial barrier damage and inflammatory infiltration during DSS injury. In addition, DIZE treatment inhibited vascular endothelial growth factor A/vascular endothelial growth factor receptor 2/proto-oncogene tyrosine-protein kinase Src (VEGFA/VEGFR2/Src) pathway activation and restored vascular adhesion-linker protein vascular endothelial cadherin (VE-cadherin) expression during DSS injury. In conclusion, DIZE treatment ameliorated colitis, which was associated with balancing the two axes of the renin-angiotensin system (RAS) and repairing the GVB injury.


Assuntos
Enzima de Conversão de Angiotensina 2 , Colite , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-37038707

RESUMO

AIMS: The study investigated the effect of L-tartaric acid on diminazene-indiuced vasorelaxation. BACKGROUND: Diminazene is known to induce vasorelaxation through the stimulation of angiotensin-converting enzyme (ACE-2). OBJECTIVE: This work was designed to study the effect of L-tartaric acid on diminazene-induced vasorelaxation using an ex vivo approach. MATERIAL AND METHODS: In the current investigation, the inhibitory effect of L-tartaric acid on diminazene-induced relaxation. RESULTS: The results confirmed that L-tartaric acid was able to inhibit in a dose-dependent manner diminazene-induced vasorelaxation. CONCLUSION: This investigation provides important experimental evidence of the efficacy of L-tartaric acid in inhibiting diminazene-induced vasorelaxation.

17.
Diabetes Metab J ; 47(4): 487-499, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096378

RESUMO

BACKGRUOUND: Diabetes mellitus is one of the most common chronic diseases worldwide, and cardiovascular disease is the leading cause of morbidity and mortality in diabetic patients. Diabetic cardiomyopathy (DCM) is a phenomenon characterized by a deterioration in cardiac function and structure, independent of vascular complications. Among many possible causes, the renin-angiotensin-aldosterone system and angiotensin II have been proposed as major drivers of DCM development. In the current study, we aimed to investigate the effects of pharmacological activation of angiotensin-converting enzyme 2 (ACE2) on DCM. METHODS: The ACE2 activator diminazene aceturate (DIZE) was administered intraperitoneally to male db/db mice (8 weeks old) for 8 weeks. Transthoracic echocardiography was used to assess cardiac mass and function in mice. Cardiac structure and fibrotic changes were examined using histology and immunohistochemistry. Gene and protein expression levels were examined using quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Additionally, RNA sequencing was performed to investigate the underlying mechanisms of the effects of DIZE and identify novel potential therapeutic targets for DCM. RESULTS: Echocardiography revealed that in DCM, the administration of DIZE significantly improved cardiac function as well as reduced cardiac hypertrophy and fibrosis. Transcriptome analysis revealed that DIZE treatment suppresses oxidative stress and several pathways related to cardiac hypertrophy. CONCLUSION: DIZE prevented the diabetes mellitus-mediated structural and functional deterioration of mouse hearts. Our findings suggest that the pharmacological activation of ACE2 could be a novel treatment strategy for DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Masculino , Animais , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Estresse Oxidativo , Cardiomegalia , Angiotensinas/metabolismo
18.
Kidney Res Clin Pract ; 42(2): 188-201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37037481

RESUMO

BACKGROUND: Diminazene aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, exerts anti-inflammatory and antifibrotic effects in a variety of human chronic diseases. However, the role of DIZE in kidney fibrosis and the underlying mechanism remain unclear. Therefore, we investigated the effects of DIZE on the progression of renal fibrosis after unilateral ureteral obstruction (UUO), a well-established model of chronic kidney disease. METHODS: C57BL/6 female or male mice were subjected to right UUO. Mice received 15 mg/kg DIZE or vehicle (saline) daily. On the 7th day after UUO, kidneys were collected for analysis of renal fibrosis (α-smooth muscle actin, phosphorylated SMAD3, transforming growth factor (TGF)-ß, Masson's trichrome, and Sirius red staining), inflammation (macrophage infiltration, proinflammatory cytokines/ chemokines), apoptosis/necrotic cell death (TUNEL and periodic acid-Schiff staining), and ACE2 activity and messenger RNA (mRNA) expression. RESULTS: Treatment with DIZE exacerbated renal fibrosis by upregulating the profibrotic TGF-ß/SMAD3 pathway, proinflammatory cytokine/chemokines (interleukin [IL]-1ß, monocyte chemoattractant protein-1, IL-6, and macrophage inflammatory protein-2) levels, M2 macrophage accumulation (CD206, IL-4, IL-10, and CX3CL1), and apoptotic/necrotic cell death in the obstructed kidneys of female mice but not male mice. However, DIZE treatment had no effect on ACE2 activity or mRNA expression. CONCLUSION: DIZE exacerbates UUO-induced renal fibrosis by aggravating tubular damage, apoptosis, and inflammation through independent of angiotensin (1-7), angiotensin II levels, and ACE2 expression/activity, rather than protecting against renal fibrosis after UUO. DIZE also has powerful effects on recruiting macrophages, including the M2-polarized subtype, in female UUO mice.

19.
Ticks Tick Borne Dis ; 14(4): 102145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011497

RESUMO

In the present study, the effect of a combination therapy consisting of diminazene aceturate (DA) and imidocarb dipropionate (ID) on the in vitro growth of several parasitic piroplasmids, and on Babesia microti in BALB/c mice was evaluated using a fluorescence-based SYBR Green I test. We evaluated the structural similarities between the regularly used antibabesial medications, DA and ID, and the recently found antibabesial drugs, pyronaridine tetraphosphate, atovaquone, and clofazimine, using atom pair fingerprints (APfp). The Chou-Talalay approach was used to determine the interactions between the two drugs. A Celltac MEK-6450 computerized hematology analyzer was used to detect hemolytic anemia every 96 hours in mice infected with B. microti and in those treated with either mono- or combination therapy. According to the APfp results, DA and ID have the most structural similarities (MSS). DA and ID had synergistic and additive interactions against the in vitro growth of Babesia bigemina and Babesia bovis, respectively. Low dosages of DA (6.25 mg kg-1) and ID (8.5 mg kg-1) in conjunction with each other inhibited B. microti growth by 16.5 %, 32 %, and 4.5 % more than 25 mg kg-1 DA, 6.25 mg kg-1 DA, and 8.5 mg kg-1 ID monotherapies, respectively. In the blood, kidney, heart, and lung tissues of mice treated with DA/ID, the B. microti small subunit rRNA gene was not detected. The obtained findings suggest that DA/ID could be a promising combination therapy for treating bovine babesiosis. Also, such combination may overcome the potential problems of Babesia resistance and host toxicity induced by utilizing full doses of DA and ID.


Assuntos
Babesia , Babesiose , Theileria , Animais , Camundongos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Imidocarbo/uso terapêutico
20.
Ticks Tick Borne Dis ; 14(1F1): 102141, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36812788

RESUMO

In the present study, the effect of a combination therapy consisting of diminazene aceturate (DA) and imidocarb dipropionate (ID) on the in vitro growth of several parasitic piroplasmids, and on Babesia microti in BALB/c mice was evaluated using a fluorescence-based SYBR Green I test. We evaluated the structural similarities between the regularly used antibabesial medications, DA and ID, and the recently found antibabesial drugs, pyronaridine tetraphosphate, atovaquone, and clofazimine, using atom pair fingerprints (APfp). The Chou-Talalay approach was used to determine the interactions between the two drugs. A Celltac MEK-6450 computerized hematology analyzer was used to detect hemolytic anemia every 96 h in mice infected with B. microti and in those treated with either mono- or combination therapy. According to the APfp results, DA and ID have the most structural similarities (MSS). DA and ID had synergistic and additive interactions against the in vitro growth of Babesia bigemina and Babesia bovis, respectively. Low dosages of DA (6.25 mg kg-1) and ID (8.5 mg kg-1) in conjunction with each other inhibited B. microti growth by 16.5, 32, and 4.5% more than 25 mg kg-1 DA, 6.25 mg kg-1 DA, and 8.5 mg kg-1 ID monotherapies, respectively. In the blood, kidney, heart, and lung tissues of mice treated with DA/ID, the B. microti small subunit rRNA gene was not detected. The obtained findings suggest that DA/ID could be a promising combination therapy for treating bovine babesiosis. Also, such combination may overcome the potential problems of Babesia resistance and host toxicity induced by utilizing full doses of DA and ID.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA