Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
J Cyst Fibros ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969602

RESUMO

BACKGROUND: Effective detection of early lung disease in cystic fibrosis (CF) is critical to understanding early pathogenesis and evaluating early intervention strategies. We aimed to compare ability of several proposed sensitive functional tools to detect early CF lung disease as defined by CT structural disease in school aged children. METHODS: 50 CF subjects (mean±SD 11.2 ± 3.5y, range 5-18y) with early lung disease (FEV1≥70 % predicted: 95.7 ± 11.8 %) performed spirometry, Multiple breath washout (MBW, including trapped gas assessment), oscillometry, cardiopulmonary exercise testing (CPET) and simultaneous spirometer-directed low-dose CT imaging. CT data were analysed using well-evaluated fully quantitative software for bronchiectasis and air trapping (AT). RESULTS: CT bronchiectasis and AT occurred in 24 % and 58 % of patients, respectively. Of the functional tools, MBW detected the highest rates of abnormality: Scond 82 %, MBWTG RV 78 %, LCI 74 %, MBWTG IC 68 % and Sacin 51 %. CPET VO2peak detected slightly higher rates of abnormality (9 %) than spirometry-based FEV1 (2 %). For oscillometry AX (14 %) performed better than Rrs (2 %) whereas Xrs and R5-19 failed to detect any abnormality. LCI and Scond correlated with bronchiectasis (r = 0.55-0.64, p < 0.001) and AT (r = 0.73-0.74, p < 0.001). MBW-assessed trapped gas was detectable in 92 % of subjects and concordant with CT-assessed AT in 74 %. CONCLUSIONS: Significant structural and functional deficits occur in early CF lung disease, as detected by CT and MBW. For MBW, additional utility, beyond that offered by LCI, was suggested for Scond and MBW-assessed gas trapping. Our study reinforces the complementary nature of these tools and the limited utility of conventional oscillometry and CPET in this setting.

2.
Cell Metab ; 36(7): 1482-1493.e7, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959862

RESUMO

Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.


Assuntos
Envelhecimento , Face , Doenças Metabólicas , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Masculino , Feminino , Idoso de 80 Anos ou mais , Adulto Jovem , Aprendizado Profundo , Temperatura Corporal , Processamento de Imagem Assistida por Computador
3.
Adv Sci (Weinh) ; : e2400595, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958517

RESUMO

Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.

4.
Sci Rep ; 14(1): 15041, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951552

RESUMO

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Assuntos
Aprendizado de Máquina , Musa , Redes Neurais de Computação , Doenças das Plantas , Folhas de Planta , Algoritmos
5.
Comput Biol Med ; 179: 108844, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981214

RESUMO

This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.

6.
Cell Rep Med ; : 101625, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38944038

RESUMO

Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions, a large-scale analysis of a naturally heterogeneous potential patient population has not been attempted. Using a population-based cohort, here we analyze 5,184 blood plasma samples from 3,169 individuals using Fourier transform infrared (FTIR) spectroscopy. Applying a multi-task classification to distinguish between dyslipidemia, hypertension, prediabetes, type 2 diabetes, and healthy states, we find that the approach can accurately single out healthy individuals and characterize chronic multimorbid states. We further identify the capacity to forecast the development of metabolic syndrome years in advance of onset. Dataset-independent testing confirms the robustness of infrared signatures against variations in sample handling, storage time, and measurement regimes. This study provides the framework that establishes infrared molecular fingerprinting as an efficient modality for populational health diagnostics.

7.
Plants (Basel) ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931063

RESUMO

The vector-transmitted Citrus Greening (CG) disease, also called Huanglongbing, is one of the most destructive diseases of citrus. Since no measures for directly controlling this disease are available at present, current disease management integrates several measures, such as vector control, the use of disease-free trees, the removal of diseased trees, etc. The most essential issue in integrated management is how CG-infected trees can be detected efficiently. For CG detection, digital image analyses using deep learning algorithms have attracted much interest from both researchers and growers. Models using transfer learning with the Faster R-CNN architecture were constructed and compared with two pre-trained Convolutional Neural Network (CNN) models, VGGNet and ResNet. Their efficiency was examined by integrating their feature extraction capabilities into the Convolution Block Attention Module (CBAM) to create VGGNet+CBAM and ResNet+CBAM variants. ResNet models performed best. Moreover, the integration of CBAM notably improved CG disease detection precision and the overall performance of the models. Efficient models with transfer learning using Faster R-CNN were loaded on web applications to facilitate access for real-time diagnosis by farmers via the deployment of in-field images. The practical ability of the applications to detect CG disease is discussed.

8.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931113

RESUMO

In this study, an advanced method for apricot tree disease detection is proposed that integrates deep learning technologies with various data augmentation strategies to significantly enhance the accuracy and efficiency of disease detection. A comprehensive framework based on the adaptive sampling latent variable network (ASLVN) and the spatial state attention mechanism was developed with the aim of enhancing the model's capability to capture characteristics of apricot tree diseases while ensuring its applicability on edge devices through model lightweighting techniques. Experimental results demonstrated significant improvements in precision, recall, accuracy, and mean average precision (mAP). Specifically, precision was 0.92, recall was 0.89, accuracy was 0.90, and mAP was 0.91, surpassing traditional models such as YOLOv5, YOLOv8, RetinaNet, EfficientDet, and DEtection TRansformer (DETR). Furthermore, through ablation studies, the critical roles of ASLVN and the spatial state attention mechanism in enhancing detection performance were validated. These experiments not only showcased the contributions of each component for improving model performance but also highlighted the method's capability to address the challenges of apricot tree disease detection in complex environments. Eight types of apricot tree diseases were detected, including Powdery Mildew and Brown Rot, representing a technological breakthrough. The findings provide robust technical support for disease management in actual agricultural production and offer broad application prospects.

9.
Front Plant Sci ; 15: 1352935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938642

RESUMO

Introduction: Precise semantic segmentation of microbial alterations is paramount for their evaluation and treatment. This study focuses on harnessing the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, aiming to improve disease detection accuracy under natural acquisition conditions. Methods: Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-B5 - were thoroughly analyzed to enhance disease detection, targeting diseases such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot, Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted of 2,450 raw images, expanded to 4,574 augmented images. The Segment Anything Model integrated into the Roboflow annotation tool facilitated efficient annotation and dataset preparation. Results: The results reveal that MiT-B0 demonstrates balanced but slightly overfitting behavior, MiT-B3 adapts rapidly with consistent training and validation performance, and MiT-B5 offers efficient learning with occasional fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently outperformed MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general. Discussion: The findings provide key insights for researchers to select the most suitable encoder for disease detection applications, propelling the field forward for further investigation. The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.

10.
Tomography ; 10(6): 894-911, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921945

RESUMO

In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and perform classification between Parkinson's disease patients and healthy participants using Machine Learning algorithms. In addition, the proposed approach provides insights into the brain regions affected by the disease. The functional Magnetic Resonance Imaging from the PPMI and 1000-FCP datasets were pre-processed to extract time series from 200 brain regions per participant, resulting in 11,600 features. Causal Forest and Wrapper Feature Subset Selection algorithms were used for dimensionality reduction, resulting in a subset of features based on their heterogeneity and association with the disease. We utilized Logistic Regression and XGBoost algorithms to perform PD detection, achieving 97.6% accuracy, 97.5% F1 score, 97.9% precision, and 97.7%recall by analyzing sets with fewer than 300 features in a population including men and women. Finally, Multiple Correspondence Analysis was employed to visualize the relationships between brain regions and each group (women with Parkinson, female controls, men with Parkinson, male controls). Associations between the Unified Parkinson's Disease Rating Scale questionnaire results and affected brain regions in different groups were also obtained to show another use case of the methodology. This work proposes a methodology to (1) classify patients and controls with Machine Learning and Causal Forest algorithm and (2) visualize associations between brain regions and groups, providing high-accuracy classification and enhanced interpretability of the correlation between specific brain regions and the disease across different groups.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
11.
Diagnostics (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928728

RESUMO

Computed tomography (CT) scans have recently emerged as a major technique for the fast diagnosis of lung diseases via image classification techniques. In this study, we propose a method for the diagnosis of COVID-19 disease with improved accuracy by utilizing graph convolutional networks (GCN) at various layer formations and kernel sizes to extract features from CT scan images. We apply a U-Net model to aid in segmentation and feature extraction. In contrast with previous research retrieving deep features from convolutional filters and pooling layers, which fail to fully consider the spatial connectivity of the nodes, we employ GCNs for classification and prediction to capture spatial connectivity patterns, which provides a significant association benefit. We handle the extracted deep features to form an adjacency matrix that contains a graph structure and pass it to a GCN along with the original image graph and the largest kernel graph. We combine these graphs to form one block of the graph input and then pass it through a GCN with an additional dropout layer to avoid overfitting. Our findings show that the suggested framework, called the feature-extracted graph convolutional network (FGCN), performs better in identifying lung diseases compared to recently proposed deep learning architectures that are not based on graph representations. The proposed model also outperforms a variety of transfer learning models commonly used for medical diagnosis tasks, highlighting the abstraction potential of the graph representation over traditional methods.

12.
Diagnostics (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893673

RESUMO

Spreading quickly throughout populations, whether animal or human-borne, infectious illnesses provide serious risks and difficulties. Controlling their spread and averting disinformation requires effective risk assessment and epidemic identification. Technology-enabled data analysis on diseases allows for quick solutions to these problems. A Combinational Data Assessment Scheme intended to accelerate disease detection is presented in this paper. The suggested strategy avoids duplicate data replication by sharing data among edge devices. It uses indexed data gathering to improve early detection by using tree classifiers to discern between various kinds of information. Both data similarity and index measurements are considered throughout the data analysis stage to minimize assessment errors. Accurate risk detection and assessment based on information kind and sharing frequency are ensured by comparing non-linear accumulations with accurate shared edge data. The suggested system exhibits high accuracy, low mistakes, and decreased data repetition to improve overall effectiveness in illness detection and risk reduction.

13.
PeerJ Comput Sci ; 10: e2056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855222

RESUMO

Mild cognitive impairment (MCI) is a precursor to neurodegenerative diseases such as Alzheimer's disease, and an early diagnosis and intervention can delay its progression. However, the brain MRI images of MCI patients have small changes and blurry shapes. At the same time, MRI contains a large amount of redundant information, which leads to the poor performance of current MCI detection methods based on deep learning. This article proposes an MCI detection method that integrates the attention mechanism and parallel dilated convolution. By introducing an attention mechanism, it highlights the relevant information of the lesion area in the image, suppresses irrelevant areas, eliminates redundant information in MRI images, and improves the ability to mine detailed information. Parallel dilated convolution is used to obtain a larger receptive field without downsampling, thereby enhancing the ability to acquire contextual information and improving the accuracy of small target classification while maintaining detailed information on large-scale feature maps. Experimental results on the public dataset ADNI show that the detection accuracy of the method on MCI reaches 81.63%, which is approximately 6.8% higher than the basic model. The method is expected to be used in clinical practice in the future to provide earlier intervention and treatment for MCI patients, thereby improving their quality of life.

14.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885023

RESUMO

Dollar spot is a major fungal disease affecting turfgrass worldwide and can quickly destroy turfgrass swards. An assimilating probe-based loop-mediated amplification (LAMP) assay was developed to detect Clarireedia monteithiana and C. jacksonii, the causal agents of dollar spot within the continental US. Five LAMP primers were designed to target the calmodulin gene with the addition of a 6-carboxyl-fluorescein florescent assimilating probe and the temperature amplification was optimized for C. jacksonii and C. monteithiana identification. The minimum amount purified DNA needed for detection was 0.05 ng µL-1. Specificity assays against host DNA and other turfgrass pathogens were negative. Successful LAMP amplification was also observed for dollar spot infected turfgrass field samples. Further, a DNA extraction technique via rapid heat-chill cycles and visualization of LAMP results via a florescent flashlight was developed and adapted for fast, simple and reliable detection in 1.25 hours. This assimilating probe-based LAMP assay has proved successful as a rapid, sensitive, and specific detection of C. monteithiana and C. jacksonii in pure cultures and from symptomatic turfgrass leaves blades. The assay represents a promising technology to be used in the field for on-site, point-of-care pathogen detection.

15.
Sci Rep ; 14(1): 13249, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858481

RESUMO

Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.


Assuntos
Aprendizado Profundo , Eritrócitos , Malária , Eritrócitos/parasitologia , Humanos , Malária/diagnóstico , Malária/sangue , Malária/parasitologia
16.
Radiography (Lond) ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942647

RESUMO

INTRODUCTION: Alzheimer's disease (AD), the most common cause of dementia, presents a global health crisis with its prevalence expected to triple worldwide by 2050, emphasizing the urgent need for early diagnosis to delay progression and improve patient quality of life. Our project aims to detect AD in its early phase by identifying subtle neuroanatomical changes with Radiomics features, offering a more accurate diagnosis. METHODS: The AssemblyNet segmentation model was used to analyze brain changes by employing anonymized T1 MRI scans from 416 patients. For each segmented label we extracted Radiomic features. After preprocessing of Radiomic features we trained four models, Gradient Booster, Random Forest, Support Vector Classifier, and XGBoost, in a 70%/20%/10% train, validation and test split. All models were hyperparameter tuned with GridSearch, Cross validation and evaluated with accuracy on the test data. RESULTS: 208 T1-weighted MRI scans were segmented, with 132 segmentation labels per patient, 1130 Radiomic features per segmentation, totalling in over 31 million features. For all four models we achieved accuracies between 0.71 and 0.86, and the machine learning model with highest accuracy were XGBoost, achieving an accuracy at 0.86 on the segmentation of the left inferior lateral ventricle. CONCLUSION: Our study's use of segmentation on T1-weighted MRI scans resulted promising accuracies for early AD diagnosis with the machine learning model XGBoost, peaking at 0.86 accuracy. Future research should aim to expand datasets and refine methodologies for broader applicability. IMPLICATION FOR PRACTICE: Implementing Radiomics for early AD detection using T1-weighted MRI scans could substantially improve diagnostic accuracy, enabling earlier interventions that may delay disease progression and improve outcomes, thereby requiring radiographers to adopt more advanced imaging techniques and analysis tools, as well as additional training to effectively interpret complex Radiomic data.

17.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932576

RESUMO

BACKGROUND: In the agricultural sector, the early identification of plant diseases presents a pressing challenge. Throughout the growing season, plants remain vulnerable to an array of diseases. Failure to detect these diseases at their early stages can significantly compromise the overall yield, thereby reducing profitability for farmers. To address this issue, several researchers have introduced standard methods that leverage machine learning and deep learning techniques. However, many of these methods offer limited classification accuracy and often necessitate extensive training parameter adjustments. METHOD: The objective of this study is to develop a new deep learning-based technique for detecting and classifying plant diseases at earlier stages. Thus, this paper introduces a novel technique known as the deep belief network-based enhanced kernel extreme learning machine (DBN-EKELM) that identifies a disease automatically and performs effective classification. The initial phase involves data preprocessing to enhance quality of plant leaf images, facilitating the extraction of critical information. With the goal of achieving superior classification accuracy, this paper proposes the use of the DBN-EKELM technique for optimal plant leaf disease detection. Given that KELM parameters are highly sensitive to minor variations, proper parameter tuning is essential and introduces a novel binary gaining sharing knowledge-based optimization algorithm (NBGSK). RESULT: The efficacy of the proposed DBN-EKELM method is evaluated by comparing its performance with other conventional methods, considering various measures like accuracy, precision, specificity, sensitivity and F-measure. CONCLUSION: Experimental analyses demonstrate that the DBN-EKELM technique achieves an impressive rate of approximately 98.2%, 97%, 98.1%, 97.4% as well as 97.8%, surpassing other standard methods. © 2024 Society of Chemical Industry.

18.
Prev Vet Med ; 229: 106235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833805

RESUMO

Digital dermatitis (DD) is a bovine claw disease responsible for ulcerative lesions on the planar aspect of the hoof. DD is associated with massive herd outbreaks of lameness and influences cattle welfare and production. Early detection of DD can lead to prompt treatment and decrease lameness. Computer vision (CV) provides a unique opportunity to improve early detection. The study aims to train and compare applications for the real-time detection of DD in dairy cows. Eight CV models were trained for detection and scoring, compared using performance metrics and inference time, and the best model was automated for real-time detection using images and video. Images were collected from commercial dairy farms while facing the interdigital space on the plantar surface of the foot. Images were scored for M-stages of DD by a trained investigator using the M-stage DD classification system with distinct labels for hyperkeratosis (H) and proliferations (P). Two sets of images were compiled: the first dataset (Dataset 1) containing 1,177 M0/M4H and 1,050 M2/M2P images and the second dataset (Dataset 2) containing 240 M0, 17 M2, 51 M2P, 114 M4H, and 108 M4P images. Models were trained to detect and score DD lesions and compared for precision, recall, and mean average precision (mAP) in addition to inference time in frame per second (FPS). Seven of the nine CV models performed well compared to the ground truth of labeled images using Dataset 1. The six models, Faster R-CNN, Cascade R-CNN, YOLOv3, Tiny YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s achieved an mAP between 0.964 and 0.998, whereas the other two models, SSD and SSD Lite, yielded an mAP of 0.371 and 0.387 respectively. Overall, YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all other models with almost perfect precision, perfect recall, and a higher mAP. Tiny YOLOv4 outperformed all other models with respect to inference time at 333 FPS, followed by YOLOv5s at 133 FPS and YOLOv4 at 65 FPS. YOLOv4 and Tiny YOLOv4 performed better than YOLOv5s compared to the ground truth using Dataset 2. YOLOv4 and Tiny YOLOv4 yielded a similar mAP of 0.896 and 0.895, respectively. However, Tiny YOLOv4 achieved both higher precision and recall compared to YOLOv4. Finally, Tiny YOLOv4 was able to detect DD lesions on a commercial dairy farm with high performance and speed. The proposed CV tool can be used for early detection and prompt treatment of DD in dairy cows. This result is a step towards applying CV algorithms to veterinary medicine and implementing real-time DD detection on dairy farms.


Assuntos
Doenças dos Bovinos , Dermatite Digital , Animais , Bovinos , Dermatite Digital/diagnóstico , Doenças dos Bovinos/diagnóstico , Feminino , Algoritmos , Indústria de Laticínios/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...