Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
J Environ Manage ; 366: 121794, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986371

RESUMO

Granular sludge is an alternative technology for the direct treatment of acidic nitrate-containing wastewater. Rapid remediation of disintegrated granules is essential to achieve efficient nitrogen removal. In this study, denitrifying granules were inactivated and disintegrated when the influent nitrate-nitrogen concentration was elevated from 240 to 360 mg L-1 in acidic wastewater (pH = 4.1) in a sequencing batch reactor. Tightly bound extracellular polymeric substances (TB-EPS) decreased by 60%, and extracellular protein (PN) was the main component of the reduced EPS. The three-dimensional excitation emission matrices (3D-EEM) results confirmed that the PNs that decreased were mainly tryptophan-like, tyrosine-like, and aromatic. This study further confirmed that the decrease in PN was mainly from the destruction of C=O (amide I) and N-H functional groups. Overloading of nitrogen-inhibited denitrifying activity and the destruction and dissolution of TB-EPS by acidic pH were responsible for granule disintegration, with PNs playing a major role in maintaining granule stability. Based on this, new granules with an average particle size of 454.4 µm were formed after calcium chloride addition; EPS nearly doubled during granule formation with PN as the dominant component, accounting for 64.7-78.4% of the EPS. Atomic force microscopy (AFM) revealed that PN-PN adhesion increased by 1.6-4.9 times in the presence of calcium ions, accelerating the re-granulation of disintegrated particles. This study provides new insights into the disintegration and remediation of granular sludge under acidic conditions.

2.
Int J Pharm ; 661: 124467, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004293

RESUMO

Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder. The effect of wet granulation was studied by evaluating tablet tensile strength and disintegratability. Comparison between tablets with granulated or ungranulated disintegrants as well those without disintegrants were also made. Different formulations showed different degrees of sensitivity to changes in tablet tensile strength and disintegratability post-wet granulation. Tablet tensile strength decreased for tablets with granulated disintegrant XPVP or CCS, but to a smaller extent for SSG. While tablets with granulated XPVP or CCS had increased disintegration time, the increment was lesser than for SSG, suggesting that wet granulation impacted a swelling disintegrant more. The findings showed that tablets with wet-granulated disintegrant had altered the disintegrant's functionality. These findings could provide better insights into changes in the disintegrant's functionality after wet granulation.

3.
Chempluschem ; : e202400016, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036885

RESUMO

Sludge disintegration is an environmental and industrial challenge that requires intensive research and technological development. Sludge contains a complex structure with a high yield of various chemical and biological compounds. Anaerobic digestion is the most used process for sludge disintegration to produce biogas, detoxify the sludge, and generate biosolids that can be used in agricultural. Biological cell lysis is the rate-limiting cell lysis. This review discusses the application of sonolysis as a sludge pretreatment for enhanced anaerobic digestion via three combined processes: thermal destruction, hydrochemical shear forces, and radical oxidation. The mechanistic pathways of sono-pretreatment to enhance biogas, sludge-enhanced dewatering, activation of filamentous bacteria, oxidation of organic pollutants, release of heavy metals, reduction of bulking and foaming sludge, and boosting ammonia-oxidizing bacteria activity are discussed in this report. The combination of ultrasound with other chemical processes, such as Fenton and cation binding agents for enhanced sludge disintegration, is discussed. Finally, we reviewed the most common large-scale sono-reactors available on the market for sludge disintegration.

4.
J Control Release ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032576

RESUMO

Pharmaceutical tablets are often coated with a layer of polymeric material to protect the drug from environmental degradation, facilitate the packaging process, and enhance patient compliance. However, the detailed effects of such coating layers on drug release are not well understood. To investigate this, flat-faced pure microcrystalline cellulose tablets with a diameter of 13 mm and a thickness between 1.5 mm to 1.6 mm were directly compressed, and a film coating layer with a thickness of 80 µm to 120 µm was applied to one face of these tablets. This tablet geometry and immediate release film coating were chosen as a model system to understand how the film coating interacts with the tablet core. The coating hydration and dissolution process was studied using terahertz pulsed imaging, while optical coherence tomography was used to capture further details on the swelling process of the polymer in the coated tablet. The study investigated the film coating polymer dissolution process and found the gelling of dissolving polymer restricted the capillary liquid transport in the core. These findings can help predict the dissolution of film coating within the typical range of thickness (30 µm to 40 µm) and potentially be extended to understand modified release coating formulations.

5.
Int J Environ Health Res ; : 1-19, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888467

RESUMO

The waste biological sludge disintegration by using microwave irradiation was investigated at a ramping rate of 2°C/min and 5 min holding time at various target temperatures. Significant disintegration of biosludge was observed and the highest disintegration degree was determined about 82% at the temperature of 110°C. Increase of target temperature elevated the energy needs to 98, 123 and 148 kWh/kg TS at the temperatures of 75°C, 90°C and 110°C, respectively. The gradual increase of sugar and protein in the sludge slurry with increasing temperatures indicates successful degradation. The microwave pretreatment increased the specific surface area of the sludge by particle size reduction. The specific surface area of raw sludge was 70 m2/kg and rose to approximately 253.7 m2/kg at 110°C with an increment ratio of 260%. Although a significant NH4-N release was not observed, PO4-P concentrations increased from 11.0 mg/L to 16.3, 20.7 and 29.2 mg/L at the temperatures of 75°C, 90°C, 110°C, respectively. While the specific filter resistance of waste biological sludge was about 1.0 × 1013, increasing the microwave target temperature, the ability of dewatering decreased and the highest SFR value of 5.1 × 1014 was observed at the temperature of 110°C.

6.
Ther Deliv ; : 1-11, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38888592

RESUMO

Aim: The objective of this study was to develop and characterize the physical properties of fast-melting tablets (FMTs) using cocoa butter as the base and caffeine as the model drug. Method: The simple refrigerator freezing method was employed to prepare caffeine-loaded, FMTs from cocoa butter bases. Results: The F3 chosen formulation achieved a disintegration time of 1.20 min ± 0.035, which falls within the specified limit set by the European Pharmacopoeia. The cumulative drug release data of F3, was 88.52 and 94.08% within 60 and 75 min, respectively (NLT 85% as per US FDA requirement). All the other physical test standards for FMTs met the pharmacopeial specifications. Conclusion: Based on the findings, the simple refrigerator freezing method could be used to formulate FMTs.


Patient-friendly natural caffeine-loaded cocoa butter-based fast-melting tablets with rapid disintegration, affordability, safety and biocompatibility are an efficient base for drug delivery.

7.
Environ Sci Pollut Res Int ; 31(29): 42461-42475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874754

RESUMO

Leading phytopathological research is focused on managing seed-borne pathogens of rice through the utilization of engineered nanomaterials. Herein, blue laser-induced topo-morphologically nano-advanced copper salicylates (Cu-SA) (Cu/SA in 1:1 and 1:2 ratio) were prepared and evaluated for their augmented antifungal potential along seed invigoration effects in contrast to their prepared sonicated formulations. Laser disintegration on the Cu-SA (Cu/SA in 1:1 and 1:2 ratio) was achieved with high degree of success and precision using blue laser, which yielded uniformly distributed spherical nanoparticles with a narrow size distribution and better crystallinity than aqua-dispersed sonicated formulations. In vitro antifungal evaluation against seed-borne fungi of rice viz. Fusarium verticillioides and Fusarium fujikuroi revealed multiple times the augmented potential of laser-disintegrated nanoformulations (l-CuSA) than sonicated (s-CuSA) and bulk samples. Laser-induced nano-sodium bis(2-oxobenzoato)cuprate (II) (l-CuSA2) with Cu/SA in 1:2 ratio was the best to inhibit the in vitro fungal growth. Ultra-micrographs and fungal double-staining assay further rationalized the membrane disruption as the mode of action for the fungitoxicity. Nanopriming of fungal infested rice seeds with l-CuSA2 at 2500 µg/mL for 8 h showed the maximum reduction of seed rot (80.43%) and seedling blight (63.15%) with respect to control (untreated). The seed-invigorating factors of l-CuSA2 nanoprimed seeds were enhanced to maximum extent and showed the highest per cent germination (35.29%), shoot length (11.42%), root length (21.14%), dry weight (75.43%) and vigour index (81.04%) over the control. Inclusively, the seed nanopriming with l-CuSA2 proved as agro-compatible hypo-toxic semi natural nanoplatform for sustainable agriculture.


Assuntos
Cobre , Nanopartículas , Oryza , Ácido Salicílico , Sementes , Oryza/microbiologia , Cobre/química , Cobre/farmacologia , Nanopartículas/química , Lasers , Fusarium/efeitos dos fármacos , Antifúngicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
8.
Gels ; 10(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38920926

RESUMO

The aim of this study was to obtain films based on sodium alginate (SA) for disintegration in the oral cavity. The films were prepared with a solvent-casting method, and meloxicam (MLX) as the active ingredient was suspended in a 3% sodium alginate solution. Two different solid-dosage-form additives containing different disintegrating agents, i.e., VIVAPUR 112® (MCC; JRS Pharma, Rosenberg, Germany) and Prosolve EASYtabs SP® (MIX; JRS Pharma, Rosenberg, Germany), were used, and four different combinations of drying time and temperature were tested. The influence of the used disintegrant on the properties of the ODFs (orodispersible films) was investigated. The obtained films were studied for their appearance, elasticity, mass uniformity, water content, meloxicam content and, finally, disintegration time, which was studied using two different methods. The films obtained with the solvent-casting method were flexible and homogeneous in terms of MLX content. Elasticity was slightly better when MIX was used as a disintegrating agent. However, these samples also revealed worse uniformity and mechanical durability. It was concluded that the best properties of the films were achieved using the mildest drying conditions. The type of the disintegrating agent had no effect on the amount of water remaining in the film after drying. The water content depended on the drying conditions. The disintegration time was not affected by the disintegrant type, but some differences were observed when various drying conditions were applied. However, regardless of the formulation type and manufacturing conditions, the analyzed films could not be classified as fast disintegrating films, as the disintegration time exceeded 30 s in all of the tested formulations.

9.
Sci Total Environ ; 944: 173920, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38880150

RESUMO

Biodegradation in marine medium of PHBV films with or without 5 % wt. of phenolic compounds (catechin, ferulic acid, and vanillin) was assessed at laboratory scale. Respirometric analyses and film disintegration kinetics were used to monitor the process over a period of 162 days. Structural changes in the films were analyzed throughout the exposure period using FESEM, DSC, Thermogravimetric analyses, XRD, and FTIR spectra. Respirometric tests showed complete biodegradation of all materials during the exposure period (the biodegradation half-time ranged between 63 and 79 days) but at different rates, depending on the phenolic compound incorporated. Ferulic acid and vanillin accelerate the PHBV biodegradation, whereas catechin delayed the process. Disintegration kinetics confirmed these results and showed that degradation occurred from the surface to the interior of the films. This was controlled by the degradation rate of the polymer amorphous phase and the formation of a biomass coating on the film surface. This is the result of the compounds generated by polymer degradation in combination with excretions from microorganisms. This coating has the potential to affect the enzyme diffusion to the polymer substrate. Moreover, the cohesion forces of the amorphous phase (reflected in its glass transition temperature) affected its degradation rate, while the slower degrading crystalline fragments were released, thus contributing to the disintegration process on the film's surface. Ferulic acid, with its hydrolytic effect, enhanced degradation, as did vanillin for its plasticizing and weakening effect in the amorphous phase of polymer matrix. In contrast, catechin with cross-linking effect hindered the progress of the material degradation, considerably slowing down the process rate.


Assuntos
Biodegradação Ambiental , Poliésteres , Água do Mar , Poluentes Químicos da Água , Poliésteres/metabolismo , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Fenóis/metabolismo , Benzaldeídos/metabolismo , Cinética , Poli-Hidroxibutiratos , Ácidos Cumáricos
10.
J Eur Public Policy ; 31(5): 1231-1258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868721

RESUMO

The liberal international order has recently come under increasing nationalist pressure, evidenced by a rise in nationalist demands to withdraw from international institutions. A growing literature examines the domestic economic, social, and political origins of this nationalist backlash against international institutions. However, less is known about the extent to which precedents of withdrawals of one country affect nationalist pressures for future withdrawals elsewhere. In this paper, we argue that initial withdrawal episodes provide new information about the feasibility and desirability of withdrawals to nationalist elites in other countries. Hence, we expect nationalists abroad to be either encouraged or deterred to follow a similar path - depending on the success of these precedents. We explore this argument in the context of the British withdrawal from the European Union (Brexit), which arguably marks the most significant withdrawal from an international institution to date. Based on a quantitative analyses of media reports in ten European countries, we show we show that nationalist parties in Europe increased or moderated the aggressiveness about their EU-related rhetoric as the ups and downs of the Brexit-drama unfolded. Our results suggest that precedents of nationalist withdrawals shape domestic politics well beyond the concerned countries themselves.

11.
Int J Pharm ; 660: 124383, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925240

RESUMO

The purpose of the study is introduce a two-phase flow model to simulate water penetration into pharmaceutical tablets. This model was built by integrating Darcy's law with the continuity principle, on the premise that water penetration was driven by capillary actions. Notably, this model concerned both the ingress of water (wetting phase) and simultaneous displacement of air (non-wetting phase). Due to the interference of the two fluids, the relative permeability and capillary pressure vary during water penetration. Evolution of these parameters was incorporated in the model. Calibration of the model by water penetration experiments of the microcrystalline cellulose (MCC) tablet yielded an average pore radius of 42 nm. This derived result was corroborated by FIB-SEM analysis revealing the presence of extensive microporosity within MCC particles with an average radius of ∼30 nm. Further validation was achieved through close resemblance between the simulated and experimental water penetration profiles of MCC tablets possessing different porosities. Overall, this study underscored the advantage of the two-phase flow model over single-phase flow models, by capturing the dependence of permeability and capillary pressure on water saturation. Therefore it holds promise for an enhanced description of water penetration into tablets.


Assuntos
Celulose , Permeabilidade , Comprimidos , Água , Celulose/química , Água/química , Porosidade , Modelos Teóricos , Excipientes/química
12.
Int J Pharm ; 660: 124315, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852747

RESUMO

The compendial USP〈701〉 disintegration test method offers a crucial pass/fail assessment for immediate release tablet disintegration. However, its single end-point approach provides limited insight into underlying mechanisms. This study introduces a novel calorimetric approach, aimed at providing comprehensive process profiles beyond binary outcomes. We developed a novel disintegration reaction calorimeter to monitor the heat release throughout the disintegration process and successfully obtained enthalpy change profiles of placebo tablets with various porosities. The formulation comprised microcrystalline cellulose (MCC), anhydrous lactose, croscarmellose sodium (CCS), and magnesium stearate (MgSt). An abrupt temperature rise was observed after introducing the disintegration medium to tablets, and the relationship between the heat rise time and the tablet's porosity was investigated. The calorimeter's sensitivity was sufficient to discern distinct heat changes among individual tablets, and the analysis revealed a direct correlation between the two. Higher porosity corresponded to shorter heat rise time, indicating faster disintegration rates. Additionally, the analysis identified a concurrent endothermic process alongside the anticipated exothermic phenomenon, potentially associated with the dissolution of anhydrous lactose. Since lactose is the only soluble excipient within the blend composition, the endothermic process can be attributed to the absorption of heat as lactose molecules dissolve in water. The findings from this study underscore the potential of utilising calorimetric methods to quantify the wettability of complex compounds and, ultimately, optimise tablet formulations.


Assuntos
Calorimetria , Celulose , Excipientes , Temperatura Alta , Lactose , Ácidos Esteáricos , Comprimidos , Lactose/química , Celulose/química , Excipientes/química , Porosidade , Ácidos Esteáricos/química , Calorimetria/métodos , Solubilidade , Carboximetilcelulose Sódica/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Composição de Medicamentos/métodos
13.
Heliyon ; 10(9): e30663, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765137

RESUMO

While tunnel boring machines (TBMs) tunneling in clayey strata, the adhered excavated soil on the cutterhead and cutting tools tends to form mudcake after compaction and consolidation. Mudcake can obstruct the cutterhead openings and rendering the cutting tools ineffective, leads to a substantial reduction in advance rate. Dispersants are recognized as an effective method for the disintegration of mudcakes. A novel set of equipment, comprising a mudcake compression device and a mudcake disintegration apparatus, is developed for assessing mudcake disintegration properties. The results showed that mudcakes underwent a tripartite disintegration process in water, including an initial stage, a rapid disintegration stage, and a stable stage. In the initial stage, the mudcakes absorbed water before disintegration, resulting in marginal changes in the weight of the disintegrated mudcakes. In the rapid disintegration stage, the weight of the disintegrated mudcakes increased quickly. During the stable stage, the weight of the disintegrated mudcakes remained relatively constant. The submersion of mudcakes in a dispersant solution substantially increased the rate of disintegration. Greater dispersant concentration corresponded to an increase in the disintegration rate. No weight gain was observed in mudcakes during the initial disintegration stage. When mudcakes disintegrated in a bentonite slurry, the weight of the disintegrated mudcakes initially decreased and then stabilized. The weight of the disintegrated mudcakes turned negative, indicating an increase in the weight of mudcakes. This suggested that bentonite significantly hindered mudcake disintegration.

14.
Eur J Pharm Sci ; 198: 106801, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754594

RESUMO

Orodispersible tablets (ODTs) represent a growing category of dosage forms intended to increase the treatment acceptability for special groups of patients. ODTs are designed to rapidly disintegrate in the oral cavity and to be administered without water. In addition, ODTs are easy to manufacture using standard excipients and pharmaceutical equipment. This study adds to previously published research that developed an instrumental tool to predict oral disintegration and texture-related palatability of ODTs with different formulations. The current study aimed to challenge the predictive capacity of the models under variable process conditions. The studied process parameters with potential impact on the pharmaceutical properties, texture profiles, and palatability were the compression pressure, punch shape and diameter. Subsequently, for all the placebo and drug-loaded ODTs, the in vivo disintegration time and texture-related palatability were determined with healthy volunteers. Previously developed regression models were applied to predict the formulation's disintegration time and texture-related palatability characteristics of ODTs obtained under different experimental conditions. The influence of process variables on the predictive performance of the models was estimated by calculating the residuals as the difference between the predicted and observed values for the investigated response. Increasing the speed of the analyser`s probe from 0.01 mm/s to 0.02 mm/s led to an improved differentiation of the texture profiles. The in vivo disintegration time and texture-related palatability scores were only influenced by the mechanical resistance and the tablet shape. Lower score was observed for the larger diameter tablets (10 mm). Overall, the prediction of the disintegration time at 0.02 mm/s was more accurate, except for stronger tablets. The best prediction of texture-related palatability was achieved for the 10 mm tablets, tested at 0.01 mm/s speed. The same model achieved good predictions of the oral disintegration time for all API-loaded formulations, which confirmed the ability of the texture analysis to capture process-related variability. Drug loading decreased the predictive capacity of the texture-related palatability because of the taste effect.


Assuntos
Solubilidade , Comprimidos , Paladar , Comprimidos/química , Humanos , Administração Oral , Análise Multivariada , Masculino , Adulto , Feminino , Excipientes/química , Química Farmacêutica/métodos , Adulto Jovem , Composição de Medicamentos/métodos
15.
Int J Pharm ; 657: 124190, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701910

RESUMO

Lubricants are essential for most tablet formulations as they assist powder flow, prevent adhesion to tableting tools and facilitate tablet ejection. Magnesium stearate (MgSt) is an effective lubricant but may compromise tablet strength and disintegratability. In the design of orodispersible tablets, tablet strength and disintegratability are critical attributes of the dosage form. Hence, this study aimed to conduct an in-depth comparative study of MgSt with alternative lubricants, namely sodium lauryl sulphate (SLS), stearic acid (SA) and hydrogenated castor oil (HCO), for their effects on the tableting process as well as tablet properties. Powder blends were prepared with lactose, sodium starch glycolate or crospovidone as the disintegrant, and a lubricant at different concentrations. Angle of repose was determined for the mixtures. Comparative evaluation was carried out based on the ejection force, tensile strength, liquid penetration and disintegratability of the tablets produced. As the lubricant concentration increased, powder flow and tablet ejection improved. The lubrication efficiency generally decreased as follows: MgSt > HCO > SA > SLS. Despite its superior lubrication efficacy, MgSt is the only lubricant of four evaluated that reduced tablet tensile strength. Tablet disintegration time was strongly determined by tensile strength and liquid penetration, which were in turn affected by the lubricant type and concentration. All the above factors should be taken into consideration when deciding the type and concentration of lubricant for an orodispersible tablet formulation.


Assuntos
Excipientes , Lubrificantes , Ácidos Esteáricos , Comprimidos , Resistência à Tração , Lubrificantes/química , Ácidos Esteáricos/química , Excipientes/química , Composição de Medicamentos/métodos , Pós/química , Dodecilsulfato de Sódio/química , Óleo de Rícino/química , Povidona/química , Amido/química , Amido/análogos & derivados , Lactose/química , Administração Oral , Solubilidade , Química Farmacêutica/métodos
16.
Environ Res ; 256: 119268, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815721

RESUMO

In this study, electrochemistry was used to enhance the advanced oxidation of Fe(Ⅱ)/PAA (EC/Fe(Ⅱ)/PAA) to disintegrate waste activated sludge, and its performance and mechanism was compared with those of EC, PAA, EC/PAA and Fe(Ⅱ)/PAA. Results showed that the EC/Fe(Ⅱ)/PAA process effectively improved sludge disintegration and the concentrations of soluble chemical oxygen demand, polysaccharides and nucleic acids increased by 62.85%, 41.15% and 12.21%, respectively, compared to the Fe(Ⅱ)/PAA process. Mechanism analysis showed that the main active species produced in the EC/Fe(Ⅱ)/PAA process were •OH, R-O• and FeIVO2+. During the reaction process, sludge flocs were disrupted and particle size was reduced by the combined effects of active species oxidation, electrochemical oxidation and PAA oxidation. Furthermore, extracellular polymeric substances (EPS) was degraded, the conversion of TB-EPS to LB-EPS and S-EPS was promoted and the total protein and polysaccharide contents of EPS were increased. After sludge cells were disrupted, intracellular substances were released, causing an increase in nucleic acids, humic acids and fulvic acids in the supernatant, and resulting in sludge reduction. EC effectively accelerated the conversion of Fe(Ⅲ) to Fe(Ⅱ), which was conducive to the activation of PAA, while also enhancing the disintegration of EPS and sludge cells. This study provided an effective approach for the release of organic matter, offering significant benefits in sludge resource utilization.


Assuntos
Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Técnicas Eletroquímicas/métodos , Ferro/química , Análise da Demanda Biológica de Oxigênio
17.
Int J Pharm ; 659: 124290, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38821435

RESUMO

The influence of hydroxypropyl cellulose type (HPC-SSL SFP, HPC-SSL), concentration (2 %, 3.5 %, 5 %) and filler (lactose, calcium hydrogen phosphate (DCP)/microcrystalline cellulose (MCC)) on twin-screw wet granulation and subsequent tableting was studied. The aim was to identify the formulation of the highest tabletability which still fulfills the requirements of the disintegration. Lactose combined with 5 % binder enabled a higher tabletability and a faster disintegration than DCP/MCC. It was found that tabletability of lactose formulations can be increased by higher binder concentration and higher compression pressure while tabletability of DCP/MCC formulations can be only increased by higher compression pressure. It was observed that batches containing DCP/MCC failed the disintegration test, if the highest binder concentration and the highest compression pressure were used. To ensure a fast disintegration, the compression pressure or at least the binder concentration had to be low. Changing the disintegrant and its localization improved the DCP/MCC formulation, resulting in faster disintegration than lactose tablets. However, it also resulted in a lower tabletability. In this study best tablets were achieved with 3.5 % or 5 % binder and lactose as filler. These tablets presented the highest tabletability but still disintegrated in less than 500 s.


Assuntos
Celulose , Composição de Medicamentos , Excipientes , Lactose , Comprimidos , Celulose/química , Celulose/análogos & derivados , Lactose/química , Excipientes/química , Composição de Medicamentos/métodos , Fosfatos de Cálcio/química , Química Farmacêutica/métodos , Pressão , Solubilidade
18.
Sci Rep ; 14(1): 7662, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561397

RESUMO

The disintegration of red-bed soft rock exhibits a strong correlation with various geological disasters. However, the investigation into the evolutionary mechanisms underlying disintegration breakage has not yet received extensive exploration. In order to comprehensively examine the disintegration characteristics of red-bed soft rock, the slake durability tests were conducted to red-bed soft rocks of varying burial depths. Subsequently, an investigation was carried out to examine the disintegration characteristics and the evolution of disintegration parameters, including the coefficient of uniformity (Cu), coefficient of curvature (Cc), disintegration rate (DRE), disintegration ratio (Dr), and fractal dimension (D), throughout the disintegration process. Finally, employing the energy dissipation theory, an energy dissipation model was developed to predicate the disintegration process of samples at various burial depths. The findings demonstrate a decrease in the abundance of large particles and a concurrent increase in the abundance of small particles as the number of drying-wetting cycles increases. Furthermore, as the number of drying-wetting cycles increases, a significant alteration is observed in the content of particles larger than 10 mm, whereas the content of particles smaller than 10 mm undergoes only minor changes. The disintegration parameters, including the curvature coefficient, non-uniformity coefficient, disintegration rate, and fractal dimension, exhibit a positive correlation with the number of drying-wetting cycles. Conversely, the disintegration index demonstrates a decreasing trend with the increasing number of cycles. Nevertheless, as the burial depth increases, a notable trend emerges in the disintegration process, characterized by a gradual increase in the content of large particles alongside a progressive decrease in the content of small particles. Concurrently, the curvature coefficient, non-uniformity coefficient, disintegration rate, and fractal dimension exhibit a gradual decline, while the durability index experiences a gradual increase. In addition, based on the principle of energy dissipation, it is revealed that the surface energy increment of red-bed soft rock increases with the increase of the number of drying-wetting cycles, but decreases with the increase of burial depth. Ultimately, by leveraging the outcomes of energy dissipation analyses, a theoretical model is constructed to elucidate the correlation between surface energy and both the number of drying-wetting cycles and burial depth. This model serves as a theoretical reference for predicting the disintegration behavior of samples, offering valuable insights for future research endeavors.

19.
Environ Res ; 252(Pt 2): 118876, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582420

RESUMO

The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.


Assuntos
Biocombustíveis , Esgotos , Esgotos/química , Biocombustíveis/análise , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Álcalis/química , Metano , Hidróxido de Sódio/química , Hidróxido de Cálcio/química , Hidróxido de Magnésio/química , Reatores Biológicos , Hidróxidos/química , Compostos de Potássio/química
20.
Int J Pharm ; 656: 124084, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580072

RESUMO

In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, ß0 and ßt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.


Assuntos
Liberação Controlada de Fármacos , Tamanho da Partícula , Solubilidade , Comprimidos , Porosidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Excipientes/química , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...